
Package ‘declared’
September 8, 2024

Title Functions for Declared Missing Values

Version 0.25

URL https://github.com/dusadrian/declared

BugReports https://github.com/dusadrian/declared/issues

Description A zero dependency package containing functions to declare labels
and missing values, coupled with associated functions to create (weighted)
tables of frequencies and various other summary measures.
Some of the base functions have been rewritten to make use of the specific
information about the missing values, most importantly to distinguish
between empty NA and declared NA values.
Some functions have similar functionality with the corresponding ones from
packages ``haven'' and ``labelled''. The aim is to ensure as much compatibility
as possible with these packages, while offering an alternative in the
objects of class ``declared''.

License GPL (>= 3)

Language en-US

Encoding UTF-8

NeedsCompilation yes

Author Adrian Dusa [aut, cre, cph] (<https://orcid.org/0000-0002-3525-9253>),
Daniel Antal [ctb] (<https://orcid.org/0000-0001-7513-6760>)

Maintainer Adrian Dusa <dusa.adrian@unibuc.ro>

Repository CRAN

Date/Publication 2024-09-08 20:00:02 UTC

Contents
as.declared . 2
as.haven . 4
drop_undeclare . 5
is.empty . 6
labels . 7

1

https://github.com/dusadrian/declared
https://github.com/dusadrian/declared/issues
https://orcid.org/0000-0002-3525-9253
https://orcid.org/0000-0001-7513-6760

2 as.declared

measurement . 8
missing_range . 10
w_IQR . 11

Index 16

as.declared Labelled vectors with declared missing values

Description

The labelled vectors are mainly used to analyse social science data, and the missing values declara-
tion is an important step in the analysis.

Usage

as.declared(x, ...)

declared(
x,
labels = NULL,
na_values = NULL,
na_range = NULL,
label = NULL,
measurement = NULL,
llevels = FALSE,
...

)

is.declared(x)

anyNAdeclared(x)

Arguments

x A numeric vector to label, or a declared labelled vector (for undeclare)

... Other arguments used by various other methods

labels A named vector or NULL. The vector should be the same type as x. Unlike
factors, labels don’t need to be exhaustive: only a fraction of the values might
be labelled

na_values A vector of values that should also be considered as missing

na_range A numeric vector of length two giving the (inclusive) extents of the range. Use
-Inf and Inf if you want the range to be open ended

label A short, human-readable description of the vector

measurement Optional, user specified measurement level

llevels Logical, when x is a factor only use those levels that have labels

as.declared 3

Details

The declared objects are very similar to the haven_labelled_spss objects from package haven.
It has exactly the same arguments, but it features a fundamental difference in the treatment of
(declared) missing values.

In package haven, existing values are treated as if they were missing. By contrast, in package
declared the NA values are treated as if they were existing values.

This difference is fundamental and points to an inconsistency in package haven: while existing
values can be identified as missing using the function is.na(), they are in fact present in the vector
and other packages (most importantly the base ones) do not know these values should be treated as
missing.

Consequently, the existing values are interpreted as missing only by package haven. Statistical
procedures will use those values as if they were valid values.

Package declared approaches the problem in exactly the opposite way: instead of treating existing
values as missing, it treats (certain) NA values as existing. It does that by storing an attribute
containing the indices of those NA values which are to be treated as declared missing values, and it
refreshes this attribute each time the declared object is changed.

This is a trade off and has important implications when subsetting datasets: all declared variables
get this attribute refreshed, which consumes some time depending on the number of variables in the
data.

The generic function as.declared() attempts to coerce only the compatible types of objects,
namely haven_labelled and factors. Dedicated class methods can be written for any other type
of object, and users are free to write their own. To end of with a declared object, additional metadata
is needed such as value labels, which values should be treated as missing etc.

The measurement level is optional and, for the moment, purely aesthetic. It might however be
useful to (automatically) determine if a declared object is suitable for a certain statistical analysis,
for instance regression requires quantitative variables, while some declared objects are certainly
categorical despite using numbers to denote categories.

It distinguishes between "categorial" and "quantitative" types of variables, and addition-
ally recognizes "nominal" and "ordinal" as categorical, and similarly recognizes "interval",
"ratio", "discrete" and "continuous" as quantitative.

Value

declared() and as.declared() return labelled vector of class "declared". When applied to
a data frame, as.declared() will return a corresponding data frame with declared variables.
is.declared() and anyNAdeclared return a logical value.

Examples

x <- declared(
c(1:5, -1),
labels = c(Good = 1, Bad = 5, DK = -1),
na_values = -1

)

x

4 as.haven

is.na(x)

x > 0

x == -1

Values are actually placeholder for categories,
so labels work as if they were factors:
x == "DK"

when newly added values are already declared as missing,
they are automatically coerced
c(x, 2, -1)

switch NAs with their original values
undeclare(x)

as.character(x)

Returning values instead of categories
as.character(x, values = TRUE)

as.haven Coerce to haven / labelled objects

Description

Convert declared labelled objects to haven labelled objects

Usage

as.haven(x, ...)

Arguments

x A declared labelled vector

... Other arguments used by various methods

Details

This is a function that reverses the process of as.declared(), making a round trip between declared
and haven_labelled_spss classes.

Value

A labelled vector of class "haven_labelled_spss".

drop_undeclare 5

Examples

x <- declared(
c(1:5, -1),
labels = c(Good = 1, Bad = 5, DK = -1),
na_values = -1

)

x

as.haven(x)

drop_undeclare Drop information / undeclare labelled objects

Description

A function to obtain a version of the object with all information about declared missing values,
dropped

Usage

undeclare(x, drop = FALSE, ...)

drop_na(x, drop_labels = TRUE)

Arguments

x A labelled object with declared missing values

drop Logical, drop all attributes

... Other internal arguments

drop_labels Logical, drop the labels for the declared missing values

Details

The function undeclare() replaces the NA entries into their original numeric values, and drops
all attributes related to missing values: na_values, na_range and na_index, and it preserves the
labels referring to the missing values.

The result can be a regular vector (dropping all attributes, including the class "declared") by acti-
vating the argument drop.

Function drop_na() transforms the declared missing values in regular empty NAs, and the labels
referring to the missing values are deleted by default.

Function drop() deletes all attributes.

Value

A declared labelled object.

6 is.empty

See Also

Other labelling functions: labels(), measurement()

Examples

x <- declared(
c(-2, 1:5, -1),
labels = c("Good" = 1, "Bad" = 5, "DK" = -1),
na_values = c(-1, -2),
label = "Test variable"

)

x

undeclare(x)

drop_na(x)

drop(x)

undeclare(x, drop = TRUE)

similar to:
drop(undeclare(x))

is.empty Test the presence of empty (undeclared) missing values

Description

Functions that indicate which elements are empty NA missing values, in contrast to declared missing
values.

Usage

is.empty(x)

anyNAempty(x)

Arguments

x A vector

Details

All missing values, declared or undeclared, as stored as regular NA values, therefore the base func-
tion is_na() does not differentiate between them.

These functions are specifically adapted to objects of class "declared", to return a truth value only
for those elements that are completely missing with no reason.

labels 7

Value

A logical vector.

Examples

x <- declared(
c(1:2, -91),
labels = c(Good = 1, Bad = 2, Missing = -91),
na_values = -91

)

x

is.empty(x) # FALSE FALSE FALSE

anyNAempty(x) # FALSE

x <- c(x, NA)

is.empty(x) # FALSE FALSE FALSE TRUE

anyNAempty(x) # TRUE

labels Get / Declare value labels

Description

Functions to extract information about the declared variable / value labels, or to declare such values
if they are present in the data.

Usage

label(x)

label(x, ...) <- value

labels(x) <- value

Arguments

x Any vector of values that should be declared as missing (for labels) or a nu-
meric vector of length two giving the (inclusive) extents of the range of missing
values (for label).

... Other arguments, for internal use.

value The variable label, or a list of (named) variable labels

8 measurement

Details

The function labels() is a adaptation of the base function to the objects of class declared. In ad-
dition to the regular arguments, it has two additional (logical) arguments called prefixed (FALSE
by default), to retrieve the value labels prefixed with their values, and print_as_df (TRUE by
default) to print the result as a data frame.

Value

labels() will return a named vector.

label() will return a single character string.

See Also

Other labelling functions: drop_undeclare, measurement()

Examples

x <- declared(
c(-2, 1:5, -1),
labels = c("Good" = 1, "Bad" = 5, "DK" = -1),
na_values = c(-1, -2),
label = "Test variable"

)
x

labels(x)

labels(x, prefixed = TRUE)

labels(x) <- c("Good" = 1, "Bad" = 5, "DK" = -1, "Not applicable" = -2)

label(x)

label(x) <- "This is a proper label"

x

measurement Get / Set measurement levels for declared objects

Description

Functions to extract information about the measurement levels of a variable (if already present), or
to specify such measurement levels.

measurement 9

Usage

measurement(x)

measurement(x) <- value

Arguments

x A declared vector.

value A single character string of measurement levels, separated by commas.

Details

This function creates an attribute called "measurement" to a declared This object, as an optional
feature, at this point for purely aesthetic reasons. attribute might become useful in the future to (au-
tomatically) determine if a declared object is suitable for a certain statistical analysis, for instance
regression requires quantitative variables, while some declared objects are certainly categorical de-
spite using numbers to denote categories.

It distinguishes between "categorical" and "quantitative" types of variables, and addition-
ally recognizes "nominal" and "ordinal" as categorical, and similarly recognizes "interval",
"ratio", "discrete" and "continuous" as quantitative.

The words "qualitative" is treated as a synonym for "categorical", and the words "metric"
and "numeric" are treated as synonyms for "quantitative", respectively.

Value

A character vector.

See Also

Other labelling functions: drop_undeclare, labels()

Examples

x <- declared(
c(-2, 1:5, -1),
labels = c(Good = 1, Bad = 5, DK = -1),
na_values = c(-1, -2),
label = "Test variable"

)

x

measurement(x)

automatically recognized as categorical
measurement(x) <- "ordinal"

measurement(x)

10 missing_range

the same with
measurement(x) <- "categorical, ordinal"

set.seed(1890)
x <- declared(

sample(c(18:90, -91), 20, replace = TRUE),
labels = c("No answer" = -91),
na_values = -91,
label = "Respondent's age"

)

automatically recognized as quantitative
measurement(x) <- "discrete"

measurement(x)

the same with
measurement(x) <- "metric, discrete"

missing_range Get / Declare missing values

Description

Functions to extract information about the declared missing values, or to declare such values if they
are present in the data.

Usage

missing_range(x)

missing_range(x) <- value

missing_values(x)

missing_values(x) <- value

Arguments

x A vector.

value Any vector of values that should be declared as missing (for missing_values)
or a numeric vector of length two giving the (inclusive) extents of the range of
missing values (for missing_range).

Value

missing_values() will return a vector of one or more values.

missing_range() will return a numeric vector of length 2.

w_IQR 11

Examples

x <- declared(c(-2, 1:5, -1),
labels = c(Good = 1, Bad = 5, DK = -1, NotApplicable = -2),
na_values = c(-1, -2)

)
x

missing_values(x)

missing_range(x) <- c(-10, -7)

missing_range(x)

w_IQR Compute weighted summaries for declared objects

Description

Functions to compute weighted tables or summaries, based on a vector of frequency weights. These
are reimplementations of various existing functions, adapted to objects of class "declared" (see
Details below)

Usage

w_IQR(x, wt = NULL, na.rm = FALSE, ...)

w_fivenum(x, wt = NULL, na.rm = FALSE)

w_mean(x, wt = NULL, trim = 0, na.rm = TRUE)

w_median(x, wt = NULL, na.rm = TRUE, ...)

w_mode(x, wt = NULL)

w_quantile(x, wt = NULL, probs = seq(0, 1, 0.25), na.rm = TRUE, ...)

w_sd(x, wt = NULL, method = NULL, na.rm = TRUE)

w_standardize(x, wt = NULL, na.rm = TRUE)

w_summary(x, wt = NULL, ...)

w_table(
x,
y = NULL,
wt = NULL,

12 w_IQR

values = FALSE,
valid = TRUE,
observed = TRUE,
margin = NULL,
vlabel = FALSE

)

w_var(x, wt = NULL, method = NULL, na.rm = TRUE)

Arguments

x A numeric vector for summaries, or declared / factor for frequency tables

wt A numeric vector of frequency weights

na.rm Logical, should the empty missing values be removed?

... Further arguments passed to or from other methods.

trim A fraction (0 to 0.5) of observations to be trimmed from each end of x before
the mean is computed. Values of trim outside that range are taken as the nearest
endpoint.

probs Numeric vector of probabilities with values in [0,1]

method Character, specifying how the result is scaled, see ’Details’ below.

y An optional variable, to create crosstabs; must have the same length as x

values Logical, print the values in the table rows

valid Logical, print separate percent distribution for valid values, if any missing values
are present; for cross tables, use valid values only

observed Logical, print the observed categories only

margin Numeric, indicating the margin to calculate crosstab proportions: 0 from the
total, 1 from row totals and 2 from column totals

vlabel Logical, print the variable label, if existing

Details

Weighted summaries

A frequency table is usually performed for a categorical variable, displaying the frequencies of the
respective categories. Note that general variables containing text are not necessarily factors, despite
having a small number of characters.

A general table of frequencies, using the base function table(), ignores the defined missing values
(which are all stored as NAs). The reimplementation of this function in w_table() takes care of
this detail, and presents frequencies for each separately defined missing values. Similar reimple-
mentations for the other functions have the same underlying objective.

It is also possible to perform a frequency table for numerical variables, if the number of values is
limited (an arbitrary and debatable upper limit of 15 is used). An example of such variable can be
the number of children, where each value can be interpreted as a class, containing a single value
(for instance 0 meaning the category of people with no children).

w_IQR 13

Objects of class declared are not pure categorical variables (R factors) but they are nevertheless
interpreted as if they were factors, to allow producing frequency tables. Given the high similarity
with package haven, objects of class haven_labelled_spss are automatically coerced to objects
of class declared and treated accordingly.

The argument values makes sense only when the input is of family class declared, otherwise for
regular (base R) factors the values are just a sequence of numbers.

The later introduced argument observed is useful in situations when a variable has a very large
number of potential values, and a smaller subset of actually observed ones. As an example, the
variable “Occupation” has hundreds of possible values in the ISCO08 codelist, and not all of them
might be actually observed. When activated, this argument restricts the printed frequency table to
the subset of observed values only.

The argument method can be one of "unbiased" or "ML".

When this is set to "unbiased", the result is an unbiased estimate using Bessel’s correction. When
this is set to "ML", the result is the maximum likelihood estimate for a Gaussian distribution.

The argument wt refers only to frequency weights. Users should be aware of the differences between
frequency weights, analytic weights, probability weights, design weights, post-stratification weights
etc. For purposes of inferential testing, Thomas Lumley’s package survey should be employed.

If no frequency weights are provided, the result is identical to the corresponding base functions.

The function w_quantile() extensively borrowed ideas from packages stats and Hmisc, to ensure
a constant interpolation that would produce the same quantiles if no weights are provided or if all
weights are equal to 1.

Other arguments can be passed to the stats function quantile() via the three dots ... argument,
and their extensive explanation is found in the corresponding stats function’s help page.

For all functions, the argument na.rm refers to the empty missing values and its default is set to
TRUE. The declared missing values are automatically eliminated from the summary statistics, even
if this argument is deactivated.

The function w_mode() returns the weighted mode of a variable. Unlike the other functions where
the prefix w_ signals a weighted version of the base function with the same name, this has nothing
to do with the base function mode() which refers to the storage mode / type of an R object.

Value

A vector of (weighted) values.

Author(s)

Adrian Dusa

Examples

set.seed(215)

a pure categorical variable
x <- factor(sample(letters[1:5], 215, replace = TRUE))
w_table(x)

14 w_IQR

simulate number of children
x <- sample(0:4, 215, replace = TRUE)
w_table(x)

simulate a Likert type response scale from 1 to 7
values <- sample(c(1:7, -91), 215, replace = TRUE)
x <- declared(values, labels = c("Good" = 1, "Bad" = 7))
w_table(x)

Defining missing values
missing_values(x) <- -91
w_table(x)

Defined missing values with labels
values <- sample(c(1:7, -91, NA), 215, replace = TRUE)
x <- declared(

values,
labels = c("Good" = 1, "Bad" = 7, "Don't know" = -91),
na_values = -91

)

w_table(x)

Including the values in the table of frequencies
w_table(x, values = TRUE)

An example involving multiple variables
DF <- data.frame(

Area = declared(
sample(1:2, 215, replace = TRUE, prob = c(0.45, 0.55)),
labels = c(Rural = 1, Urban = 2)

),
Gender = declared(

sample(1:2, 215, replace = TRUE, prob = c(0.55, 0.45)),
labels = c(Males = 1, Females = 2)

),
Age = sample(18:90, 215, replace = TRUE),
Children = sample(0:5, 215, replace = TRUE)

)

w_table(DF$Gender)

w_sd(DF$Age)

Weighting: observed proportions
op <- proportions(with(DF, table(Gender, Area)))

Theoretical proportions: 53% Rural, and 50.2% Females
tp <- rep(c(0.53, 0.47), each = 2) * rep(c(0.498, 0.502), 2)

w_IQR 15

Corrections by strata
fweights <- tp / op

DF$fweight <- fweights[match(10 * DF$Area + DF$Gender, c(11, 12, 21, 22))]

with(DF, w_table(Gender, wt = fweight))

with(DF, w_mean(Age, wt = fweight))

with(DF, w_quantile(Age, wt = fweight))

Index

∗ labelling functions
drop_undeclare, 5
labels, 7
measurement, 8

anyNAdeclared (as.declared), 2
anyNAempty (is.empty), 6
as.declared, 2
as.haven, 4

declared (as.declared), 2
drop_na (drop_undeclare), 5
drop_undeclare, 5, 8, 9

is.declared (as.declared), 2
is.empty, 6

label (labels), 7
label<- (labels), 7
labels, 6, 7, 9
labels<- (labels), 7

measurement, 6, 8, 8
measurement<- (measurement), 8
missing_range, 10
missing_range<- (missing_range), 10
missing_values (missing_range), 10
missing_values<- (missing_range), 10

undeclare (drop_undeclare), 5

w_fivenum (w_IQR), 11
w_IQR, 11
w_mean (w_IQR), 11
w_median (w_IQR), 11
w_mode (w_IQR), 11
w_quantile (w_IQR), 11
w_sd (w_IQR), 11
w_standardize (w_IQR), 11
w_summary (w_IQR), 11
w_table (w_IQR), 11

w_var (w_IQR), 11
weighted (w_IQR), 11

16

	as.declared
	as.haven
	drop_undeclare
	is.empty
	labels
	measurement
	missing_range
	w_IQR
	Index

