Package ‘crew.aws.batch’

June 9, 2025
Title A Crew Launcher Plugin for AWS Batch

Description In computationally demanding analysis projects,
statisticians and data scientists asynchronously
deploy long-running tasks to distributed systems,
ranging from traditional clusters to cloud services.
The 'crew.aws.batch' package extends the 'mirai'-powered
'crew' package with a worker launcher plugin for AWS Batch.
Inspiration also comes from packages 'mirai' by Gao (2023)
<https://github.com/r-1lib/mirai>,
'future' by Bengtsson (2021) <doi:10.32614/RJ-2021-048>,
'rrq' by FitzJohn and Ashton (2023) <https://github.com/mrc-ide/rrg>,
'clustermq' by Schubert (2019) <doi: 10.1093/bioinformatics/btz284>),
and 'batchtools' by Lang, Bischl, and Surmann (2017).
<doi:10.21105/j0ss.00135>.

Version 0.0.11

License MIT + file LICENSE

URL https://wlandau.github.io/crew.aws.batch/,
https://github.com/wlandau/crew.aws.batch

BugReports https://github.com/wlandau/crew.aws.batch/issues
Depends R (>=4.0.0)

Imports cli (>=3.1.0), crew (>= 1.2.0), paws.common (>= 0.7.0),
paws.compute, paws.management, R6, rlang, tibble, utils

Suggests knitr (>= 1.30), markdown (>= 1.1), rmarkdown (>= 2.4),
testthat (>= 3.0.0)

Encoding UTF-8
Language en-US
Config/testthat/edition 3
RoxygenNote 7.3.2
NeedsCompilation no

Author William Michael Landau [aut, cre] (ORCID:
<https://orcid.org/0000-0003-1878-3253>),
Eli Lilly and Company [cph, fnd]

https://github.com/r-lib/mirai
https://doi.org/10.32614/RJ-2021-048
https://github.com/mrc-ide/rrq
https://doi.org/10.1093/bioinformatics/btz284
https://doi.org/10.21105/joss.00135
https://wlandau.github.io/crew.aws.batch/
https://github.com/wlandau/crew.aws.batch
https://github.com/wlandau/crew.aws.batch/issues
https://orcid.org/0000-0003-1878-3253

2 crew_class_definition_aws_batch

Maintainer William Michael Landau <will.landau.oss@gmail.com>
Repository CRAN
Date/Publication 2025-06-09 14:40:06 UTC

Contents
crew.aws.batch-package 2
crew_class_definition_aws_batch 2
crew_class_launcher_aws_batch 7
crew_class_monitor_aws_batch 10
crew_controller aws_batch e 14
crew_definition_aws_batch 19
crew_launcher _aws_batch 21
crew_monitor_aws_batch 25
crew_options_aws_batch L oo 26

Index 29

crew.aws.batch-package
crew.aws.batch: a crew launcher plugin for AWS Batch

Description

In computationally demanding analysis projects, statisticians and data scientists asynchronously
deploy long-running tasks to distributed systems, ranging from traditional clusters to cloud services.
The crew.aws.batch package extends the mirai-powered crew package with worker launcher
plugins for AWS Batch. Inspiration also comes from packages mirai, future, rrq, clustermg,
and batchtools.

crew_class_definition_aws_batch
AWS Batch definition class

Description

AWS Batch definition R6 class

Details

See crew_definition_aws_batch().

https://github.com/r-lib/mirai
https://wlandau.github.io
https://github.com/r-lib/mirai
https://future.futureverse.org/
https://mrc-ide.github.io/rrq/
https://mschubert.github.io/clustermq/
https://batchtools.mlr-org.com

crew_class_definition_aws_batch 3

IAM policies

In order for the AWS Batch crew job definition class to function properly, your IAM policy needs

permission to perform the RegisterJobDefinition, DeregisterJobDefinition, and DescribeJobDefinitions
AWS Batch API calls. For more information on AWS policies and permissions, please visit https:
//docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html.

Active bindings

job_queue See crew_definition_aws_batch().
job_definition See crew_definition_aws_batch().
log_group See crew_definition_aws_batch().
config See crew_definition_aws_batch().
credentials See crew_definition_aws_batch().
endpoint See crew_definition_aws_batch().

region See crew_definition_aws_batch().

Methods
Public methods:

e crew_class_definition_aws_batch$new()

e crew_class_definition_aws_batch$validate()

e crew_class_definition_aws_batch$register()

e crew_class_definition_aws_batch$deregister()
e crew_class_definition_aws_batch$describe()

e crew_class_definition_aws_batch$submit()

Method new(): AWS Batch job definition constructor.

Usage:
crew_class_definition_aws_batch$new(

job_queue = NULL,

job_definition = NULL,

log_group = NULL,

config = NULL,

credentials = NULL,

endpoint = NULL,

region = NULL
)
Arguments:
job_queue See crew_definition_aws_batch().
job_definition See crew_definition_aws_batch().
log_group See crew_definition_aws_batch().
config See crew_definition_aws_batch().
credentials See crew_definition_aws_batch().
endpoint See crew_definition_aws_batch().

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

crew_class_definition_aws_batch

region See crew_definition_aws_batch().

Returns: AWS Batch job definition object.

Method validate(): Validate the object.
Usage:
crew_class_definition_aws_batch$validate()

Returns: NULL (invisibly). Throws an error if a field is invalid.

Method register(): Register a job definition.
Usage:
crew_class_definition_aws_batch$register(

image,
platform_capabilities = "EC2",
memory_units = "gigabytes”,
memory = NULL,

cpus = NULL,

gpus = NULL,
seconds_timeout = NULL,
scheduling_priority = NULL,
tags = NULL,

propagate_tags = NULL,
parameters = NULL,
job_role_arn = NULL,
execution_role_arn = NULL

)

Arguments:

image Character of length 1, Docker image used for each job. You can supply a path to an
image in Docker Hub or the full URI of an image in an Amazon ECR repository.

platform_capabilities Optional character of length 1, either "EC2" to run on EC2 or "FARGATE"

to run on Fargate.

memory_units Character of length 1, either "gigabytes"” or "mebibytes” to set the units of
the memory argument. "gigabytes” is simpler for EC2 jobs, but Fargate has strict require-
ments about specifying exact amounts of mebibytes (MiB). for details, read https://docs.
aws.amazon.com/cli/latest/reference/batch/register-job-definition.html # no-
lint

memory Positive numeric of length 1, amount of memory to request for each job.

cpus Positive numeric of length 1, number of virtual CPUs to request for each job.

gpus Positive numeric of length 1, number of GPUs to request for each job.

seconds_timeout Optional positive numeric of length 1, number of seconds until a job times
out.

scheduling_priority Optional nonnegative integer of length 1 between @ and 9999, priority
of jobs. Jobs with higher-valued priorities are scheduled first. The priority only applies if
the job queue has a fair share policy. Set to NULL to omit.

tags Optional character vector of tags.

propagate_tags Optional logical of length 1, whether to propagate tags from the job or defi-
nition to the ECS task.

https://docs.aws.amazon.com/cli/latest/reference/batch/register-job-definition.html
https://docs.aws.amazon.com/cli/latest/reference/batch/register-job-definition.html

crew_class_definition_aws_batch 5

parameters Optional character vector of key-value pairs designating parameters for job sub-
mission.

job_role_arn Character of length 1, Amazon resource name (ARN) of the job role.

execution_role_arn Character of length 1, Amazon resource name (ARN) of the execution
role.

Details: The register () method registers a simple job definition using the job definition name
and log group originally supplied to crew_definition_aws_batch(). Job definitions created
with $register() are container-based and use the AWS log driver. For more complicated
kinds of jobs, we recommend skipping register(): first call https://www.paws-r-sdk.com/
docs/batch_register_job_definition/ to register the job definition, then supply the job
definition name to the job_definition argument of crew_definition_aws_batch().

Returns: A one-row tibble with the job definition name, ARN, and revision number of the
registered job definition.

Method deregister(): Attempt to deregister a revision of the job definition.
Usage:

crew_class_definition_aws_batch$deregister(revision = NULL)

Arguments:

revision Finite positive integer of length 1, optional revision number to deregister. If NULL,
then only the highest revision number of the job definition is deregistered, if it exists.

Details: Attempt to deregister the job definition whose name was originally supplied to the
job_definition argument of crew_definition_aws_batch().

Returns: NULL (invisibly).

Method describe(): Describe the revisions of the job definition.
Usage:
crew_class_definition_aws_batch$describe(revision = NULL, active = FALSE)
Arguments:
revision Positive integer of length 1, optional revision number to describe.

active Logical of length 1, whether to filter on just the active job definition.

Returns: A tibble with job definition information. There is one row per revision. Some fields
may be nested lists.

Method submit(): Submit an AWS Batch job with the given job definition.

Usage:

crew_class_definition_aws_batch$submit(
command = c("sleep”, "300"),

name = paste@("crew-aws-batch-job-", crew::crew_random_name()),
cpus = NULL,

gpus = NULL,

memory_units = "gigabytes”,

memory = NULL,
seconds_timeout = NULL,
share_identifier = NULL,

https://www.paws-r-sdk.com/docs/batch_register_job_definition/
https://www.paws-r-sdk.com/docs/batch_register_job_definition/

6 crew_class_definition_aws_batch

scheduling_priority_override = NULL,
tags = NULL,

propagate_tags = NULL,

parameters = NULL

)

Arguments:

command Character vector with the command to submit for the job. Usually a Linux shell
command with each term in its own character string.

name Character of length 1 with the job name.
cpus Positive numeric of length 1, number of virtual CPUs to request for each job.
gpus Positive numeric of length 1, number of GPUs to request for each job.

memory_units Character of length 1, either "gigabytes” or "mebibytes” to set the units of
the memory argument. "gigabytes” is simpler for EC2 jobs, but Fargate has strict require-
ments about specifying exact amounts of mebibytes (MiB). for details, read https://docs.
aws.amazon.com/cli/latest/reference/batch/register-job-definition.html # no-
lint

memory Positive numeric of length 1, amount of memory to request for each job.

seconds_timeout Optional positive numeric of length 1, number of seconds until a job times
out.
share_identifier Character of length 1 with the share identifier of the job. Only applies if

the job queue has a scheduling policy. Read the official AWS Batch documentation for
details.

scheduling_priority_override Optional nonnegative integer of length between @ and 9999,
priority of the job. This value overrides the priority in the job definition. Jobs with higher-
valued priorities are scheduled first. The priority applies if the job queue has a fair share
policy. Set to NULL to omit.

tags Optional character vector of tags.

propagate_tags Optional logical of length 1, whether to propagate tags from the job or defi-
nition to the ECS task.

parameters Optional character vector of key-value pairs designating parameters for job sub-
mission.

Details: This method uses the job queue and job definition that were supplied through crew_definition_aws_batch().
Any jobs submitted this way are different from the crew workers that the crew controller starts

automatically using the AWS Batch launcher plugin. You may use the submit () method in the

definition for different purposes such as testing.

Returns: A one-row tibble with the name, ID, and Amazon resource name (ARN) of the job.

See Also

Other definition: crew_definition_aws_batch()

https://docs.aws.amazon.com/cli/latest/reference/batch/register-job-definition.html
https://docs.aws.amazon.com/cli/latest/reference/batch/register-job-definition.html

crew_class_launcher aws_batch 7

crew_class_launcher_aws_batch
AWS Batch launcher class

Description

AWS Batch launcher R6 class

Details

See crew_launcher_aws_batch().

IAM policies

In order for the AWS Batch crew plugin to function properly, your IAM policy needs permission to
perform the SubmitJob and TerminateJob AWS Batch API calls. For more information on AWS
policies and permissions, please visit https://docs.aws.amazon.com/IAM/latest/UserGuide/
access_policies.html.

AWS arguments

The AWS Batch controller and launcher accept many arguments which start with "aws_batch_".
These arguments are AW S-Batch-specific parameters forwarded directly to the submit_job() method
for the Batch client in the paws. compute R package

For a full description of each argument, including its meaning and format, please visit https://

www . paws-r-sdk.com/docs/batch_submit_job/. The upstream API documentation is at https:
//docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html and the analogous

CLI documentation is at https://docs.aws.amazon.com/cli/latest/reference/batch/submit-job.
html.

The actual argument names may vary slightly, depending on which : for example, the aws_batch_job_definition
argument of the crew AWS Batch launcher/controller corresponds to the jobDefinition argu-
ment of the web API and paws.compute: :batch()$submit_job(), and both correspond to the
--job-definition argument of the CLI.

Verbosity
Control verbosity with the paws.log_level global option in R. Set to O for minimum verbosity and
3 for maximum verbosity.

Super class

crew: :crew_class_launcher -> crew_class_launcher_aws_batch

Active bindings

options_aws_batch See crew_launcher_aws_batch().

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html
https://docs.aws.amazon.com/cli/latest/reference/batch/submit-job.html
https://docs.aws.amazon.com/cli/latest/reference/batch/submit-job.html

crew_class_launcher aws_batch

Methods

Public methods:

e crew_class_launcher_aws_batch$new()

e crew_class_launcher_aws_batch$validate()

e crew_class_launcher_aws_batch$launch_worker ()

e crew_class_launcher_aws_batch$terminate_worker ()

Method new(): Abstract launcher constructor.

Usage:

crew_class_launcher_aws_batch$new(
name = NULL,
workers = NULL,
seconds_interval = NULL,
seconds_timeout = NULL,
seconds_launch = NULL,
seconds_idle = NULL,
seconds_wall = NULL,
tasks_max = NULL,
tasks_timers = NULL,
reset_globals = NULL,
reset_packages = NULL,
reset_options = NULL,
garbage_collection = NULL,
tls = NULL,
processes = NULL,
r_arguments = NULL,
options_metrics = NULL,
options_aws_batch = NULL

)

Arguments:

name See crew_launcher_aws_batch().

workers See crew_launcher_aws_batch().

seconds_interval See crew_launcher_aws_batch().
seconds_timeout See crew_launcher_aws_batch().
seconds_launch See crew_launcher_aws_batch().
seconds_idle See crew_launcher_aws_batch().
seconds_wall See crew_launcher_aws_batch().

tasks_max See crew_launcher_aws_batch().

tasks_timers See crew_launcher_aws_batch().
reset_globals Deprecated. See crew_launcher_aws_batch().
reset_packages Deprecated. See crew_launcher_aws_batch().
reset_options Deprecated. See crew_launcher_aws_batch().
garbage_collection Deprecated. See crew_launcher_aws_batch().
tls See crew_launcher_aws_batch().

crew_class_launcher aws_batch

processes See crew_launcher_aws_batch().
r_arguments See crew_launcher_aws_batch().
options_metrics See crew_launcher_aws_batch().

options_aws_batch See crew_launcher_aws_batch().

Returns: An abstract launcher object.

Method validate(): Validate the launcher.

Usage:
crew_class_launcher_aws_batch$validate()

Returns: NULL (invisibly). Throws an error if a field is invalid.

Method launch_worker(): Launch a local process worker which will dial into a socket.

Usage:
crew_class_launcher_aws_batch$launch_worker(call, name, launcher, worker)

Arguments:

call Character string, a namespaced call to crew: :crew_worker() which will run in the
worker and accept tasks.

name Character string, an informative worker name.
launcher Character string, name of the launcher.

worker Character string, name of the worker instance.
Details: The call argument is R code that will run to initiate the worker.

Returns: A handle object to allow the termination of the worker later on.

Method terminate_worker(): Terminate a local process worker.

Usage:
crew_class_launcher_aws_batch$terminate_worker (handle)

Arguments:

handle A process handle object previously returned by launch_worker ().

Returns: NULL (invisibly).

See Also

Other plugin_aws_batch: crew_controller_aws_batch(), crew_launcher_aws_batch()

10

crew_class_monitor_aws_batch

crew_class_monitor_aws_batch

AWS Batch monitor class

Description

AWS Batch monitor R6 class

Details

See crew_monitor_aws_batch().

IAM policies

In order for the AWS Batch crew monitor class to function properly, your IAM policy needs per-
mission to perform the SubmitJob, TerminateJob, ListJobs, and DescribeJobs AWS Batch
API calls. In addition, to download CloudWatch logs with the log() method, your IAM policy
also needs permission to perform the GetLogEvents CloudWatch logs API call. For more in-
formation on AWS policies and permissions, please visit https://docs.aws.amazon.com/IAM/
latest/UserGuide/access_policies.html.

Active bindings

job_queue See crew_monitor_aws_batch().

job_definition See crew_monitor_aws_batch().

log_group See crew_monitor_aws_batch().

config See crew_monitor_aws_batch().

credentials See crew_monitor_aws_batch().

endpoint See crew_monitor_aws_batch().

region See crew_monitor_aws_batch().

Methods

Public methods:

crew_class_monitor_aws_batch$new()
crew_class_monitor_aws_batch$validate()
crew_class_monitor_aws_batch$terminate()
crew_class_monitor_aws_batch$status()
crew_class_monitor_aws_batch$log()
crew_class_monitor_aws_batch$jobs()
crew_class_monitor_aws_batch$active()
crew_class_monitor_aws_batch$inactive()
crew_class_monitor_aws_batch$submitted()
crew_class_monitor_aws_batch$pending()

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

crew_class_monitor_aws_batch 11

* crew_class_monitor_aws_batch$runnable()
* crew_class_monitor_aws_batch$starting()
e crew_class_monitor_aws_batch$running()

e crew_class_monitor_aws_batch$succeeded()
e crew_class_monitor_aws_batch$failed()

Method new(): AWS Batch job definition constructor.

Usage:
crew_class_monitor_aws_batch$new(

job_queue = NULL,

job_definition = NULL,

log_group = NULL,

config = NULL,

credentials = NULL,

endpoint = NULL,

region = NULL
)
Arguments:
job_queue See crew_monitor_aws_batch().
job_definition See crew_monitor_aws_batch().
log_group See crew_monitor_aws_batch().
config See crew_monitor_aws_batch().
credentials See crew_monitor_aws_batch().
endpoint See crew_monitor_aws_batch().
region See crew_monitor_aws_batch().

Returns: AWS Batch job definition object.

Method validate(): Validate the object.

Usage:
crew_class_monitor_aws_batch$validate()

Returns: NULL (invisibly). Throws an error if a field is invalid.

Method terminate(): Terminate one or more AWS Batch jobs.

Usage:
crew_class_monitor_aws_batch$terminate(
ids = NULL,
all = FALSE,
reason = "cancelled/terminated by crew.aws.batch monitor”,
verbose = TRUE
)
Arguments:

ids Character vector with the IDs of the AWS Batch jobs to terminate. Leave as NULL if all is
TRUE.

crew_class_monitor_aws_batch

all TRUE to terminate all jobs belonging to the previously specified job definition. FALSE to
terminate only the job IDs given in the ids argument.

reason Character of length 1, natural language explaining the reason the job was terminated.

verbose Logical of length 1, whether to show a progress bar if the R process is interactive and
length(ids) is greater than 1.

Returns: NULL (invisibly).

Method status(): Get the status of a single job

Usage:
crew_class_monitor_aws_batch$status(id)

Arguments:
id Character of length 1, job ID. This is different from the user-supplied job name.

Returns: A one-row tibble with information about the job.

Method log(): Get the CloudWatch log of a job.

Usage:
crew_class_monitor_aws_batch$log(id, path = stdout(), start_from_head = FALSE)

Arguments:

id Character of length 1, job ID. This is different from the user-supplied job name.

path Character string or stream (e.g. stdout()), file path or connection passed to the con
argument of writelLines() to print the log messages. Set to nullfile() to suppress output
(and use the invisibly returned tibble object instead).

start_from_head Logical of length 1, whether to print earlier log events before later ones.

Details: This method assumes the job has log driver "awslogs"” (specifying AWS CloudWatch)

and that the log group is the one prespecified in the 1og_group argument of crew_monitor_aws_batch().

This method cannot use other log drivers such as Splunk, and it will fail if the log group is wrong

or missing.

Returns: log() invisibly returns a tibble with log information and writes the messages to the

stream or path given by the path argument.

Method jobs(): List all the jobs in the given job queue with the given job definition.

Usage:
crew_class_monitor_aws_batch$jobs(
status = c("submitted”, "pending”, "runnable”, "starting”, "running”, "succeeded”,
"failed")
)
Arguments:

status Character vector of job states. Results are limited to these job states.

Details: The output only includes jobs under the job queue and job definition that were supplied
through crew_monitor_aws_batch().

Returns: A tibble with one row per job and columns with job information.

Method active(): List active jobs: submitted, pending, runnable, starting, or running (not
succeeded or failed).

crew_class_monitor_aws_batch 13

Usage:
crew_class_monitor_aws_batch$active()

Details: The output only includes jobs under the job queue and job definition that were supplied
through crew_monitor_aws_batch().

Returns: A tibble with one row per job and columns with job information.

Method inactive(): Listinactive jobs: ones whose status is succeeded or failed (not submitted,
pending, runnable, starting, or running).

Usage:
crew_class_monitor_aws_batch$inactive()

Details: The output only includes jobs under the job queue and job definition that were supplied
through crew_monitor_aws_batch().

Returns: A tibble with one row per job and columns with job information.

Method submitted(): Listjobs whose status is "submitted”.

Usage:
crew_class_monitor_aws_batch$submitted()

Details: The output only includes jobs under the job queue and job definition that were supplied
through crew_monitor_aws_batch().

Returns: A tibble with one row per job and columns with job information.

Method pending(): List jobs whose status is "pending”.

Usage:
crew_class_monitor_aws_batch$pending()

Details: The output only includes jobs under the job queue and job definition that were supplied
through crew_monitor_aws_batch().

Returns: A tibble with one row per job and columns with job information.

Method runnable(): Listjobs whose status is "runnable”.

Usage:
crew_class_monitor_aws_batch$runnable()

Details: The output only includes jobs under the job queue and job definition that were supplied
through crew_monitor_aws_batch().

Returns: A tibble with one row per job and columns with job information.

Method starting(): Listjobs whose status is "starting”.

Usage:
crew_class_monitor_aws_batch$starting()

Details: The output only includes jobs under the job queue and job definition that were supplied
through crew_monitor_aws_batch().

Returns: A tibble with one row per job and columns with job information.

Method running(): List jobs whose status is "running”.

14

crew_controller_aws_batch

Usage:
crew_class_monitor_aws_batch$running()

Details: The output only includes jobs under the job queue and job definition that were supplied
through crew_monitor_aws_batch().

Returns: A tibble with one row per job and columns with job information.

Method succeeded(): List jobs whose status is "succeeded”.

Usage:
crew_class_monitor_aws_batch$succeeded()

Details: The output only includes jobs under the job queue and job definition that were supplied
through crew_monitor_aws_batch().

Returns: A tibble with one row per job and columns with job information.

Method failed(): Listjobs whose status is "failed".

Usage:
crew_class_monitor_aws_batch$failed()

Details: The output only includes jobs under the job queue and job definition that were supplied
through crew_monitor_aws_batch().

Returns: A tibble with one row per job and columns with job information.

See Also

Other monitor: crew_monitor_aws_batch()

crew_controller_aws_batch

Create a controller with an AWS Batch launcher.

Description

Create an R6 object to submit tasks and launch workers on AWS Batch workers.

Usage

crew_controller_aws_batch(

name = NULL,

workers = 1L,

host = NULL,

port = NULL,

tls = crew::crew_tls(mode = "automatic"),
tls_enable = NULL,

tls_config = NULL,

serialization = NULL,
seconds_interval = 0.5,

crew_controller_aws_batch 15

seconds_timeout = 60,

seconds_launch = 1800,

seconds_idle = 300,

seconds_wall = Inf,

retry_tasks = NULL,

tasks_max = Inf,

tasks_timers = 0L,

reset_globals = TRUE,

reset_packages = FALSE,

reset_options = FALSE,

garbage_collection = FALSE,

crashes_error = NULL,

processes = NULL,

r_arguments = c("--no-save"”, "--no-restore"),
crashes_max = 5L,

backup = NULL,

options_metrics = crew::crew_options_metrics(),
options_aws_batch = crew.aws.batch::crew_options_aws_batch(),
aws_batch_config = NULL,
aws_batch_credentials = NULL,
aws_batch_endpoint = NULL,

aws_batch_region = NULL,
aws_batch_job_definition = NULL,
aws_batch_job_queue = NULL,
aws_batch_share_identifier = NULL,
aws_batch_scheduling_priority_override = NULL,
aws_batch_parameters = NULL,
aws_batch_container_overrides = NULL,
aws_batch_node_overrides = NULL,
aws_batch_retry_strategy = NULL,
aws_batch_propagate_tags = NULL,
aws_batch_timeout = NULL,

aws_batch_tags = NULL,
aws_batch_eks_properties_override = NULL

)
Arguments

name Character string, name of the launcher. If the name is NULL, then a name is
automatically generated when the launcher starts.

workers Maximum number of workers to run concurrently when auto-scaling, excluding
task retries and manual calls to launch(). Special workers allocated for task
retries do not count towards this limit, so the number of workers running at a
given time may exceed this maximum. A smaller number of workers may run if
the number of executing tasks is smaller than the supplied value of the workers
argument.

host IP address of the mirai client to send and receive tasks. If NULL, the host defaults

to nanonext: :ip_addr()[1].

crew_controller_aws_batch

port TCP port to listen for the workers. If NULL, then an available ephemeral port
is automatically chosen. Controllers running simultaneously on the same com-
puter (as in a controller group) must not share the same TCP port.

tls A TLS configuration object from crew_t1s().
tls_enable Deprecated on 2023-09-15 in version 0.4.1. Use argument t1s instead.
tls_config Deprecated on 2023-09-15 in version 0.4.1. Use argument t1s instead.

serialization Either NULL (default) or an object produced by mirai::serial_config() to
control the serialization of data sent to workers. This can help with either more
efficient data transfers or to preserve attributes of otherwise non-exportable ob-
jects (such as torch tensors or arrow tables). See ?mirai: :serial_config for
details.

seconds_interval
Number of seconds between polling intervals waiting for certain internal syn-
chronous operations to complete. In certain cases, exponential backoff is used
with this argument passed to seconds_max in a crew_throttle() object.

seconds_timeout

Number of seconds until timing out while waiting for certain synchronous oper-
ations to complete, such as checking mirai::status().

seconds_launch Seconds of startup time to allow. A worker is unconditionally assumed to be
alive from the moment of its launch until seconds_launch seconds later. After
seconds_launch seconds, the worker is only considered alive if it is actively
connected to its assign websocket.

seconds_idle = Maximum number of seconds that a worker can idle since the completion of
the last task. If exceeded, the worker exits. But the timer does not launch until
tasks_timers tasks have completed. See the idletime argument of mirai: :daemon().
crew does not excel with perfectly transient workers because it does not micro-
manage the assignment of tasks to workers, so please allow enough idle time for
a new worker to be delegated a new task.

seconds_wall Soft wall time in seconds. The timer does not launch until tasks_timers tasks
have completed. See the walltime argument of mirai: :daemon().

retry_tasks Deprecated on 2025-01-13 (crew version 0.10.2.9002).

tasks_max Maximum number of tasks that a worker will do before exiting. See the maxtasks
argument of mirai::daemon(). crew does not excel with perfectly transient
workers because it does not micromanage the assignment of tasks to workers, it
is recommended to set tasks_max to a value greater than 1.

tasks_timers Number of tasks to do before activating the timers for seconds_idle and seconds_wall.
See the timerstart argument of mirai: :daemon().

reset_globals TRUE to reset global environment variables between tasks, FALSE to leave them
alone.

reset_packages TRUE to detach any packages loaded during a task (runs between each task),
FALSE to leave packages alone. In either case, the namespaces are not detached.

reset_options TRUE to reset global options to their original state between each task, FALSE oth-
erwise. Itis recommended to only set reset_options = TRUE if reset_packages
is also TRUE because packages sometimes rely on options they set at loading

crew_controller_aws_batch 17

time. for this and other reasons, reset_options only resets options that were
nonempty at the beginning of the task. If your task sets an entirely new op-
tion not already in options(), then reset_options = TRUE does not delete the
option.

garbage_collection
TRUE to run garbage collection after each task task, FALSE to skip.

crashes_error Deprecated on 2025-01-13 (crew version 0.10.2.9002).

processes NULL or positive integer of length 1, number of local processes to launch to allow
worker launches to happen asynchronously. If NULL, then no local processes are
launched. If 1 or greater, then the launcher starts the processes on start()
and ends them on terminate(). Plugins that may use these processes should
run asynchronous calls using launcher$async$eval () and expect amirai task
object as the return value.

r_arguments Optional character vector of command line arguments to pass to Rscript (non-
Windows) or Rscript.exe (Windows) when starting a worker. Example: r_arguments
=c("--vanilla"”, "--max-connections=32").

crashes_max In rare cases, a worker may exit unexpectedly before it completes its current

task. If this happens, pop() returns a status of "crash” instead of "error” for
the task. The controller does not automatically retry the task, but you can retry
it manually by calling push() again and using the same task name as before.
(However, targets pipelines running crew do automatically retry tasks whose
workers crashed.)

crashes_max is a non-negative integer, and it sets the maximum number of
allowable consecutive crashes for a given task. If a task’s worker crashes more
than crashes_max times in a row, then pop() throws an error when it tries to
return the results of the task.

backup An optional crew controller object, or NULL to omit. If supplied, the backup
controller runs any pushed tasks that have already reached crashes_max con-
secutive crashes. Using backup, you can create a chain of controllers with dif-
ferent levels of resources (such as worker memory and CPUs) so that a task that
fails on one controller can retry using incrementally more powerful workers.
All controllers in a backup chain should be part of the same controller group
(see crew_controller_group()) so you can call the group-level pop() and
collect() methods to make sure you get results regardless of which controller
actually ended up running the task.

Limitations of backup: * crashes_max needs to be positive in order for backup
to be used. Otherwise, every task would always skip the current controller and
go to backup. * backup cannot be a controller group. It must be an ordinary
controller.
options_metrics

Either NULL to opt out of resource metric logging for workers, or an object from
crew_options_metrics() to enable and configure resource metric logging for
workers. For resource logging to run, the autometric R package version 0.1.0
or higher must be installed.

options_aws_batch
List of options from crew_options_aws_batch(). The job definition and job

18 crew_controller_aws_batch

queue must be specified in crew_options_aws_batch(). crew_options_aws_batch()

also allows you to request vCPUs, GPUs, and memory for the jobs.
aws_batch_config

Deprecated. Use options_aws_batch instead.
aws_batch_credentials

Deprecated. Use options_aws_batch instead.
aws_batch_endpoint

Deprecated. Use options_aws_batch instead.
aws_batch_region

Deprecated. Use options_aws_batch instead.
aws_batch_job_definition

Deprecated. Use options_aws_batch instead.
aws_batch_job_queue

Deprecated. Use options_aws_batch instead.
aws_batch_share_identifier

Deprecated. Use options_aws_batch instead.
aws_batch_scheduling_priority_override

Deprecated. Use options_aws_batch instead.
aws_batch_parameters

Deprecated. Use options_aws_batch instead.
aws_batch_container_overrides

Deprecated. Use options_aws_batch instead.
aws_batch_node_overrides

Deprecated. Use options_aws_batch instead.
aws_batch_retry_strategy

Deprecated. Use options_aws_batch instead.
aws_batch_propagate_tags

Deprecated. Use options_aws_batch instead.
aws_batch_timeout

Deprecated. Use options_aws_batch instead.

aws_batch_tags Deprecated. Use options_aws_batch instead.
aws_batch_eks_properties_override
Deprecated. Use options_aws_batch instead.

IAM policies

In order for the AWS Batch crew plugin to function properly, your IAM policy needs permission to
perform the SubmitJob and TerminateJob AWS Batch API calls. For more information on AWS
policies and permissions, please visit https://docs.aws.amazon.com/IAM/latest/UserGuide/
access_policies.html.

AWS arguments

The AWS Batch controller and launcher accept many arguments which start with "aws_batch_".
These arguments are AW S-Batch-specific parameters forwarded directly to the submit_job () method
for the Batch client in the paws. compute R package

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

crew_definition_aws_batch 19

For a full description of each argument, including its meaning and format, please visit https://

www. paws-r-sdk.com/docs/batch_submit_job/. The upstream API documentation is at https:
//docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html and the analogous
CLIdocumentationis athttps://docs.aws.amazon.com/cli/latest/reference/batch/submit-job.
html.

The actual argument names may vary slightly, depending on which : for example, the aws_batch_job_definition
argument of the crew AWS Batch launcher/controller corresponds to the jobDefinition argu-

ment of the web API and paws.compute: :batch()$submit_job(), and both correspond to the
--job-definition argument of the CLI.

Verbosity

Control verbosity with the paws.log_level global option in R. Set to 0 for minimum verbosity and
3 for maximum verbosity.

See Also

Other plugin_aws_batch: crew_class_launcher_aws_batch, crew_launcher_aws_batch()

Examples

if (identical(Sys.getenv("CREW_EXAMPLES"), "true")) {

controller <- crew_controller_aws_batch(
aws_batch_job_definition = "YOUR_JOB_DEFINITION_NAME",
aws_batch_job_queue = "YOUR_JOB_QUEUE_NAME"

)

controller$start()

controller$push(name = "task”, command = sqrt(4))

controller$wait()

controller$pop()$result

controller$terminate()

3

crew_definition_aws_batch
Create an AWS Batch job definition object.

Description

Create an R6 object to manage a job definition for AWS Batch jobs.

Usage

crew_definition_aws_batch(
job_queue,
job_definition = paste@("crew-aws-batch-job-definition-", crew::crew_random_name()),
log_group = "/aws/batch/job",
config = NULL,

https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html
https://docs.aws.amazon.com/cli/latest/reference/batch/submit-job.html
https://docs.aws.amazon.com/cli/latest/reference/batch/submit-job.html

20 crew_definition_aws_batch

credentials = NULL,
endpoint = NULL,
region = NULL

)

Arguments

job_queue Character vector of names of AWS Batch job queues. As of crew.aws.batch
version 0.0.8 and above, you can supply more than one job queue. Methods like
jobs() and active() will query all the job queues given.

job_definition Character of length 1, name of the AWS Batch job definition. The job definition
might or might not exist at the time crew_definition_aws_batch() is called.
Either way is fine.

log_group Character of length 1, AWS Batch CloudWatch log group to get job logs. The
default log group is often "/aws/batch/job", but not always. It is not easy
to get the log group of an active job or job definition, so if you have a non-
default log group and you do not know its name, please consult your system
administrator.

config Optional named list, config argument of paws.compute: :batch() with op-
tional configuration details.

credentials Optional named list. credentials argument of paws. compute: :batch() with
optional credentials (if not already provided through environment variables such
as AWS_ACCESS_KEY_ID).

endpoint Optional character of length 1. endpoint argument of paws. compute: :batch()
with the endpoint to send HTTP requests.

region Character of length 1. region argument of paws.compute: :batch() with an
AWS region string such as "us-east-2". Serves as the region for both AWS
Batch and CloudWatch. Tries to default to paws. common: : get_config()$region,
then to Sys. getenv("AWS_REGION") if unsuccessful, then Sys. getenv ("AWS_REGION"),
then Sys.getenv("AWS_DEFAULT_REGION").

Value

An R6 job definition object.

IAM policies

In order for the AWS Batch crew job definition class to function properly, your IAM policy needs

permission to perform the RegisterJobDefinition, DeregisterJobDefinition, and DescribeJobDefinitions
AWS Batch API calls. For more information on AWS policies and permissions, please visit https:
//docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html.

See Also

Other definition: crew_class_definition_aws_batch

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

crew_launcher _aws_batch

21

crew_launcher_aws_batch
Create an AWS Batch launcher object.

Description

Create an R6 AWS Batch launcher object.

Usage

crew_launcher_aws_batch(
name = NULL,
workers = 1L,
seconds_interval = 0.5,
seconds_timeout = 60,
seconds_launch = 1800,
seconds_idle = 300,
seconds_wall = Inf,
tasks_max = Inf,
tasks_timers = oL,
reset_globals = NULL,
reset_packages = NULL,
reset_options = NULL,
garbage_collection = NULL,
crashes_error = NULL,

tls = crew::crew_tls(mode = "automatic"),
processes = NULL,
r_arguments = c("--no-save”, "--no-restore"),

options_metrics = crew::crew_options_metrics(),
options_aws_batch = crew.aws.batch::crew_options_aws_batch(),
aws_batch_config = NULL,

aws_batch_credentials = NULL,
aws_batch_endpoint = NULL,

aws_batch_region = NULL,
aws_batch_job_definition = NULL,
aws_batch_job_queue = NULL,
aws_batch_share_identifier = NULL,
aws_batch_scheduling_priority_override = NULL,
aws_batch_parameters = NULL,
aws_batch_container_overrides = NULL,
aws_batch_node_overrides = NULL,
aws_batch_retry_strategy = NULL,
aws_batch_propagate_tags = NULL,
aws_batch_timeout = NULL,

aws_batch_tags = NULL,
aws_batch_eks_properties_override = NULL

22 crew_launcher _aws_batch

Arguments
name Character string, name of the launcher. If the name is NULL, then a name is
automatically generated when the launcher starts.
workers Maximum number of workers to run concurrently when auto-scaling, excluding

task retries and manual calls to 1launch(). Special workers allocated for task
retries do not count towards this limit, so the number of workers running at a
given time may exceed this maximum. A smaller number of workers may run if
the number of executing tasks is smaller than the supplied value of the workers
argument.
seconds_interval
Number of seconds between polling intervals waiting for certain internal syn-
chronous operations to complete. In certain cases, exponential backoff is used
with this argument passed to seconds_max in a crew_throttle() object.
seconds_timeout
Number of seconds until timing out while waiting for certain synchronous oper-
ations to complete, such as checking mirai: :status().

seconds_launch Seconds of startup time to allow. A worker is unconditionally assumed to be
alive from the moment of its launch until seconds_launch seconds later. After
seconds_launch seconds, the worker is only considered alive if it is actively
connected to its assign websocket.

seconds_idle = Maximum number of seconds that a worker can idle since the completion of
the last task. If exceeded, the worker exits. But the timer does not launch until
tasks_timers tasks have completed. See the idletime argument of mirai: :daemon().
crew does not excel with perfectly transient workers because it does not micro-
manage the assignment of tasks to workers, so please allow enough idle time for
a new worker to be delegated a new task.

seconds_wall Soft wall time in seconds. The timer does not launch until tasks_timers tasks
have completed. See the walltime argument of mirai: :daemon().

tasks_max Maximum number of tasks that a worker will do before exiting. See the maxtasks
argument of mirai::daemon(). crew does not excel with perfectly transient
workers because it does not micromanage the assignment of tasks to workers, it
is recommended to set tasks_max to a value greater than 1.

tasks_timers Number of tasks to do before activating the timers for seconds_idle and seconds_wall.
See the timerstart argument of mirai: :daemon().

reset_globals Deprecated on 2025-05-30 (crew version 1.1.2.9004). Please use the reset_globals
option of crew_controller() instead.

reset_packages Deprecated on 2025-05-30 (crew version 1.1.2.9004). Please use the reset_packages
option of crew_controller() instead.

reset_options Deprecated on 2025-05-30 (crew version 1.1.2.9004). Please use the reset_options
option of crew_controller() instead.

garbage_collection
Deprecated on 2025-05-30 (crew version 1.1.2.9004). Please use the garbage_collection
option of crew_controller() instead.

crashes_error Deprecated on 2025-01-13 (crew version 0.10.2.9002).

crew_launcher _aws_batch 23

tls A TLS configuration object from crew_t1s().

processes NULL or positive integer of length 1, number of local processes to launch to allow
worker launches to happen asynchronously. If NULL, then no local processes are
launched. If 1 or greater, then the launcher starts the processes on start()
and ends them on terminate(). Plugins that may use these processes should
run asynchronous calls using launcher$async$eval () and expect amirai task
object as the return value.

r_arguments Optional character vector of command line arguments to pass to Rscript (non-
Windows) or Rscript. exe (Windows) when starting a worker. Example: r_arguments
=c("--vanilla"”, "--max-connections=32").

options_metrics
Either NULL to opt out of resource metric logging for workers, or an object from
crew_options_metrics() to enable and configure resource metric logging for
workers. For resource logging to run, the autometric R package version 0.1.0
or higher must be installed.
options_aws_batch
List of options from crew_options_aws_batch(). The job definition and job
queue must be specified in crew_options_aws_batch(). crew_options_aws_batch()
also allows you to request vCPUs, GPUs, and memory for the jobs.
aws_batch_config
Deprecated. Use options_aws_batch instead.
aws_batch_credentials
Deprecated. Use options_aws_batch instead.
aws_batch_endpoint
Deprecated. Use options_aws_batch instead.
aws_batch_region
Deprecated. Use options_aws_batch instead.
aws_batch_job_definition
Deprecated. Use options_aws_batch instead.
aws_batch_job_queue
Deprecated. Use options_aws_batch instead.
aws_batch_share_identifier
Deprecated. Use options_aws_batch instead.
aws_batch_scheduling_priority_override
Deprecated. Use options_aws_batch instead.
aws_batch_parameters
Deprecated. Use options_aws_batch instead.
aws_batch_container_overrides
Deprecated. Use options_aws_batch instead.
aws_batch_node_overrides
Deprecated. Use options_aws_batch instead.
aws_batch_retry_strategy
Deprecated. Use options_aws_batch instead.
aws_batch_propagate_tags
Deprecated. Use options_aws_batch instead.

24 crew_launcher _aws_batch

aws_batch_timeout
Deprecated. Use options_aws_batch instead.

aws_batch_tags Deprecated. Use options_aws_batch instead.

aws_batch_eks_properties_override
Deprecated. Use options_aws_batch instead.

Value

An R6 AWS Batch launcher object.

IAM policies

In order for the AWS Batch crew plugin to function properly, your IAM policy needs permission to
perform the SubmitJob and TerminateJob AWS Batch API calls. For more information on AWS
policies and permissions, please visit https://docs.aws.amazon.com/IAM/latest/UserGuide/
access_policies.html.

AWS arguments

The AWS Batch controller and launcher accept many arguments which start with "aws_batch_".
These arguments are AW S-Batch-specific parameters forwarded directly to the submit_job() method
for the Batch client in the paws. compute R package

For a full description of each argument, including its meaning and format, please visit https://

www. paws-r-sdk.com/docs/batch_submit_job/. The upstream API documentation is at https:
//docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html and the analogous
CLIdocumentationis athttps://docs.aws.amazon.com/cli/latest/reference/batch/submit-job.
html.

The actual argument names may vary slightly, depending on which : for example, the aws_batch_job_definition
argument of the crew AWS Batch launcher/controller corresponds to the jobDefinition argu-

ment of the web API and paws.compute: :batch()$submit_job(), and both correspond to the
--job-definition argument of the CLI.

Verbosity
Control verbosity with the paws.log_level global option in R. Set to 0 for minimum verbosity and
3 for maximum verbosity.

See Also

Other plugin_aws_batch: crew_class_launcher_aws_batch, crew_controller_aws_batch()

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html
https://docs.aws.amazon.com/cli/latest/reference/batch/submit-job.html
https://docs.aws.amazon.com/cli/latest/reference/batch/submit-job.html

crew_monitor_aws_batch 25

crew_monitor_aws_batch
Create an AWS Batch monitor object.

Description

Create an R6 object to list, inspect, and terminate AWS Batch jobs.

Usage

crew_monitor_aws_batch(
job_queue,
job_definition,
log_group = "/aws/batch/job",
config = NULL,
credentials = NULL,
endpoint = NULL,
region = NULL

Arguments

job_queue Character vector of names of AWS Batch job queues. As of crew.aws.batch
version 0.0.8 and above, you can supply more than one job queue. Methods like
jobs() and active() will query all the job queues given.

job_definition Character string, name of the AWS Batch job definition.

log_group Character of length 1, AWS Batch CloudWatch log group to get job logs. The
default log group is often "/aws/batch/job", but not always. It is not easy
to get the log group of an active job or job definition, so if you have a non-
default log group and you do not know its name, please consult your system
administrator.

config Optional named list, config argument of paws.compute: :batch() with op-
tional configuration details.

credentials Optional named list. credentials argument of paws. compute: :batch() with
optional credentials (if not already provided through environment variables such
as AWS_ACCESS_KEY_ID).

endpoint Optional character of length 1. endpoint argument of paws. compute: :batch()
with the endpoint to send HTTP requests.

region Character of length 1. region argument of paws.compute: :batch() with an
AWS region string such as "us-east-2". Serves as the region for both AWS
Batch and CloudWatch. Tries to default to paws . common: :get_config()$region,
then to Sys. getenv("AWS_REGION") if unsuccessful, then Sys. getenv ("AWS_REGION"),
then Sys.getenv (”AWS_DEFAULT_REGION").

26 crew_options_aws_batch

IAM policies

In order for the AWS Batch crew monitor class to function properly, your IAM policy needs per-
mission to perform the SubmitJob, TerminateJob, ListJobs, and DescribeJobs AWS Batch
API calls. In addition, to download CloudWatch logs with the 1log() method, your IAM policy
also needs permission to perform the GetLogEvents CloudWatch logs API call. For more in-
formation on AWS policies and permissions, please visit https://docs.aws.amazon.com/IAM/
latest/UserGuide/access_policies.html

See Also

Other monitor: crew_class_monitor_aws_batch

crew_options_aws_batch
AWS Batch options

Description

Options for the AWS Batch controller.

Usage

crew_options_aws_batch(
job_definition = "example"”,
job_queue = "example”,
cpus = NULL,
gpus = NULL,
memory = NULL,
memory_units = "gigabytes”,

config = list(),

credentials = list(),

endpoint = NULL,

region = NULL,

share_identifier = NULL,
scheduling_priority_override = NULL,
parameters = NULL,
container_overrides = NULL,
node_overrides = NULL,
retry_strategy = NULL,
propagate_tags = NULL,

timeout = NULL,

tags = NULL,
eks_properties_override = NULL,
verbose = FALSE

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

crew_options_aws_batch 27

Arguments

job_definition Character of length 1, name of the AWS Batch job definition to use. There is no

job_queue

cpus

gpus

memory

memory_units

config

credentials

endpoint

region

default for this argument, and a job definition must be created prior to running
the controller. Please see https://docs.aws.amazon.com/batch/ for details.
To create a job definition, you will need to create a Docker-compatible image
which can run R and crew. You may which to inherit from the images at https:
//github.com/rocker-org/rocker-versioned2.

Character of length 1, name of the AWS Batch job queue to use. There is no
default for this argument, and a job queue must be created prior to running the
controller. Please see https://docs.aws.amazon.com/batch/ for details.

Positive numeric scalar, number of virtual CPUs to request per job. Can be NULL
to go with the defaults in the job definition. Ignored if container_overrides
is not NULL.

Positive numeric scalar, number of GPUs to request per job. Can be NULL to go
with the defaults in the job definition. Ignored if container_overrides is not
NULL.

Positive numeric scalar, amount of random access memory (RAM) to request
per job. Choose the units of memory with the memory_units argument. Fargate
instances can only be certain discrete values of mebibytes, so please choose
memory_units = "mebibytes” in that case. The memory argument can be NULL

to go with the defaults in the job definition. Ignored if container_overrides

is not NULL.

Character string, units of memory of the memory argument. Can be "gigabytes”

or "mebibytes"”. Fargate instances can only be certain discrete values of mebibytes,
so please choose memory_units = "mebibytes” in that case.

Named list, config argument of paws.compute: :batch() with optional con-
figuration details.

Named list. credentials argument of paws. compute: :batch() with optional
credentials (if not already provided through environment variables such as AWS_ACCESS_KEY_ID).
Character of length 1. endpoint argument of paws.compute: :batch() with
the endpoint to send HTTP requests.

Character of length 1. region argument of paws.compute: :batch() with an
AWS region string such as "us-east-2".

share_identifier

NULL or character of length 1. For details, visit https://www.paws-r-sdk.
com/docs/batch_submit_job/ and the "AWS arguments" sections of this help
file.

scheduling_priority_override

parameters

NULL or integer of length 1. For details, visit https://www.paws-r-sdk.com/
docs/batch_submit_job/ and the "AWS arguments" sections of this help file.
NULL or a nonempty list. For details, visit https://www.paws-r-sdk.com/
docs/batch_submit_job/ and the "AWS arguments" sections of this help file.

container_overrides

NULL or a nonempty named list of fields to override in the container speci-
fied in the job definition. Any overrides for the command field are ignored be-
cause crew.aws.batch needs to override the command to run the crew worker.

https://docs.aws.amazon.com/batch/
https://github.com/rocker-org/rocker-versioned2
https://github.com/rocker-org/rocker-versioned2
https://docs.aws.amazon.com/batch/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/

28

crew_options_aws_batch

For more details, visit https://www.paws-r-sdk.com/docs/batch_submit_
job/ and the "AWS arguments" sections of this help file.

node_overrides NULL oranonempty named list. For more details, visithttps://www.paws-r-sdk.

com/docs/batch_submit_job/ and the "AWS arguments" sections of this help
file.

retry_strategy NULL oranonempty named list. For more details, visithttps: //www.paws-r-sdk.

com/docs/batch_submit_job/ and the "AWS arguments" sections of this help
file.

propagate_tags NULL or alogical of length 1. For more details, visithttps: //www. paws-r-sdk.

timeout

tags

com/docs/batch_submit_job/ and the "AWS arguments" sections of this help
file.

NULL or a nonempty named list. For more details, visithttps://www.paws-r-sdk.
com/docs/batch_submit_job/ and the "AWS arguments" sections of this help
file.

NULL or a nonempty named list. For more details, visithttps://www.paws-r-sdk.
com/docs/batch_submit_job/ and the "AWS arguments" sections of this help
file.

eks_properties_override

verbose

Value

NULL or a nonempty named list. For more details, visithttps://www.paws-r-sdk.
com/docs/batch_submit_job/ and the "AWS arguments" sections of this help
file.

TRUE to print informative console messages, FALSE otherwise.

A classed list of options for the controller.

Retryable options

Retryable options are deprecated in crew. aws.batch as of 2025-01-27 (version 0.0. 8).

https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/

Index

x definition
crew_class_definition_aws_batch, 2
crew_definition_aws_batch, 19

+ help
crew.aws.batch-package, 2

* monitor
crew_class_monitor_aws_batch, 10
crew_monitor_aws_batch, 25

+ plugin_aws_batch
crew_class_launcher_aws_batch, 7
crew_controller_aws_batch, 14
crew_launcher_aws_batch, 21
crew_options_aws_batch, 26

crew.aws.batch-package, 2

crew: :crew_class_launcher, 7

crew: :crew_worker(), 9
crew_class_definition_aws_batch, 2, 20
crew_class_launcher_aws_batch, 7, 19, 24
crew_class_monitor_aws_batch, 10, 26
crew_controller(), 22
crew_controller_aws_batch, 9, 14, 24
crew_controller_group(), 17
crew_definition_aws_batch, 6, 19
crew_definition_aws_batch(), 2-6
crew_launcher_aws_batch, 9, 19, 21
crew_launcher_aws_batch(), 7-9
crew_monitor_aws_batch, /4, 25
crew_monitor_aws_batch(), 10-14
crew_options_aws_batch, 26
crew_options_aws_batch(), 17, 18, 23
crew_options_metrics(), 17, 23
crew_throttle(), 16, 22

crew_tls(), 16,23

mirai::serial_config(), 16

29

	crew.aws.batch-package
	crew_class_definition_aws_batch
	crew_class_launcher_aws_batch
	crew_class_monitor_aws_batch
	crew_controller_aws_batch
	crew_definition_aws_batch
	crew_launcher_aws_batch
	crew_monitor_aws_batch
	crew_options_aws_batch
	Index

