Package ‘cpp4r’

October 16, 2025
Title Header-Only 'C++' and 'R' Interface
Version 0.3.0

Description
Provides a header only, 'C++' interface to 'R’ with enhancements over 'cppl1'. Enforces copy-on-
write
semantics consistent with 'R' behavior. Offers native support for ALTREP objects, 'UTF-
8' string handling, modern
'C++11" features and idioms, and reduced memory requirements. Allows for vendoring, mak-
ing it useful for restricted
environments. Compared to 'cppl1', it adds support for converting 'C++' maps to 'R’ lists, 'Roxy-
gen' documentation
directly in 'C++' code, proper handling of matrix attributes, support for nullable external point-
ers, bidirectional
copy of complex number types, flexibility in type conversions, use of nullable pointers, and vari-
ous performance
optimizations.

License Apache License (>=2)
URL https://cpp4r.org, https://github.com/pachadotdev/cpp4r

BugReports https://github.com/pachadotdev/cpp4r/issues
Depends R (>=4.0.0)

Imports brio, cli, decor, desc, glue, tibble, tools, utils, vctrs,
withr

Suggests mockery, roxygen2, testthat (>= 3.2.0)

Config/Needs/cpp4r/register brio, cli, decor, desc, glue, tibble,
vetrs

Config/testthat/edition 3
Encoding UTF-8
RoxygenNote 7.3.2
NeedsCompilation no

Author Mauricio Vargas Sepulveda [aut, cre] (ORCID:
<https://orcid.org/0000-0003-1017-7574>),
Posit Software, PBC [aut] (Original cppl1 package)

1

https://cpp4r.org
https://github.com/pachadotdev/cpp4r
https://github.com/pachadotdev/cpp4r/issues
https://orcid.org/0000-0003-1017-7574

Maintainer Mauricio Vargas Sepulveda <m.vargas. sepulveda@gmail.com>

Repository CRAN
Date/Publication 2025-10-16 18:00:02 UTC

pkg_template

Contents
pkg template e e e e 2
TEZISIET . . v v v e e e e e e e e 3
unvendor oL L e e e e e e 4
vendor L e e e 5

Index 6

pkg_template Start a new project with the cpp4r package template
Description

Start a new project with the cpp4r package template

Usage

pkg_template(path = NULL, pkgname = NULL)

Arguments
path Path to the new project
pkgname Name of the new package
Value

The file path to the copied template (invisibly).

Examples

create a new directory
dir <- tempdir()
dir.create(dir)

copy the package template into the directory
pkg_template(dir, "mynewpkg")

register 3

register Generates wrappers for registered C++ functions

Description

Functions decorated with [[cpp4r: :register]] in files ending in .cc, .cpp, .h or .hpp will be
wrapped in generated code and registered to be called from R.

Usage

register(path = NULL, quiet = !is_interactive(), extension = c(".cpp”", ".cc"))
Arguments

path The path to the package root directory. The default is NULL,

quiet If TRUE suppresses output from this function

extension The file extension to use for the generated src/cpp4r file. .cpp by default, but

.cc is also supported.

Details

Note registered functions will not be exported from your package unless you also add a @export
roxygen?2 directive for them.

In order to use register() the cli, decor, desc, glue, tibble and vctrs packages must also be
installed.

Value

The paths to the generated R and C++ source files (in that order).

Examples

create a minimal package
dir <- tempfile()
dir.create(dir)

writeLines("Package: testPkg", file.path(dir, "DESCRIPTION"))
writeLines("useDynLib(testPkg, .registration = TRUE)", file.path(dir, "NAMESPACE"))

create a C++ file with a decorated function
dir.create(file.path(dir, "src"))
writeLines("[[cpp4r::register]] int one() { return 1; }", file.path(dir, "src", "one.cpp”))

register the functions in the package
register(dir)

Files generated by registration
file.exists(file.path(dir, "R", "cpp4r.R"))

4 unvendor

"

file.exists(file.path(dir, "src", "cpp4r.cpp”))

cleanup
unlink(dir, recursive = TRUE)

unvendor Unvendor the cpp4r headers

Description

This function removes the vendored cpp4r headers from your package by automatically finding the
vendored headers.

Usage

unvendor (path = NULL)

Arguments
path The directory with the vendored headers. It is recommended to use "./src/vendor”.
The default is NULL.
Value

The path to the unvendored code (invisibly).

Examples

create a new directory
dir <- tempfile()
dir.create(dir)

vendor the cpp4r headers into the directory
vendor (dir)

unvendor the cpp4r headers from the directory
unvendor (dir)

cleanup
unlink(dir, recursive = TRUE)

vendor 5

vendor Vendor the cpp4r headers

Description

Vendoring is the act of making your own copy of the 3rd party packages your project is using. It is
often used in the go language community.

Usage

vendor(path = "./src/vendor")
Arguments

path The directory to vendor the headers into
Details

This function vendors cpp4r into your package by copying the cpp4r headers into the inst/include
folder of your package and adding *cpp4r version: XYZ’ to the top of the files, where XYZ is the
version of cpp4r currently installed on your machine.

Note: vendoring places the responsibility of updating the code on you. Bugfixes and new features
in cpp4r will not be available for your code until you run cpp_vendor () again.
Value

The path to the vendored code (invisibly).

Examples

create a new directory
dir <- paste@(tempdir(), "/", gsub("\\s+|[[:punct:]1", "", Sys.time()))
dir.create(dir, recursive = TRUE)

vendor the cpp4r headers into the directory
vendor (dir)

list.files(file.path(dir, "src", "vendor"))

cleanup
unlink(dir, recursive = TRUE)

Index

pkg_template, 2
register, 3
unvendor, 4

vendor, 5

	pkg_template
	register
	unvendor
	vendor
	Index

