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Introduction

The goal of this vignette is to reproduce 2 figures in [2], and to make similar ones. These figures plot
sections of the surface of 2-transition colors. These colors are also called the Schrddinger colors,
following [6]. The sections are often called the MacAdam limits, after [4].

To these plots we add sections of the the optimal colors, which are the colors on the boundary of
the object color solid, which is also called the Rdsch Farbkdrper. The plots show that the difference
is not significant; which confirms the statement in [I] that the difference: ”... has no impact on
practical colorimetric computations.”

In all plots, the Schrodinger colors are plotted in black, and the optimal colors in red.

The featured functions from colorSpec used in this vignette are sectionSchrodingerColors ()
and sectionOptimalColors(). But they requires some help from the function plotSections()
and others in the file optimal-help.R.

library( colorSpec )
source( "optimal-help.R" )

Ylevel=c( seq( 0.10, 0.90, by=0.1 ), 0.95 )

INluminant A

First, build the "material responder” from Illuminant A and standard CMFs:

wave seq(380,800,by=2)
A.eye = product( A.1nm, "material", xyz1931.1nm, wavelength=wave )

product ( neutralMaterial(l,wave=wave), A.eye )

white
Make the plot.

par( omi=rep(0,4), mai=c(0.5,0.6,0,0) )

seclist = sectionOptimalColors( A.eye, normal=c(0,1,0), beta=white[2]*Ylevel )
plotSections( seclist, Ylevel, xyz1931.1nm, white, col=’red’ )

seclist = sectionSchrodingerColors( A.eye, normal=c(0,1,0), beta=white[2]*Ylevel )
plotSections( seclist, Ylevel, xyz1931.1nm, white, add=TRUE )
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Figure 1: MacAdam Limits for Illuminant A
Compare this with Figure 2 in [4], and Figure 3(3.7) in [2]. The optimal colors are plotted first

in red, and then the Schrédinger colors in black. As you can see, there is no significant difference
between them. This is because the outer chromaticity diagram is almost convex.

INluminant D65

First, build the "material responder” from Illuminant D65 and standard CMFs:
wave = seq(380,800,by=2)
D65.eye = product( D65.1nm, "material", xyz1931.1nm, wavelength=wave )

white = product( neutralMaterial(l,wave=wave), D65.eye )

Make the plot:
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par( omi=rep(0,4), mai=c(0.5,0.6,0,0) )

seclist = sectionOptimalColors( D65.eye, normal=c(0,1,0), beta=white[2]*Ylevel )
plotSections( seclist, Ylevel, xyz1931.1nm, white, col=’red’ )

seclist = sectionSchrodingerColors( D65.eye, normal=c(0,1,0), beta=white[2]*Ylevel )
plotSections( seclist, Ylevel, xyz1931.1nm, white, add=TRUE )
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Figure 2: MacAdam Limits for Illuminant D65

Compare this with Figure 4(3.7) in [2].

INluminant D65, with the Cone Fundamentals of Stockman and Sharpe

First, build the "material responder” from Iluminant D65, but this time with the updated cone
fundamentals from [5].
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wave = seq(380,800,by=5)
D65.eye = product( D65.1nm, "material", 1ms2000.1nm, wavelength=wave )
white = product( neutralMaterial(l,wave=wave), D65.eye )

Make the plot:

par( omi=rep(0,4), mai=c(0.5,.6,0,0) )

normal = c(1,1,1)/3 ; beta = sum(white*normal) * Ylevel

seclist = sectionOptimalColors( D65.eye, normal=normal, beta=beta )
plotSections( seclist, Ylevel, 1ms2000.1nm , white, col=’red’ )

seclist = sectionSchrodingerColors( D65.eye, normal=normal, beta=beta )
plotSections( seclist, Ylevel, 1ms2000.1nm , white, add=TRUE )
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Figure 3: MacAdam Limits for I[lluminant D65, with updated cone fundamentals
Compare with Figure 7 in [3]. Although the chromaticity polygon reverses itself on the right

side, and is not convex. None of the levels are dark enough to reveal any significant difference
between the red and black sections.

INluminant C

First, build the "material responder” from Illuminant C and standard CMFs:
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wave = seq(380,780,by=2)
C.eye = product( C.5nm, "material", xyz1931.1nm, wavelength=wave )
white = product( neutralMaterial(l,wave=wave), C.eye )

Make the plot.

par( omi=rep(0,4), mai=c(0.5,0.6,0,0) )

seclist = sectionOptimalColors( C.eye, normal=c(0,1,0), beta=white[2]*Ylevel )
plotSections( seclist, Ylevel, xyz1931.1nm, white, col=’red’ )

seclist = sectionSchrodingerColors( C.eye, normal=c(0,1,0), beta=white[2]*Ylevel )
plotSections( seclist, Ylevel, xyz1931.1lnm, white, add=TRUE )
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Figure 4: MacAdam Limits for Illuminant C

Compare this with Figure 3 in [4].
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The Eye of a Bee

One of the first known examples of an eye with a non-convex chromaticity polygon is that of the
eye of a bee. We use the plots from [6].

wave = seq(320,600,by=2)

path = system.file( ’extdata/eyes/BeeEye.txt’, package=’colorSpec’ )
bee = readSpectra( path, wavelength=wave )

plot( bee )

BeeEye.txt

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Neural Response / Radiant Energy

320 360 400 440 480 520 560 600
Wavelength (nm)

Compare with Figure 3(a) in [6].

E.eye = product( illuminantE(1,wavelength=wave), "material", bee )
white = product( neutralMaterial(l,wave=wave), E.eye )

par( omi=rep(0,4), mai=c(0.5,0.6,0,0) )

normal = c(1,1,1)/3 ; beta = sum(white*normal) * Ylevel

seclist = sectionOptimalColors( E.eye, normal=normal, beta=beta )
plotSections( seclist, Ylevel, bee, white, col=’red’ )

seclist = sectionSchrodingerColors( E.eye, normal=normal, beta=beta )
plotSections( seclist, Ylevel, bee, white, add=TRUE )
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Compare with Figure 3(b) in [6]. For the first time in this vignette, we see a significant difference
between the Schrodinger and optimal colors. Note that the optimal colors (red) are always outside

the Schrodinger colors (black).

An RGB Scanner

This also works with object color from an electrical RGB scanner. The chromaticities in this case

r=R/(R+G+ B) g=G/(R+G+ B)

Make a scanner from a tungsten source and a Flea2 camera:

wave = seq(420,680,by=5)
= product( A.lnm, "material", Flea2.RGB, wavelength=wave )

Flea2.scanner =
white = product( neutralMaterial(l,wave=wave), Flea2.scanner )

Make the plot.
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par( omi=rep(0,4), mai=c(0.5,0.6,0,0) )

normal = c(1,1,1)/3 ; beta = sum(white*normal) * Ylevel

seclist = sectionOptimalColors( Flea2.scanner, normal=normal, beta=beta )
plotSections( seclist, Ylevel, Flea2.scanner, white, col=’red’ )

seclist = sectionSchrodingerColors( Flea2.scanner, normal=normal, beta=beta )
plotSections( seclist, Ylevel, Flea2.scanner, white, add=TRUE )
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The wavelengths have been trimmed at each end to avoid weak responsivities that wander
around too much. Even after trimming, the spectrum locus is not convex in the inverval from
about 500 to 560 nm. This shows that the color solid does not satisfy the 2-transition property.
The optimal color chromaticity locii are convex, as they must be; and some optimal colors are
outside the spectrum locus. See Figure 3 and more discussion in [6].
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Appendix

This document was prepared June 8, 2025 with the following configuration:

e R version 4.5.0 (2025-04-11 ucrt), x86_64-w64-mingw32

e Running under: Windows 11 x64 (build 26100)

e Matrix products: default

e Base packages: base, datasets, grDevices, graphics, methods, stats, utils

e Other packages: colorSpec 1.8-0, knitr 1.50, spacesRGB 1.7-0, spacesXYZ 1.6-0

e Loaded via a namespace (and not attached): MASS 7.3-65, R6 2.6.1, bslib 0.9.0,
cachem 1.1.0, cli 3.6.5, compiler 4.5.0, digest 0.6.37, evaluate 1.0.3, fastmap 1.2.0, glue 1.8.0,
highr 0.11, htmltools 0.5.8.1, jquerylib 0.1.4, jsonlite 2.0.0, lifecycle 1.0.4, logger 0.4.0,
microbenchmark 1.5.0, rlang 1.1.6, rmarkdown 2.29, rootSolve 1.8.2.4, sass 0.4.10,
tools 4.5.0, xfun 0.52, yaml 2.3.10, zonohedra 0.4-0
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