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1 Introduction

In the fundamental paper [Log09], Logvinenko investigates the statement that a color is optimal
iff it comes from a (reflectance or transmittance) spectrum that only takes the values 0 and 1, and
has 0 or 2 transitions. He calls this the two-transition assumption. He plots chromaticity diagrams
for the cone fundamentals of Govardovskii et al. (Figure 4) and of Stockman et Sharpe (Figure
7) and remarks that they are not convex. By a theorem in [Wes83], there are optimal colors for
these two sets of cone fundamentals whose transmittance spectra have more than 2 transitions.
So the two-transition assumption is false in these two cases. He also plots the standard 1931 CIE
chromaticity diagram (Figure 5) and remarks:

However, the completed spectral contour (in the unit plane) derived from the color
matching functions adopted by the CIE as the standard colorimetric observer (Figure
5) is convex. This indicates that for this observer the two-transition assumption holds
true. [page 5]

The goal of this vignette is to show that, from an extremely strict viewpoint, the standard 1931
CIE inverted-U is not convex either, and the two-transition assumption does not hold.

To state this all precisely requires a lot of tedious mathematics, which is then followed by an
analysis at both 5nm and 1nm.

The featured functions from colorSpec used in this vignette are responsivityMetrics(),
canonicalOptimalColors(), and bandRepresentation().

library( colorSpec )

2 Wavelengths and Subintervals

Suppose we are given N wavelengths: λ1 < λ2 < . . . < λN . Define N intervals Ii := [βi−1, βi] where

β0 :=
3

2
λ1 −

1

2
λ2 βi := (λi + λi+1)/2, i=1, . . . , N − 1 βN := 3

2
λN − 1

2
λN−1 (2.1)

The intervals Ii are a partition of [β0, βN ]. Note that [β0, βN ] is slightly bigger than [λ1, λN ] because
the endpoints are extended. Define the i′th step µi := length(Ii), i=1, . . . , N . If the sequence {λi}
is regular (µi is constant), then {βi} is regular with the same step, and each λi is the center of Ii.
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4 RESPONSIVITY FUNCTION

3 Band Functions

Let B be the set of all functions on [β0, βN ] that take the values 0 or 1 and have finitely many
transitions (jumps). As in [Cen13], we identify the endpoints β0 and βN to form a circle, so if the
values at β0 and βN are different, then this is considered to be a transition. Equivalently B is the
set of all indicator functions 1S where S is a disjoint unit of finitely many arcs in the circle. We
call these arcs bands. For a given function f ∈ B, twice the number of the bands is the number
of transitions, unless S is the entire circle when there is 1 band and 0 transitions. In any case the
number of transitions is even. We think of such an f(λ) as a transmittance function of a filter, and
a superposition of bandpass and bandstop filters. If the endpoints are in the interior of a band,
then the band corresponds to a bandstop filter, and otherwise it corresponds to a bandpass filter.
It is clear that a given f has either 0 or 1 bandstop filters.

Let [0, 1]N denote the N -cube and define a function p()

p : B ↠ [0, 1]N by p(f) := y ≡ (y1, . . . , yN ) where yi = µi
−1

∫

Ii

f(λ) dλ (3.1)

Note that yi is the mean of f on Ii. It is straightforward to show that p() is surjective and it follows
that p() has a right-inverse (or section), i.e. a function p+ : [0, 1]N → B so that p◦p+ is the identity
on [0, 1]N . Such a section is fairly easy to construct, but p+(y) is certainly not unique, except in
special cases. If v ∈ [0, 1]N is a vertex of the cube, then p+(v) is unique. Another important case
is yij = (0, . . . , 0, yi, 1, . . . , 1, yj , 0, . . . , 0) and yi, yj ∈ (0, 1). There is a unique f ∈ p−1(yij) with 2
transitions (1 passband), but an arbitrarily large number of bands of f in the intervals Ii and Ij
can be created without changing the value of p(). In the extreme case where y is in the interior of
the cube (all yi ∈ (0, 1)), there is a band function f ∈ p−1(y) with ⌈N/2⌉ bands.

In colorSpec software, the function p() is implemented as bandMaterial(), and p+() is imple-
mented as bandRepresentation(). In the latter case, the function tries to find a function with the
minimum number of bands; see the corresponding man page for details.

4 Responsivity Function

Let w : [β0, βN ] → R
3 be a step function that take the constant value wi on Ii. Define a function

Γ : B → R
3 by Γ(f) :=

∫ βN

β0

f(λ)w(λ) dλ =
N
∑

i

(
∫

Ii

f(λ) dλ

)

wi (4.1)

And define a similar function

ΓN : [0, 1]N → R
3 by ΓN (y) = ΓN (y1, . . . , yN ) :=

N
∑

i

yiµiwi (4.2)

By 3.1 it follows that ΓN (p(f)) = Γ(f). Define Z := ΓN ([0, 1]N ); since Z is the linear image of a
cube, Z is a zonohedron, see [Cen13]. We now have a commutative diagram in which all 3 maps
are surjective:

B

[0, 1]N Z

p Γ

ΓN

If f ∈ B has 0 or 2 transitions, then Γ(f) is called a Schrödinger color, see [Wes83].
In colorSpec software, the function ΓN () is implemented in product(), and is a simple matrix

multiplication, see the corresponding man page for details.
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6 THE OPTIMAL COLOR THEOREM

5 Chromaticity Polygons

From this point on, we require that all wi, i = 1, . . . , N lie in some linear open halfspace in R
3,

except if wi=0. This means that there is a vector u so that all ⟨u,wi⟩ > 0, except if wi=0. If
all responsivities are non-negative, which is the usual case, then we can take u=(1, 1, 1). We now
define the vertices vi := wi/⟨u,wi⟩ which are in the plane {v|⟨v,u⟩ = 1}. These are the vertices of
what we call the chromaticity polygon P in the previously mentioned plane. The CIE inverted-U is
the classical example; where wi is (x̄, ȳ, z̄) at λi, and vi is the CIE chromaticity (x, y) at λi (after
the final coordinate z of vi is dropped).

We also consider the central projection of P onto the unit sphere S2, and call this the spherical
chromaticity polygon PS . It is clearly contained in the hemisphere centered at u/ |u|. The internal
angles of P and PS may be different, but whether an internal angle θ is convex (θ < π), straight
(θ=π), or concave|reflex (θ > π), is the same in P and PS .

If for all distinct indexes i, j, k, the vectors wi,wj ,wk are linearly independent we say that
the responsivities are in general position. If they are not in general position, then wi,wj ,wk are
linearly dependent for some distinct i, j, k, which means that one of these 3 is a linear combination
of the other 2. By re-indexing assume the one is wi and the others are wj and wk. There are 3
ways such a degeneracy can happen:

1. wi = 0

2. wi = αwj , where α ̸= 0 and wj ̸= 0

3. wi = αwj + βwk, where α ̸= 0, β ̸= 0, and wj ,wk are linearly independent

For the chromaticity polygon P , with 2D vertices vi, these translate to 3 polygon degeneracies:

1′. vertex vi is undefined

2′. vertices vi and vj are identical

3′. vertices vi, vj , and vk are distinct but collinear, with vi between vj and vk

The chromaticity polygon P is not simple in general; it is just a closed polygonal path. In
the next section we discuss the case where P is convex, which means that all internal angles are
≤ π. For convex P we allow all 3 of these degeneracies. However, each group of identical vertices
and each group of distinct collinear vertices must have contiguous indexes. A subset of {1, . . . , N}
is contiguous iff the indexes are consecutive, with wraparound from N to 1 allowed. So for this
vignette, a convex P is simple, except possibly for contiguous identical vertices.

6 The Optimal Color Theorem

The preliminaries are done and we can finally state the main result from [Wes83]:

Theorem 6.1 With Γ, Z, and P as defined above, the following are equivalent:

1. for any z ∈ Z, z ∈ ∂Z iff there is an f ∈ Γ−1(z) with 0 or 2 transitions

2. the chromaticity polygon P is convex

Moreover, in part 1, p(f) is unique for all z iff all vertices of P are defined.

A point z ∈ ∂Z is called an optimal color. A corollary of the theorem is that if P is not convex,
then there are optimal colors that are not Schrödinger colors. We explore examples of this in the
next two sections.

page 3 of 8



7 THE CIE XYZ RESPONSIVITIES WITH 5NM STEP

7 The CIE xyz Responsivities with 5nm step

In colorSpec software, the CIE responsivities with 5nm step are stored in the object xyz1931.5nm;
whose values are taken from Table 1 in [AST01]. The wavelengths range from 380 to 780 nm.

Analyze the responsivities, and print the degeneracies.

mets = responsivityMetrics( xyz1931.5nm )

mets$zeros

[1] 780

So the responsivity at λ=780 nm is 0. This is not a violation of the convexity of P .

mets$multiples

[[1]]

[1] 735 745

[[2]]

[1] 755 760

[[3]]

[1] 765 770 775

There are 3 groups of multiples: 735 745 nm (not contiguous), 755 760 nm (contiguous), and
765 770 775 nm (contiguous). The non-contiguous group is a violation of the convexity of P . Now
print the actual concavities in P .

mets$concavities

wavelength extangle

2 385 -2.478207e+00

3 390 -2.208011e+00

7 410 -2.282285e-01

13 440 -2.993477e-02

14 445 -1.140541e-02

41 580 -2.248750e-03

42 585 -4.388215e-05

44 595 -1.760213e-03

45 600 -4.783000e-04

46 605 -3.809528e-03

49 620 -6.852491e-03

50 625 -3.987921e-03

These are all violations too. The column extangle is the external angle at the vertex (in
radians) of the spherical chromaticity polygon PS . The sum of internal and external angles is π, so
when the external angle is negative, as these are, the internal angle is greater than π. In the vicinity
of these wavelengths, we can find optimal colors with more than 2 transitions. As an example, we
choose the canonical optimal color with wavelengths 580 and 585 nm.
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8 THE CIE XYZ RESPONSIVITIES WITH 1NM STEP

wave = wavelength(xyz1931.5nm)

E.eye = product( illuminantE(1,wave=wave), ’*’, xyz1931.5nm )

spec = canonicalOptimalColors( E.eye, c(580,585), spectral=TRUE )

bandRepresentation( spec )[[1]]

lambda1 lambda2

BP1 567.5 580.0

BP2 585.0 592.5

BP3 752.5 762.5

So this spectrum is a superposition of 3 bandpass filters, and has 6 transitions.

par( omi=c(0,0,0,0), mai=c(0.5,0.6,0.2,0) )

plot( spec, main=FALSE, legend=FALSE, type=’step’, lwd=c(3,0.25) )
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Figure 7.1: An example of a transmittance spectrum that is optimal, but has more than 2 transitions

8 The CIE xyz Responsivities with 1nm step

In colorSpec software, the CIE responsivities with 1nm step are stored in the object xyz1931.1nm;
whose values are taken from Table 1 in [WS00]. The wavelengths range from 360 to 830 nm.

Analyze the responsivities, and print the degeneracies.

mets = responsivityMetrics( xyz1931.1nm )

mets$zeros

numeric(0)

mets$multiples
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8 THE CIE XYZ RESPONSIVITIES WITH 1NM STEP

[[1]]

[1] 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719

[22] 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740

[43] 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761

[64] 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

[85] 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803

[106] 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824

[127] 825 826 827 828 829 830

So there are no wavelengths where the responsivity is 0. But all responsivities from 699 to 830
are multiples of each other (with angular tolerance of about 10−6 radian). It is fairly obvious that
they were extrapolated in this way intentionally. Since these wavelengths are contiguous, there are
no convexity violations so far. Now examine the concavities in P .

nrow( mets$concavities )

[1] 73

This is too many concave vertices to print, so look at the first quartile of external angles instead.

fivenum( mets$concavities$extangle )

[1] -3.611408e-01 -1.606363e-02 -8.717753e-04 -3.584991e-04 -3.014621e-06

mets$concavities[ mets$concavities$extangle <= -0.01606, ]

wavelength extangle

6 365 -0.02804187

7 366 -0.02013442

13 372 -0.17972851

14 373 -0.18254734

15 374 -0.12337220

16 375 -0.07284921

17 376 -0.02397177

24 383 -0.36114083

25 384 -0.31964638

26 385 -0.18907165

27 386 -0.03526279

33 392 -0.10245669

34 393 -0.18150335

35 394 -0.21463185

36 395 -0.15618045

37 396 -0.03375087

48 407 -0.01606363

49 408 -0.04297267

50 409 -0.05929131
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wave = wavelength(xyz1931.1nm)

E.eye = product( illuminantE(1,wave=wave), ’*’, xyz1931.1nm )

spec = canonicalOptimalColors( E.eye, c(407,409), spectral=TRUE )

bandRepresentation( spec )[[1]]

lambda1 lambda2

BP1 403.5 407.0

BP2 409.0 415.5

So this spectrum is a superposition of 2 bandpass filters, and has 4 transitions.

par( omi=c(0,0,0,0), mai=c(0.5,0.6,0.2,0) )

plot( spec, main=FALSE, legend=FALSE, type=’step’, lwd=c(3,0.25) )
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Figure 8.1: An example of a transmittance spectrum that is optimal, but has more than 2 transitions
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Session Information

This document was prepared June 8, 2025 with the following configuration:

� R version 4.5.0 (2025-04-11 ucrt), x86_64-w64-mingw32

� Running under: Windows 11 x64 (build 26100)

� Matrix products: default

� Base packages: base, datasets, grDevices, graphics, methods, stats, utils

� Other packages: colorSpec 1.8-0, knitr 1.50, spacesRGB 1.7-0

� Loaded via a namespace (and not attached): R6 2.6.1, bslib 0.9.0, cachem 1.1.0, cli 3.6.5,
compiler 4.5.0, digest 0.6.37, evaluate 1.0.3, fastmap 1.2.0, glue 1.8.0, highr 0.11,
htmltools 0.5.8.1, jquerylib 0.1.4, jsonlite 2.0.0, lifecycle 1.0.4, logger 0.4.0,
microbenchmark 1.5.0, rlang 1.1.6, rmarkdown 2.29, sass 0.4.10, tools 4.5.0, xfun 0.52,
yaml 2.3.10, zonohedra 0.4-0
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