## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(chemdeg) ## ----------------------------------------------------------------------------- ord1 # simulated data from a first order kinetic model with error res <- det_order(ord1) class(res) ## ----------------------------------------------------------------------------- results(res) ## ----------------------------------------------------------------------------- plot_ord(res) ## ----------------------------------------------------------------------------- linear_model_phase_space <- phase_space(res) linear_model_phase_space kinetic_regression <- kin_regr(res) kinetic_regression ## ----------------------------------------------------------------------------- chiquad_red(kinetic_regression) AICC(kinetic_regression) ## ----------------------------------------------------------------------------- goodness_of_fit(kinetic_regression) ## ----------------------------------------------------------------------------- f_gen(1) f_gen(2) ## ----------------------------------------------------------------------------- dat <- data.frame( time = c(0, 1, 2, 3, 4, 5), conc = c(1, 0.99, 0.98, 0.5, 0.24, 0.12) ) try(FOMT(dat)) nls(conc ~ FOMTm(time, k, n), data = list( conc = dat$conc, time = dat$time ), start = list(k = 1, n = 12) ) ## ----------------------------------------------------------------------------- urfa ## ----------------------------------------------------------------------------- try(det_order(urfa)) urfa1 <- data.frame(urfa$time_min, urfa$AA_55) ord.urfa.1 <- det_order(urfa1) ## ----------------------------------------------------------------------------- results(ord.urfa.1) ## ----------------------------------------------------------------------------- plot_ord(ord.urfa.1) ## ----------------------------------------------------------------------------- fomtdata ## ----------------------------------------------------------------------------- ord.cqa <- det_order(fomtdata) ## ----------------------------------------------------------------------------- results(ord.cqa) ## ----fig.show='hold'---------------------------------------------------------- plot_ord(ord.cqa) ## ----------------------------------------------------------------------------- lin <- kin_regr(ord.cqa) summary(lin) ## ----------------------------------------------------------------------------- FOMT(fomtdata) ## ----------------------------------------------------------------------------- regr.FOMT <- nls(y ~ FOMTm(t, k, n), data = list(y = fomtdata$tCQA_AA, t = fomtdata$time_h), start = list(n = 10, k = 0.05) ) summary(regr.FOMT) ## ----------------------------------------------------------------------------- plot(fomtdata$time_h, fomtdata$tCQA_AA, xlab = "time (h)", ylab = "C/C0" ) new_t <- seq(0, max(fomtdata$time_h), length.out = 100) lines(new_t, predict(regr.FOMT, newdata = list(t = new_t))) lines(fomtdata$time_h, predict(lin), col = "red") ## ----------------------------------------------------------------------------- goodness_of_fit(regr.FOMT)