
Package ‘callsync’
July 22, 2025

Type Package

Title Recording Synchronisation, Call Detection and Assignment, Audio
Analysis

Version 0.2.3

Description Intended to analyse recordings from multiple microphones (e.g., backpack
microphones in captive setting). It allows users to align recordings even if there is non-linear
drift of several minutes between them. A call detection and assignment pipeline can be used
to find vocalisations and assign them to the vocalising individuals (even if the vocalisation
is picked up on multiple microphones). The tracing and measurement functions allow for detailed
analysis of the vocalisations and filtering of noise. Finally, the package includes a function
to run spectrographic cross correlation, which can be used to compare vocalisations. It also
includes multiple other functions related to analysis of vocal behaviour.

License GPL-3

URL https://github.com/simeonqs/callsync

BugReports https://github.com/simeonqs/callsync/issues

Depends R (>= 4.1.0)

Imports dplyr (>= 1.0.10), oce (>= 1.7), seewave (>= 2.2.0), signal
(>= 0.7), stringr (>= 1.4.1), tuneR (>= 1.4.0), scales (>=
1.2.1)

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Encoding UTF-8

RoxygenNote 7.3.1

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Simeon Q. Smeele [cre, aut],
Stephen A. Tyndel [ctb]

Maintainer Simeon Q. Smeele <simeonqs@hotmail.com>

Repository CRAN

Date/Publication 2024-05-24 10:20:03 UTC

1

https://github.com/simeonqs/callsync
https://github.com/simeonqs/callsync/issues

2 align

Contents
align . 2
better.spectro . 4
calc.am . 6
calc.fm . 7
calc.perf . 8
call.assign . 9
call.detect . 10
call.detect.multiple . 11
callsync . 13
create.spec.object . 14
detect.and.assign . 15
export.detections . 17
load.selection.table . 17
load.selection.tables . 18
load.selection.tables.audacity . 19
load.wave . 19
measure.trace . 20
measure.trace.multiple . 21
o.to.m . 23
run.spcc . 23
simple.cc . 25
sliding.pixel.comparison . 25
trace.fund . 26

Index 29

align align

Description

Aligns multiple recordings (.wav files). It assumes all microphones are within recording range of
each other most of the time.

Usage

align(
chunk_size = 15,
step_size = 0.5,
all_files = NULL,
path_recordings = NULL,
path_chunks = NULL,
chunk_seq = NULL,
keys_id = NULL,
keys_rec = NULL,
blank = 15,

align 3

wing = 10,
ffilter_from = NULL,
down_sample = NULL,
save_pdf = FALSE,
save_log = FALSE,
quiet = FALSE

)

Arguments

chunk_size numeric, duration in minutes of the chunks to output. Default is ‘15‘.

step_size numeric, duration in seconds of the bins for signal compression before cross
correlation. Default is ‘0.5‘.

all_files character vector, paths to all raw recordings to consider. If ‘NULL‘ files are
listed based on the argument ‘path_recordings‘.

path_recordings

character, the path where the raw recordings are stored. Can be nested in folders,
in this case provide the top-level folder.

path_chunks character, the path where aligned chunks should be stored.

chunk_seq numeric vector or ‘NULL‘. If supplied only these chunks are rerun.

keys_id character vector of length 2. The characters before and after the unique ID of the
individual or microphone. This can be in the file name or in the folder structure.
E.g., if the path to the recording is ‘../data/week_1/recording_mic1.wav‘ the
keys would be ‘c(’recording_’, ’.wav’)‘ and the function would retrieve ‘mic1‘
as individual id.

keys_rec character vector of length 2. The characters before and after the unique ID of
the recording. This can be in the file name or in the folder structure. E.g., if the
path to the recording is ‘../data/week_1/recording_mic1.wav‘ the keys would be
‘c(’data/’, ’/recording’)‘ and the function would retrieve ‘week_1‘ as recording
id.

blank numeric, the duration in minutes to be discarded at the beginning and end of the
recording.

wing numeric, the duration in minutes to load before and after each chunk to improve
alignment. This is not saved with the aligned chunk.

ffilter_from numeric, frequency in Hz for the high-pass filter.

down_sample numeric, the sample rate for down-sampling. If ‘NULL‘ no down-sampling is
done.

save_pdf logical, if ‘TRUE‘ a pdf is saved with a page per chunk that shows all the aligned
recordings.

save_log logical, if ‘TRUE‘ a csv file with all alignment times is saved in path_chunks.

quiet logical, if ‘TRUE‘ no messages are printed.

4 better.spectro

Details

There are two ways to tell the function where the files are. You can either compile a character
vector of pathnames yourself and enter this under ‘all_files‘ or you can give a single character
path to ‘path_recordings‘. You need to make sure that there is an identifier by which to group the
recordings and an identifier for each individual or microphone in the path. This can either be a in
the folder structure or in the file names themselves. The align function will align all individuals
per recording id (e.g., date). These identifiers are found using regexp, so mostly you can use the
first few characters before and after them (see examples in the argument descriptions). The function
loads chunks of the recordings, sums the absolute amplitude per bin and runs cross correlation to
find alignment relative to the first recording. The aligned chunks are then saved.

Value

saves all the aligned chunks in the location specific by ‘path_chunks‘.

Examples

Not run:
require(callsync)
require(seewave)
require(tuneR)
path_git = 'https://raw.githubusercontent.com'
path_repo = '/simeonqs/callsync/master/tests/testthat/files'
file_1 = '/chunk@1@1@1@1.wav'
file_2 = '/chunk@2@1@1@1.wav'
url_1 = paste0(path_git, path_repo, file_1)
url_2 = paste0(path_git, path_repo, file_2)
local_file_1 = paste(tempdir(), file_1, sep = '/')
local_file_2 = paste(tempdir(), file_2, sep = '/')
if(!file.exists(local_file_1))

download.file(url_1, destfile = local_file_1, mode = 'wb',)
if(!file.exists(local_file_2))

download.file(url_2, destfile = local_file_2, mode = 'wb')
all_files = c(local_file_1, local_file_2)
a = align(chunk_size = 2,

step_size = 0.1,
all_files = all_files,
keys_id = c('c', '@'),
keys_rec = c('c', '@'),
blank = 0,
wing = 0,
quiet = TRUE)

End(Not run)

better.spectro better.spectro

better.spectro 5

Description

Creates a spectrogram and plots it to the current window.

Usage

better.spectro(
wave,
main = "",
wl = 512,
ovl = wl/2,
xlim = NULL,
ylim = NULL,
mar = rep(3, 4),
cex.main = 1,
cex.axis = 0.75,
cex.lab = 0.5

)

Arguments

wave wave object, e.g., from ‘load.wave‘ or ‘readWave‘.

main character, title for the spectrogram. Default is no title.

wl numeric, window length in samples. Default is ‘512‘.

ovl numeric, overlap in samples. Default is ‘wl/2‘.

xlim numeric vector of length 2, limits for the x-axis. Default is no limits.

ylim numeric vector of length 2, limits for the y-axis. Default is no limits.

mar numeric vector of length 4, the margins of the plot for the ‘impagep‘ function.
Default is ‘rep(3, 4)‘.

cex.main numeric the relative size of the title

cex.axis numeric the relative size of the axis labels.

cex.lab numeric the relative size of the axis titles

Value

Plots the spectrogram to current window.

Examples

require(callsync)
require(seewave)
require(tuneR)
path_git = 'https://raw.githubusercontent.com'
path_repo = '/simeonqs/callsync/master/tests/testthat/files'
file_1 = '/wave_1.wav'
url_1 = paste0(path_git, path_repo, file_1)
local_file_1 = paste(tempdir(), file_1, sep = '/')
if(!file.exists(local_file_1))

6 calc.am

download.file(url_1, destfile = local_file_1, mode = 'wb',)
wave = readWave(local_file_1)
better.spectro(wave)

calc.am calc.am

Description

Calculates the amplitude modulation for a wave object and returns several measurements in a
dataframe.

Usage

calc.am(wave, msmooth = c(1000, 90))

Arguments

wave wave object, e.g., from ‘load.wave‘ or ‘readWave‘.

msmooth used as argument for the ‘seewave::env‘ function. *A vector of length 2 to
smooth the amplitude envelope with a mean sliding window. The first compo-
nent is the window length (in number of points). The second component is the
overlap between successive windows (in %).* Default is ‘c(500, 95)‘.

Value

Returns a data frame with nr_notes = total number of amplitude modulations in the signal, amp_mod_med
= median difference between highest and lowest amplitude from the normalised envelope, inter-
note_med = median internote distance in seconds.

Examples

require(callsync)
require(seewave)
require(tuneR)
path_git = 'https://raw.githubusercontent.com'
path_repo = '/simeonqs/callsync/master/tests/testthat/files'
file_1 = '/wave_1.wav'
url_1 = paste0(path_git, path_repo, file_1)
local_file_1 = paste(tempdir(), file_1, sep = '/')
if(!file.exists(local_file_1))

download.file(url_1, destfile = local_file_1, mode = 'wb',)
wave = readWave(local_file_1)
result = calc.am(wave)

calc.fm 7

calc.fm calc.fm

Description

Calculates the frequency modulation for a wave object and returns several measurements in a data
frame.

Usage

calc.fm(trace, min_height = 8, plot_it = FALSE)

Arguments

trace numeric vector, e.g., the fundamental frequency from ‘trace.fund‘, NOTE this
would be ‘trace$fund‘ and not the whole ‘trace‘ object.

min_height the minimum difference between a bottom and a peak for an infliction point to
be accepted.

plot_it logical, if ‘TRUE‘ plot the trace and peaks to current window. Default is ‘FALSE‘.

Value

Returns a data frame with fm = median difference between peaks and bottoms and ipi = inter peak,
np = number of peaks. interval (s).

Examples

require(callsync)
require(seewave)
require(tuneR)
path_git = 'https://raw.githubusercontent.com'
path_repo = '/simeonqs/callsync/master/tests/testthat/files'
file_1 = '/wave_1.wav'
url_1 = paste0(path_git, path_repo, file_1)
local_file_1 = paste(tempdir(), file_1, sep = '/')
if(!file.exists(local_file_1))

download.file(url_1, destfile = local_file_1, mode = 'wb',)
wave = readWave(local_file_1)
trace = trace.fund(wave)
result = calc.fm(trace$fund)

8 calc.perf

calc.perf calc.perf

Description

Calculates the performance of the detections. Detections are true positive if they overlap to any
extend with a ground truth selection.

Usage

calc.perf(d, gt)

Arguments

d data frame, detection selection table with start = start time in seconds, end = end
time in seconds and file = file name

gt data frame, ground truth selection table with start = start time in seconds, end =
end time in seconds and file = file name

Value

Returns a named list with tp = the row numbers (in d) for the true positives, fp = the row num-
bers (in d) for the false positives, fn = the row numbers (in gt) for the false negatives, fp_rate =
‘length(fp)/nrow(d)‘, tp_rate = ‘length(tp)/nrow(gt)‘, fn_rate = ‘length(fn)/nrow(gt)‘.

Examples

require(callsync)
require(seewave)
require(tuneR)
path_git = 'https://raw.githubusercontent.com'
path_repo = '/simeonqs/callsync/master/tests/testthat/files'
file_1 = '/audacity/chunk_15_ground_truth.txt'
url_1 = paste0(path_git, path_repo, file_1)
local_dir = paste(tempdir(), 'audacity', sep = '/')
local_file_1 = paste(tempdir(), file_1, sep = '/')
if(!dir.exists(local_dir)) dir.create(local_dir)
if(!file.exists(local_file_1))

download.file(url_1, destfile = local_file_1, mode = 'wb',)
d = load.selection.tables.audacity(path_selection_tables = local_dir)
result = calc.perf(d, d)

call.assign 9

call.assign call.assign

Description

Assigns calls from a detection table. Or rather removes calls that are not the loudest and returns the
cleaned detection table. Uses fine alignment and energy content.

Usage

call.assign(
all_files = NULL,
detections = NULL,
save_files = TRUE,
path_calls = NULL,
ffilter_from = 1100,
wing = 5,
step_size = 0.01,
assign_fraq = 0.05,
save_wing = 0.1,
quiet = FALSE

)

Arguments

all_files character vector, should contain all the paths to the raw recordings that should
be considered. If ‘NULL‘ files are loaded from ‘path_chunks‘.

detections data frame with start = start time in samples and end = end time in samples for
each detection.

save_files logical, if ‘TRUE‘ the files are stored in the ‘path_chunks‘ location. Results are
also returned.

path_calls character, path to where to store the results.

ffilter_from numeric, frequency in Hz for the high-pass filter.

wing numeric, the duration in seconds to load before and after each detection to im-
prove alignment. This is not saved with the aligned call.

step_size numeric, duration in seconds of the bins for signal compression before cross
correlation. Default is ‘0.01‘.

assign_fraq numeric between 0 and 1, how much louder does the focal needs to be than the
second loudest track to be accepted. Default is ‘0.05‘ and accepts if the focal is
just 0.05 louder.

save_wing numeric, how much extra to export before and after a detection to make sure the
whole call is included in seconds. Default is ‘0.1‘.

quiet logical, if ‘TRUE‘ no messages are printed.

10 call.detect

Value

Returns a data frame with file = file name, start = start time in samples and end = end time in
samples for each detection.

Examples

Not run:
require(callsync)
require(seewave)
require(tuneR)
path_git = 'https://raw.githubusercontent.com'
path_repo = '/simeonqs/callsync/master/tests/testthat/files'
file_1 = '/chunk@1@1@1@1.wav'
file_2 = '/chunk@2@1@1@1.wav'
url_1 = paste0(path_git, path_repo, file_1)
url_2 = paste0(path_git, path_repo, file_2)
local_file_1 = paste(tempdir(), file_1, sep = '/')
local_file_2 = paste(tempdir(), file_2, sep = '/')
if(!file.exists(local_file_1))

download.file(url_1, destfile = local_file_1, mode = 'wb',)
if(!file.exists(local_file_2))

download.file(url_2, destfile = local_file_2, mode = 'wb')
all_files = c(local_file_1, local_file_2)
detections = lapply(all_files, function(file){

wave = load.wave(file, ffilter_from = 1100)
detections = call.detect.multiple(wave, plot_it = FALSE)
return(detections)

})
names(detections) = basename(all_files)
ca = call.assign(all_files = all_files,

detections = detections,
quiet = TRUE,
save_files = FALSE)

End(Not run)

call.detect call.detect

Description

Detects single call in a wave object using an amplitude envelope.

Usage

call.detect(wave, threshold = 0.3, msmooth = c(500, 95), plot_it = FALSE)

call.detect.multiple 11

Arguments

wave wave object, e.g., from ‘load.wave‘ or ‘readWave‘.

threshold rector of length 1 or 2. The fraction of the maximum of the normalised envelope
to use as threshold to detect start and end. If a vector of length 2 is supplied, the
first is used to detect the start and the second to detect the end (in case of echo).

msmooth used as argument for the ‘seewave::env‘ function. *A vector of length 2 to
smooth the amplitude envelope with a mean sliding window. The first compo-
nent is the window length (in number of points). The second component is the
overlap between successive windows (in %).* Default is ‘c(500, 95)‘.

plot_it if ‘TRUE‘, returns three-panel plot of wave form, envelope and spectrogram to
current plotting window. Default is ‘FALSE‘.

Value

Returns a dataframe with start = start time in samples and end = end time in samples for each
detection. Optionally also plots the wave form and detections to current window.

Examples

require(callsync)
require(seewave)
require(tuneR)
path_git = 'https://raw.githubusercontent.com'
path_repo = '/simeonqs/callsync/master/tests/testthat/files'
file_1 = '/wave_1.wav'
url_1 = paste0(path_git, path_repo, file_1)
local_file_1 = paste(tempdir(), file_1, sep = '/')
if(!file.exists(local_file_1))

download.file(url_1, destfile = local_file_1, mode = 'wb',)
wave = readWave(local_file_1)
cd = call.detect(wave)

call.detect.multiple call.detect.multiple

Description

Detects multiple calls in a wave object using an amplitude envelope.

Usage

call.detect.multiple(
wave,
threshold = 0.3,
msmooth = c(500, 95),
plot_it = FALSE,

12 call.detect.multiple

min_dur = 0.1,
max_dur = 0.3,
save_extra = 0,
env_type = "Hilbert",
bin_depth = 512,
merge_overlap = FALSE

)

Arguments

wave wave object, e.g., from ‘load.wave‘ or ‘readWave‘.

threshold rector of length 1 or 2. The fraction of the maximum of the normalised envelope
to use as threshold to detect start and end. If a vector of length 2 is supplied, the
first is used to detect the start and the second to detect the end (in case of echo).

msmooth used as argument for the ‘seewave::env‘ function. *A vector of length 2 to
smooth the amplitude envelope with a mean sliding window. The first compo-
nent is the window length (in number of points). The second component is the
overlap between successive windows (in %).* Default is ‘c(500, 95)‘.

plot_it logical, if ‘TRUE‘, returns three-panel plot of wave form, envelope and spectro-
gram to current plotting window. Default is ‘FALSE‘.

min_dur numeric, the minimal duration in seconds for a detection to be saved. Default is
‘0.1‘.

max_dur numeric, the maximal duration in seconds for a detection to be saved. Default is
‘0.3‘.

save_extra numeric, how much to add to start and end time in seconds. Can be used to make
sure the whole vocalisation is included.

env_type character, what type of envelope to calculate. If ‘Hilbert‘ returns the modulus
(Mod) of the analytical signal of wave obtained through the Hilbert transform
(hilbert) using seewave::env. If ‘summed‘ returns the summed absolute ampli-
tude. Default is ‘Hilbert‘.

bin_depth numeric, how many samples to sum if env_type is ‘summed‘. Default is ‘512‘.

merge_overlap logical, if ‘TRUE‘ overlapping detections (due to ‘save_extra‘) are merged. De-
fault is ‘FALSE‘.

Value

Returns a data frame with start = start time in samples and end = end time in samples for each
detection. Optionally also plots the wave form and detections to current window.

Examples

require(callsync)
require(seewave)
require(tuneR)
path_git = 'https://raw.githubusercontent.com'
path_repo = '/simeonqs/callsync/master/tests/testthat/files'
file_1 = '/wave_1.wav'

callsync 13

url_1 = paste0(path_git, path_repo, file_1)
local_file_1 = paste(tempdir(), file_1, sep = '/')
if(!file.exists(local_file_1))

download.file(url_1, destfile = local_file_1, mode = 'wb',)
wave = readWave(local_file_1)
cd = call.detect.multiple(wave)

callsync callsync: sychronous analysis of multiple microphones

Description

Intended to analyse recordings from multiple microphones (e.g., backpack microphones in captive
setting). It allows users to align recordings even if there is non-linear drift of several minutes
between them. A call detection and assignment pipeline can be used to find vocalisations and assign
them to the vocalising individuals (even if the vocalisation is picked up on multiple microphones).
The tracing and measurement functions allow for detailed analysis of the vocalisations and filtering
of noise. Finally, the package includes a function to run spectrographic cross correlation, which can
be used to compare vocalisations. It also includes multiple other functions related to analysis of
vocal behaviour.

Details

The main features of the package are:

• alignment and partitioning of drifting microphones using signal compression and cross corre-
lation

• call detection using an amplitude envelope

• fine-scale alignment and call assignment across recordings using cross correlation and energy
content

• fundamental frequency tracing

• analysis of the resulting traces and wav clips

The package offers functions to:

• create flexible spectrograms

• run spectrographic cross correlation

• analyse amplitude and frequency modulation

• load selection tables from Raven and Audacity

• calculate performance of the detection and assignment functions

License: GNU (>= 2)

Authors: Simeon Q. Smeele and Stephen A. Tyndel

Maintainer: Simeon Q. Smeele, <simeonqs@hotmail.com>

14 create.spec.object

create.spec.object create.spec.object

Description

Creates a tailored spectrogram (matrix) for spectrographic cross correlation.

Usage

create.spec.object(
wave,
wl = 512,
ovl = 450,
freq_range = c(0, 20000),
plot_it = TRUE,
thr_low = 1.5,
thr_high = 3,
sum_one = FALSE,
method = "sd"

)

Arguments

wave wave object, e.g., from ‘load.wave‘ or ‘readWave‘.

wl numeric, window length in samples. Default is ‘512‘.

ovl numeric, overlap in samples. Default is ‘450‘.

freq_range numeric vector of length 2, the frequency range in Hz to return.

plot_it logical, if ‘TRUE‘, returns three-panel plot of wave form, envelope and spectro-
gram to current plotting window. Default is ‘FALSE‘.

thr_low numeric, the lower range (see ‘method‘). Pixels with lower values are set to 0
for noise reduction.

thr_high numeric, the upper range (see ‘method‘). Pixels with higher values are set to
‘thr_high‘.

sum_one logical, if ‘TRUE‘ pixels are divided by the sum of all pixels, such that they sum
to one.

method character, either ‘sd‘ or ‘max‘. If ‘sd‘, pixels are standardised. If ‘max‘, pixels
are normalised.

Value

Returns a numeric matrix with the spectrogram values.

detect.and.assign 15

Examples

require(callsync)
require(seewave)
require(tuneR)
path_git = 'https://raw.githubusercontent.com'
path_repo = '/simeonqs/callsync/master/tests/testthat/files'
file_1 = '/wave_1.wav'
url_1 = paste0(path_git, path_repo, file_1)
local_file_1 = paste(tempdir(), file_1, sep = '/')
if(!file.exists(local_file_1))

download.file(url_1, destfile = local_file_1, mode = 'wb',)
wave = readWave(local_file_1)
result = create.spec.object(wave, plot_it = FALSE)

detect.and.assign detect.and.assign

Description

Traces the fundamental frequency from a wave object. Also applies smoothening to trace.

Usage

detect.and.assign(
all_files = NULL,
path_chunks = NULL,
path_calls = NULL,
ffilter_from = 1100,
threshold = 0.4,
msmooth = c(1000, 95),
min_dur = 0.1,
max_dur = 0.3,
step_size = 0.01,
wing = 6,
save_files = TRUE,
quiet = FALSE,
save_extra = 0

)

Arguments

all_files character vector or ‘NULL‘. Character vector should contain all the paths to
the raw recordings that should be considered. If ‘NULL‘ files are loaded from
‘path_chunks‘.

path_chunks character, path to where the chunks are stored.

path_calls character, path to where to store the results.

16 detect.and.assign

ffilter_from numeric, frequency in Hz for the high-pass filter.

threshold numeric, threshold (fraction of the maximum) for amplitude envelope when de-
tecting call.

msmooth used as argument for the ‘seewave::env‘ function. *A vector of length 2 to
smooth the amplitude envelope with a mean sliding window. The first compo-
nent is the window length (in number of points). The second component is the
overlap between successive windows (in %).* Default is ‘c(500, 95)‘.

min_dur numeric, the minimal duration in seconds for a detection to be saved. Default is
‘0.1‘.

max_dur numeric, the maximal duration in seconds for a detection to be saved. Default is
‘0.3‘.

step_size numeric, duration in seconds of the bins for signal compression before cross
correlation. Default is ‘0.01‘.

wing numeric, the duration in seconds to load before and after each detection to im-
prove alignment. This is not saved with the aligned call.

save_files logical, if ‘TRUE‘ the files are stored in the ‘path_chunks‘ location. Results are
also returned.

quiet logical, if ‘TRUE‘ no messages are printed.

save_extra numeric, how much to add to start and end time in seconds. Can be used to make
sure the whole vocalisation is included.

Value

Returns a data frame with start = start time in samples and end = end time in samples for each
detection.

Examples

require(callsync)
require(seewave)
require(tuneR)
path_git = 'https://raw.githubusercontent.com'
path_repo = '/simeonqs/callsync/master/tests/testthat/files'
file_1 = '/chunk@1@1@1@1.wav'
file_2 = '/chunk@2@1@1@1.wav'
url_1 = paste0(path_git, path_repo, file_1)
url_2 = paste0(path_git, path_repo, file_2)
local_file_1 = paste(tempdir(), file_1, sep = '/')
local_file_2 = paste(tempdir(), file_2, sep = '/')
if(!file.exists(local_file_1))

download.file(url_1, destfile = local_file_1, mode = 'wb',)
if(!file.exists(local_file_2))

download.file(url_2, destfile = local_file_2, mode = 'wb')
all_files = c(local_file_1, local_file_2)
Not run:
result = detect.and.assign(all_files = all_files,

quiet = TRUE,
save_files = FALSE)

export.detections 17

End(Not run)

export.detections export.detections

Description

Exports detection table from ‘call.detect‘ into a txt file that can be read by Raven Lite. All columns
other than those containing start and end times are filled with 0 or ”.

Usage

export.detections(detections, sr = 1, path_out = "out.txt")

Arguments

detections data.frame, the object generated by ‘call.detect‘.

sr numeric, the sampling rate of the wave on which detections were run. Default to
‘1‘, which allows users to transform the start and end times before feeding the
data.frame to this function.

path_out character, the path including file name where to store the txt file. Default is
‘’out.txt’‘.

Value

Stores a Raven Lite readable selection table.

load.selection.table load.selection.table

Description

Loads single Raven selection table into a dataframe.

Usage

load.selection.table(path_selection_table)

Arguments

path_selection_table

the path to the file containing the selection table.

18 load.selection.tables

Value

Returns data frame with all selections.

Examples

require(callsync)
require(seewave)
require(tuneR)
path_git = 'https://raw.githubusercontent.com'
path_repo = '/simeonqs/callsync/master/tests/testthat/files'
file_1 = '/2020_10_27_091634.Table.1.selections.txt'
file_2 = '/2020_10_27_132148.Table.1.selections.txt'
url_1 = paste0(path_git, path_repo, file_1)
url_2 = paste0(path_git, path_repo, file_2)
local_file_1 = paste(tempdir(), file_1, sep = '/')
local_file_2 = paste(tempdir(), file_2, sep = '/')
if(!file.exists(local_file_1))

download.file(url_1, destfile = local_file_1, mode = 'wb',)
if(!file.exists(local_file_2))

download.file(url_2, destfile = local_file_2, mode = 'wb')
st = load.selection.tables(path_selection_tables = tempdir())

load.selection.tables load.selection.tables

Description

Loads multiple Raven selection tables into one dataframe. Also adds a column with file-selection

Usage

load.selection.tables(path_selection_tables, recursive = FALSE)

Arguments

path_selection_tables

the path to the folder containing selection tables. Folder should not contain any
other files.

recursive if ‘TRUE‘ lists files recursively before loading, default is ‘FALSE‘.

Value

Returns data frame with all selection tables.

load.selection.tables.audacity 19

load.selection.tables.audacity

load.selection.tables.audacity

Description

Loads multiple Audacity selection tables into one data frame.

Usage

load.selection.tables.audacity(path_selection_tables)

Arguments

path_selection_tables

character, the path to the folder containing selection tables. Folder should not
contain any other txt files.

Value

Returns data frame with all selection tables.

Examples

require(callsync)
require(seewave)
require(tuneR)
path_git = 'https://raw.githubusercontent.com'
path_repo = '/simeonqs/callsync/master/tests/testthat/files'
file_1 = '/audacity/chunk_15_ground_truth.txt'
url_1 = paste0(path_git, path_repo, file_1)
local_dir = paste(tempdir(), 'audacity', sep = '/')
local_file_1 = paste(tempdir(), file_1, sep = '/')
if(!dir.exists(local_dir)) dir.create(local_dir)
if(!file.exists(local_file_1))

download.file(url_1, destfile = local_file_1, mode = 'wb',)
st = load.selection.tables.audacity(path_selection_tables = local_dir)

load.wave load.wave

Description

Wrapper function for ‘readWave‘ from *tuneR*. Also optionally applies ‘ffilter‘ from *seewave*.

20 measure.trace

Usage

load.wave(path_audio_file, from = 0, to = Inf, ffilter_from = NULL)

Arguments

path_audio_file

the path to the .wav file

from time in seconds from where to start the loading of the audio file. Default is ‘0‘
which loads the whole file.

to time in seconds until where to load the audio file. Default is ‘Inf‘ which loads
the whole file.

ffilter_from numeric, frequency in Hz for the high-pass filter. Default is ‘NULL‘, which
does not apply a filter.

Value

Returns an R wave object.

Examples

require(callsync)
require(seewave)
require(tuneR)
path_git = 'https://raw.githubusercontent.com'
path_repo = '/simeonqs/callsync/master/tests/testthat/files'
file_1 = '/wave_1.wav'
url_1 = paste0(path_git, path_repo, file_1)
local_file_1 = paste(tempdir(), file_1, sep = '/')
if(!file.exists(local_file_1))

download.file(url_1, destfile = local_file_1, mode = 'wb',)
wave = load.wave(local_file_1)

measure.trace measure.trace

Description

Takes several measurements on a fundamental frequency trace.

Usage

measure.trace(trace, sr = 44100, hop = 5)

measure.trace.multiple 21

Arguments

trace data frame, e.g., the output of the ‘trace.fund‘ function. Should contain columns
with time = time in seconds, fund = fundamental frequency in Hz and missing
= logical indicating if the fundamental was detected (‘TRUE‘) or interpolated
(‘FALSE‘).

sr sample rate of the wave object used for ‘trace.fund‘.

hop the ‘hop‘ parameter used to generate the trace.

Value

Returns a dataframe with all measurements.

Examples

require(callsync)
require(seewave)
require(tuneR)
path_git = 'https://raw.githubusercontent.com'
path_repo = '/simeonqs/callsync/master/tests/testthat/files'
file_1 = '/wave_1.wav'
url_1 = paste0(path_git, path_repo, file_1)
local_file_1 = paste(tempdir(), file_1, sep = '/')
if(!file.exists(local_file_1))

download.file(url_1, destfile = local_file_1, mode = 'wb',)
wave = readWave(local_file_1)
trace = trace.fund(wave)
result = measure.trace(trace)

measure.trace.multiple

measure.trace.multiple

Description

Takes several measurements on multiple fundamental frequency traces.

Usage

measure.trace.multiple(
traces,
new_waves = NULL,
waves = NULL,
detections = NULL,
sr = NULL,
path_pdf = NULL

)

22 measure.trace.multiple

Arguments

traces a list of data frames, e.g., the output of the ‘trace.fund‘ function. Should contain
columns with time = time in seconds, fund = fundamental frequency in Hz and
missing = logical indicating if the fundamental was detected (‘TRUE‘) or inter-
polated (‘FALSE‘). If the list is named the names will be used as file names in
the output.

new_waves a list of wave objects, should only contain the call.

waves a list of wave objects, should not be resized.

detections the detections.

sr numeric, sample rate of the waves objects used for the traces. Only needed if
‘waves‘ is ‘NULL‘.

path_pdf numeric or ‘NULL‘, where to store the pdf. If ‘NULL‘ no pdf is stored.

Value

Returns a data frame with all measurements.

Examples

Not run:
require(callsync)
require(seewave)
require(tuneR)
path_git = 'https://raw.githubusercontent.com'
path_repo = '/simeonqs/callsync/master/tests/testthat/files'
file_1 = '/wave_1.wav'
file_2 = '/wave_2.wav'
url_1 = paste0(path_git, path_repo, file_1)
url_2 = paste0(path_git, path_repo, file_2)
local_file_1 = paste(tempdir(), file_1, sep = '/')
local_file_2 = paste(tempdir(), file_2, sep = '/')
if(!file.exists(local_file_1))

download.file(url_1, destfile = local_file_1, mode = 'wb',)
if(!file.exists(local_file_2))

download.file(url_2, destfile = local_file_2, mode = 'wb')
all_files = c(local_file_1, local_file_2)
waves = lapply(all_files, load.wave)
new_waves = waves
detections = lapply(waves, call.detect)
traces = lapply(waves, trace.fund)
mt = measure.trace.multiple(traces = traces, waves = waves,

new_waves = new_waves, detections = detections)

End(Not run)

o.to.m 23

o.to.m o.to.m

Description

Transforms a vector into a matrix where it assumes that the vector values are the lower triangular of
the matrix: ‘m[lower.tri(m)] = o‘. It includes 0 on the diagonal.

Usage

o.to.m(o, n = seq(sqrt(length(o) + 1) + 1))

Arguments

o the vector containing the values for the lower triangular (required)
n the names for the rows and columns of the matrix (optional)

Value

Returns a matrix where it assumes that ‘m[lower.tri(m)] = o‘.

Examples

m = matrix(1:9, nrow = 3, ncol = 3)
o = m[lower.tri(m)]
m_new = o.to.m(o)

run.spcc run.spcc

Description

Runs spectrographic cross correlation on multiple wave objects.

Usage

run.spcc(
waves,
freq_range = c(700, 3500),
thr_low = 0.45,
thr_high = 0.6,
wl = 256,
ovl = 250,
method = "sd",
sum_one = TRUE,
mc.cores = 1,
step_size = 10

)

24 run.spcc

Arguments

waves a list of wave objects, e.g., from ‘lapply‘ in combination with ‘load.wave‘ or
‘readWave‘.

freq_range numeric vector of length 2, the frequency range in Hz to return.

thr_low numeric, the lower range (see ‘method‘). Pixels with lower values are set to 0
for noise reduction.

thr_high numeric, the upper range (see ‘method‘). Pixels with higher values are set to
‘thr_high‘.

wl numeric, window length in samples. Default is ‘512‘.

ovl numeric, overlap in samples. Default is ‘450‘.

method character, either ‘sd‘ or ‘max‘. If ‘sd‘, pixels are standardised. If ‘max‘, pixels
are normalised.

sum_one logical, if ‘TRUE‘ pixels are divided by the sum of all pixels, such that they sum
to one.

mc.cores numeric, how many threads to run in parallel. For Windows only one can be
used.

step_size numeric, argument for ‘sliding.pixel.comparison‘ how many pixels should be
moved for each step. Default is ‘10‘.

Value

Matrix with row and columns names equal to the names of the wave list. Diagonal is zeroes. Other
values are the normalised pairwise distances from ‘sliding.pixel.comparison‘.

Examples

require(callsync)
require(seewave)
require(tuneR)
path_git = 'https://raw.githubusercontent.com'
path_repo = '/simeonqs/callsync/master/tests/testthat/files'
file_1 = '/wave_1.wav'
file_2 = '/wave_2.wav'
url_1 = paste0(path_git, path_repo, file_1)
url_2 = paste0(path_git, path_repo, file_2)
local_file_1 = paste(tempdir(), file_1, sep = '/')
local_file_2 = paste(tempdir(), file_2, sep = '/')
if(!file.exists(local_file_1))

download.file(url_1, destfile = local_file_1, mode = 'wb',)
if(!file.exists(local_file_2))

download.file(url_2, destfile = local_file_2, mode = 'wb')
all_files = c(local_file_1, local_file_2)
waves = lapply(all_files, load.wave)
spcc_out = run.spcc(waves)

simple.cc 25

simple.cc simple.cc

Description

Simple cross correlation of two vectors. Uses zero embedding to find optimal overlap. Also has an
option to normalise by the longest vector (divides final difference by length). This version returns
the time difference for best overlap.

Usage

simple.cc(s1, s2, norm = FALSE)

Arguments

s1 the first numeric vector (required)

s2 the second numeric vector (required)

norm if ‘TRUE‘ the final difference is divided by the length of the longest vector

Value

Returns an integer, which is the start of s1 relative to s2. E.g., -1 means that s1 has to be moved one
step back to be aligned with s2.

Examples

s1 = c(0, 0, 0, 1, 1, 2, 0)
s2 = c(0, 0, 2, 2, 3, 0, 0, 0, 0)
offset = simple.cc(s1, s2) # -1
index_s1 = seq(1, length(s1)) + offset # align
plot(s2, type = 'b')
points(index_s1, s1, col = 2, type = 'b')

sliding.pixel.comparison

sliding.pixel.comparison

Description

Can be used to run spectrographic cross correlation. Both spectrograms are zero-padded and slid
over each other. For each step the difference is computed. The function returns the absolute differ-
ence at the point at the minimum (maximal signal overlap).

26 trace.fund

Usage

sliding.pixel.comparison(s1, s2, step_size = 1)

Arguments

s1 numeric matrix, the first spectrogram.

s2 numeric matrix, the second spectrogram.

step_size numeric, how many pixels should be moved for each step. Default is ‘1‘.

Value

Returns the distance at the point of maximal signal overlap.

Examples

require(callsync)
require(seewave)
require(tuneR)
path_git = 'https://raw.githubusercontent.com'
path_repo = '/simeonqs/callsync/master/tests/testthat/files'
file_1 = '/wave_1.wav'
file_2 = '/wave_2.wav'
url_1 = paste0(path_git, path_repo, file_1)
url_2 = paste0(path_git, path_repo, file_2)
local_file_1 = paste(tempdir(), file_1, sep = '/')
local_file_2 = paste(tempdir(), file_2, sep = '/')
if(!file.exists(local_file_1))

download.file(url_1, destfile = local_file_1, mode = 'wb',)
if(!file.exists(local_file_2))

download.file(url_2, destfile = local_file_2, mode = 'wb')
wave_1 = readWave(local_file_1)
wave_2 = readWave(local_file_2)
so_1 = create.spec.object(wave = wave_1, plot_it = FALSE)
so_2 = create.spec.object(wave = wave_2, plot_it = FALSE)
out = sliding.pixel.comparison(so_1, so_2)

trace.fund trace.fund

Description

Traces the fundamental frequency from a wave object. Also applies smoothening to trace.

trace.fund 27

Usage

trace.fund(
wave,
hop = 5,
wl = 200,
freq_lim = c(1.1, 4),
spar = 0.4,
noise_factor = 3.5,
thr = 0.3

)

Arguments

wave wave object, e.g., from ‘load.wave‘ or ‘readWave‘.

hop integer, how many samples to skip for each trace point.

wl integer, window length for the spectrum

freq_lim numeric vector of length 2, frequency in kHz between which to find the funda-
mental

spar numeric between 0-1, for the ‘smooth.spline‘ function

noise_factor numeric, how much louder the fundamental has to be than the noise to be ac-
cepted

thr numeric between 0-1, the fraction of the maximum of the spectrum used to
detect the fundamental

Details

Tracing step is based on a sliding window for which the spectrum is calculated. A threshold is based
on the maximum y value and the first frequency to cross the threshold is considered the fundamental
frequency. If the average hight before the fundamental is higher than ‘noise_factor‘, the detection is
discarded and NA is returned for that window. Smoothing step is based on ‘smooth.spline‘. Finally,
all points outside ‘freq_lim‘ are reset to these limits.

Value

Data frame with time = time in seconds, fund = fundamental frequency in Hz and missing = logical
indicating if the fundamental was detected (‘TRUE‘) or interpolated (‘FALSE‘).

Examples

require(callsync)
require(seewave)
require(tuneR)
path_git = 'https://raw.githubusercontent.com'
path_repo = '/simeonqs/callsync/master/tests/testthat/files'
file_1 = '/wave_1.wav'
url_1 = paste0(path_git, path_repo, file_1)
local_file_1 = paste(tempdir(), file_1, sep = '/')
if(!file.exists(local_file_1))

28 trace.fund

download.file(url_1, destfile = local_file_1, mode = 'wb',)
wave = readWave(local_file_1)
trace = trace.fund(wave)

Index

align, 2

better.spectro, 4

calc.am, 6
calc.fm, 7
calc.perf, 8
call.assign, 9
call.detect, 10
call.detect.multiple, 11
callsync, 13
callsync-package (callsync), 13
create.spec.object, 14

detect.and.assign, 15

export.detections, 17

load.selection.table, 17
load.selection.tables, 18
load.selection.tables.audacity, 19
load.wave, 19

measure.trace, 20
measure.trace.multiple, 21

o.to.m, 23

run.spcc, 23

simple.cc, 25
sliding.pixel.comparison, 25

trace.fund, 26

29

	align
	better.spectro
	calc.am
	calc.fm
	calc.perf
	call.assign
	call.detect
	call.detect.multiple
	callsync
	create.spec.object
	detect.and.assign
	export.detections
	load.selection.table
	load.selection.tables
	load.selection.tables.audacity
	load.wave
	measure.trace
	measure.trace.multiple
	o.to.m
	run.spcc
	simple.cc
	sliding.pixel.comparison
	trace.fund
	Index

