Providing simple access to Boost’s Math functions in R, no compilation required.
You can install the development version of boostmath from GitHub with:
# install.packages("remotes")
::install_github("andrjohns/boostmath") remotes
Or you can install pre-built binaries from R-Universe:
install.packages("boostmath", repos = c("https://andrjohns.r-universe.dev",
"https://cran.r-project.org"))
Functions can be used directly after loading the package:
library(boostmath)
hypergeometric_pFq(c(1, 2.5), c(0.5, 2), 1)
#> [1] 6.675991
ibeta_inv(2.1, 5.2, 0.7)
#> [1] 0.361431
owens_t(2.1, 4.2)
#> [1] 0.00893221
Any Boost Math functions that share the same name as R functions are
sufffixed with _boost
to avoid conflicts:
beta_boost(3, 2)
#> [1] 0.08333333
lgamma_boost(5)
#> [1] 3.178054
Boost’s integration routines are also available for use with R functions:
trapezoidal(function(x) { 1/(5 - 4*cos(x)) }, a = 0, b = 2*pi)
#> [1] 2.094395
gauss_legendre(function(x) { x * x * atan(x) }, a = 0, b = 1, points = 20)
#> [1] 0.2106573
gauss_kronrod(function(x) { exp(-x * x / 2) }, a = 0, b = Inf, points = 15)
#> [1] 1.253314
As well as numerical differentiation by finite-differencing or the complex-step method:
finite_difference_derivative(exp, 1.7)
#> [1] 5.473947
complex_step_derivative(exp, 1.7)
#> [1] 5.473947
The PDF, CDF, log-PDF, log-CDF, and quantile functions for statistical distributions are also exposed:
beta_pdf(0.1, 1.2, 2.1)
#> [1] 1.569287
beta_lpdf(0.1, 1.2, 2.1)
#> [1] 0.4506213
beta_cdf(0.1, 1.2, 2.1)
#> [1] 0.1380638
beta_lcdf(0.1, 1.2, 2.1)
#> [1] -1.98004
beta_quantile(0.5, 1.2, 2.1)
#> [1] 0.3335097