Package ‘bbotk’

October 10, 2025

Title Black-Box Optimization Toolkit
Version 1.7.0

Description Features highly configurable search spaces via the ‘paradox’
package and optimizes every user-defined objective function. The
package includes several optimization algorithms e.g. Random Search,
Iterated Racing, Bayesian Optimization (in 'mlr3mbo') and Hyperband
(in 'mlr3hyperband'). bbotk is the base package of 'mlr3tuning’,
‘mlr3fselect' and 'miesmuschel.

License LGPL-3
URL https://bbotk.mlr-org.com, https://github.com/mlr-org/bbotk

BugReports https://github.com/mlr-org/bbotk/issues

Depends paradox (>=1.0.0), R (>=3.1.0)

Imports checkmate (>=2.0.0), cli, data.table, 1gr, methods, mlr3misc
(>=0.15.1), R6

Suggests adagio, emoa, GenSA, irace (>= 4.0.0), knitr, mirai, nloptr,
processx, progressr, redux, RhpcBLASctl, rush (>= 0.4.0),
testthat (>= 3.0.0)

Config/testthat/edition 3

Config/testthat/parallel false

Encoding UTF-8

Language en-US

NeedsCompilation yes

RoxygenNote 7.3.3

Collate 'Archive.R' 'ArchiveAsync.R' 'ArchiveAsyncFrozen.R'
'ArchiveBatch.R' 'CallbackAsync.R' 'CallbackBatch.R'
'Codomain.R' 'ContextAsync.R' 'ContextBatch.R' 'Objective.R’
'ObjectiveRFun.R' 'ObjectiveRFunDt.R' 'ObjectiveRFunMany.R'
'OptimInstance.R' 'OptimInstance Async.R’

'OptimInstance AsyncMultiCrit.R'
'OptimInstance AsyncSingleCrit.R' 'OptimInstanceBatch.R'
'OptimInstanceBatchMultiCrit.R’

https://bbotk.mlr-org.com
https://github.com/mlr-org/bbotk
https://github.com/mlr-org/bbotk/issues

2 Contents

'OptimInstanceBatchSingleCrit.R' 'OptimInstanceMultiCrit.R'
'OptimInstanceSingleCrit.R' 'mlr_optimizers.R' 'Optimizer.R’'
'OptimizerAsync.R' 'OptimizerAsyncDesignPoints.R'
'OptimizerAsyncGridSearch.R' 'OptimizerAsyncRandomSearch.R’
'OptimizerBatch.R' 'OptimizerBatchChain.R'
'OptimizerBatchCmaes.R' 'OptimizerBatchDesignPoints.R'
'OptimizerBatchFocusSearch.R' 'OptimizerBatchGenSA.R'
'OptimizerBatchGridSearch.R' 'OptimizerBatchlrace.R'
'OptimizerBatchLocalSearch.R' 'OptimizerBatchNLoptr.R'
'OptimizerBatchRandomSearch.R' Progressor.R’
'mlr_terminators.R' '"Terminator.R' '"TerminatorClockTime.R'
"TerminatorCombo.R' "TerminatorEvals.R" "TerminatorNone.R'
"TerminatorPerfReached.R' "TerminatorRunTime.R'
"TerminatorStagnation.R' "TerminatorStagnationBatch.R'
"TerminatorStagnationHypervolume.R' 'as_terminator.R’
'assertions.R' 'bb_optimize.R' 'bbotk_reflections.R’
'bibentries.R' 'helper.R' 'local_search.R' 'mlr_callbacks.R'
'nds_selection.R' 'reexport.R' 'sugar.R' 'worker_loops.R'
'zzz.R'

Author Marc Becker [cre, aut] (ORCID: <https://orcid.org/0000-0002-8115-0400>),
Jakob Richter [aut] (ORCID: <https://orcid.org/0000-0003-4481-5554>),
Michel Lang [aut] (ORCID: <https://orcid.org/0000-0001-9754-0393>),

Bernd Bischl [aut] (ORCID: <https://orcid.org/0000-0001-6002-6980>),
Martin Binder [aut],
Olaf Mersmann [ctb]

Maintainer Marc Becker <marcbecker@posteo.de>
Repository CRAN
Date/Publication 2025-10-10 10:30:09 UTC

Contents
bbotk-package 4
Archive e e e 5
ATChiVEASYNC o e e e e e e e e e 7
ArchiveAsyncFrozen 11
ArchiveBatch e e 14
aS_tErmMINAtOr o e e e e e e e e e 16
bbotk.async_freeze_archive L o 17
bbotk.backup e 17
bb_optimize e 18
branin L L e e 20
CallbackAsSync o o e e 21
CallbackBatch e 22
callback_async L e 23
callback_batch e 25

Codomain e e 27

https://orcid.org/0000-0002-8115-0400
https://orcid.org/0000-0003-4481-5554
https://orcid.org/0000-0001-9754-0393
https://orcid.org/0000-0001-6002-6980

Contents

3
CONEXLASYNC .« . v v v v e 29
ContextBatch e e 30
is_dominated e 32
local_search e e 32
local_search_control 33
MIr_OptiMIZers o o v i it e e e e e e e e e 34
mlr_optimizers_async_design_pointso e 35
mlr_optimizers_async_grid_search o 36
mlr_optimizers_async_random_search L. 37
mlr_optimizers_chaino 38
mlr_optimizers_Cmaes oot e e e e 41
mlr_optimizers_design_points e 42
mlr_optimizers_focus_search 44
mlr_Optimizers_gensa it e e e e e e e 46
mlr_optimizers_grid_search 48
mlr_OptimizZers_iraCe« . v v v v v it e e e e e e e e 50
mlr_optimizers_local_search L oo 54
mlr_optimizers_nloptr e e e e 55
mlr_optimizers_random_search oL oo L 57
mIr_terminators e e e e e e e e e 59
mlr_terminators_clock_time 60
mlr_terminators_combo e e e e e e e e 61
mlr_terminators_evals e e 63
milr_terminatorS_NONE v v v v o e e e e e e e 65
mlr_terminators_perf_reached 66
mlr_terminators_run_time o e e e e e e e e e e e e 68
mlr_terminators_stagnation e 69
mlr_terminators_stagnation_batch oL 0oL 71
mlr_terminators_stagnation_hypervolume 72
Objective e e 73
ObjectiveRFun e 77
ObjectiveRFunDt e 79
ObjectiveRFunMany L 81
Ol . o e 83
OI_ASYNC .+« ¢ v v v v v e e e e e e e e e e 84
OPL o o o e e e 85
Optimlnstance L e 85
OptimInStanceASYNC e e e 88
OptimInstanceAsyncMultiCrit 90
OptimInstanceAsyncSingleCrit Lo oL 92
OptimInstanceBatch L 94
OptimInstanceBatchMultiCrit 96
OptimInstanceBatchSingleCrit L . 98
OptimInstanceMultiCrit 99
OptimInstanceSingleCrit e 100
OpHMIZETr o e e e e e 102
OptimizerASynC e e 104

OptimizerBatch 105

4 bbotk-package

Progressor e e e 106
shrink_ps L e e e 107
terminated_€ITOr e e e e e e e 108
Terminator e e e e e e 108
trafo_XS e s 111
15500 Y 111

Index 113

bbotk-package bbotk: Black-Box Optimization Toolkit
Description

Features highly configurable search spaces via the ’paradox’ package and optimizes every user-
defined objective function. The package includes several optimization algorithms e.g. Random
Search, Iterated Racing, Bayesian Optimization (in 'mlr3mbo’) and Hyperband (in *'mlr3hyperband’).
bbotk is the base package of 'mlr3tuning’, *mlr3fselect’ and *miesmuschel’.

Package Options

* "bbotk.debug": If set to TRUE, asynchronous optimization is run in the main process.

* "bbotk.tiny_logging”: If set to TRUE, the logging is simplified to only show points and
results. NA values are removed.

Author(s)
Maintainer: Marc Becker <marcbecker@posteo.de> (ORCID)

Authors:

¢ Jakob Richter <jakob1richter@gmail.com> (ORCID)
* Michel Lang <michellang@gmail.com> (ORCID)

* Bernd Bischl <bernd_bischl@gmx.net> (ORCID)

e Martin Binder <martin.binder@mail.com>

Other contributors:

¢ Olaf Mersmann <olafm@statistik.tu-dortmund.de> [contributor]

See Also
Useful links:

* https://bbotk.mlr-org.com
* https://github.com/mlr-org/bbotk
* Report bugs at https://github.com/mlr-org/bbotk/issues

https://orcid.org/0000-0002-8115-0400
https://orcid.org/0000-0003-4481-5554
https://orcid.org/0000-0001-9754-0393
https://orcid.org/0000-0001-6002-6980
https://bbotk.mlr-org.com
https://github.com/mlr-org/bbotk
https://github.com/mlr-org/bbotk/issues

Archive 5

Archive Data Storage

Description

The ‘Archive® class stores all evaluated points and performance scores

Details

The Archive is an abstract class that implements the base functionality each archive must provide.

Public fields
search_space (paradox::ParamSet)
Specification of the search space for the Optimizer.

codomain (Codomain)
Codomain of objective function.
start_time (POSIXct)
Time stamp of when the optimization started. The time is set by the Optimizer.

check_values (logical(1))
Determines if points and results are checked for validity.

Active bindings
label (character(1))
Label for this object. Can be used in tables, plot and text output instead of the ID.

man (character(1))
String in the format [pkg]: :[topic] pointing to a manual page for this object. The refer-
enced help package can be opened via method $help().

cols_x (character())
Column names of search space parameters.

cols_y (character())
Column names of codomain target parameters.

Methods

Public methods:
* Archive$new()
e Archive$format()
* Archive$print()
e Archive$clear()
e Archive$help()
e Archive$clone()

Method new(): Creates a new instance of this R6 class.

Archive

Usage:

Archive$new(
search_space,
codomain,
check_values = FALSE,
label = NA_character_,
man = NA_character_

)

Arguments:

search_space (paradox::ParamSet)
Specifies the search space for the Optimizer. The paradox::ParamSet describes either a
subset of the domain of the Objective or it describes a set of parameters together with
a trafo function that transforms values from the search space to values of the domain.
Depending on the context, this value defaults to the domain of the objective.

codomain (paradox::ParamSet)
Specifies codomain of function. Most importantly the tags of each output "Parameter” de-
fine whether it should be minimized or maximized. The default is to minimize each com-
ponent.

check_values (logical(1))
Should x-values that are added to the archive be checked for validity? Search space that is
logged into archive.

label (character(1))
Label for this object. Can be used in tables, plot and text output instead of the ID.

man (character(1))
String in the format [pkg]: : [topic] pointing to a manual page for this object. The refer-
enced help package can be opened via method $help().
Method format(): Helper for print outputs.

Usage:
Archive$format(...)

Arguments:

... (ignored).

Method print(): Printer.

Usage:
Archive$print()

Arguments:

... (ignored).

Method clear(): Clear all evaluation results from archive.
Usage:
Archive$clear()

Method help(): Opens the corresponding help page referenced by field $man.
Usage:

ArchiveAsync 7

Archive$help()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Archive$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

ArchiveAsync Rush Data Storage

Description

The ArchiveAsync stores all evaluated points and performance scores in a rush::Rush data base.

S3 Methods

e as.data.table(archive)
ArchiveAsync -> data. table: :data. table()
Returns a tabular view of all performed function calls of the Objective. The x_domain column

is unnested to separate columns.

Super class

bbotk: :Archive -> ArchiveAsync

Public fields

rush (Rush)
Rush controller for parallel optimization.

Active bindings
data (data.table::data.table)
Data table with all finished points.

gueued_data (data.table::data.table)
Data table with all queued points.

running_data (data.table::data.table)
Data table with all running points.

finished_data (data.table::data.table)
Data table with all finished points.

failed_data (data.table::data.table)
Data table with all failed points.

n_queued (integer(1))
Number of queued points.

8 ArchiveAsync

n_running (integer(1))
Number of running points.

n_finished (integer(1))
Number of finished points.

n_failed (integer(1))
Number of failed points.

n_evals (integer(1))
Number of evaluations stored in the archive.

Methods

Public methods:

* ArchiveAsync$new()

* ArchiveAsync$push_points()

e ArchiveAsync$pop_point()

e ArchiveAsync$push_running_point()
e ArchiveAsync$push_result()

e ArchiveAsync$push_failed_point()
* ArchiveAsync$data_with_state()

e ArchiveAsync$best()

* ArchiveAsync$nds_selection()

e ArchiveAsync$clear()

* ArchiveAsync$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
ArchiveAsync$new(search_space, codomain, check_values = FALSE, rush)

Arguments:

search_space (paradox::ParamSet)
Specifies the search space for the Optimizer. The paradox::ParamSet describes either a
subset of the domain of the Objective or it describes a set of parameters together with
a trafo function that transforms values from the search space to values of the domain.
Depending on the context, this value defaults to the domain of the objective.

codomain (paradox::ParamSet)
Specifies codomain of function. Most importantly the tags of each output "Parameter" de-
fine whether it should be minimized or maximized. The default is to minimize each com-
ponent.

check_values (logical(1))
Should points before the evaluation and the results be checked for validity?

rush (Rush)
If a rush instance is supplied, the tuning runs without batches.

Method push_points(): Push queued points to the archive.
Usage:

ArchiveAsync

ArchiveAsync$push_points(xss)

Arguments:

xss (list of named 1ist())
List of named lists of point values.
Method pop_point(): Pop a point from the queue.

Usage:
ArchiveAsync$pop_point()

Method push_running_point(): Push running point to the archive.

Usage:
ArchiveAsync$push_running_point(xs, extra = NULL)
Arguments:

xs (named list)
Named list of point values.

extra (list())
Named list of additional information.

Method push_result(): Push result to the archive.

Usage:

ArchiveAsync$push_result(key, ys, x_domain, extra = NULL)

Arguments:

key (character())
Key of the point.
ys (list())
Named list of results.
x_domain (list())
Named list of transformed point values.

extra (list())
Named list of additional information.

Method push_failed_point(): Push failed point to the archive.

Usage:
ArchiveAsync$push_failed_point(key, message)

Arguments:

key (character())
Key of the point.
message (character())
Error message.

Method data_with_state(): Fetch points with a specific state.

Usage:

10 ArchiveAsync

ArchiveAsync$data_with_state(
fields = c("xs", "ys", "xs_extra”, "worker_extra", "ys_extra”, "condition"),
states = c("queued”, "running”, "finished", "failed"),
reset_cache = FALSE

)
Arguments:

fields (character())
Fields to fetch. Defaultsto c("xs", "ys", "xs_extra", "worker_extra", "ys_extra").

states (character())
States of the tasks to be fetched. Defaults to c("queued”, "running”, "finished”,
"failed").

reset_cache (logical(1))
Whether to reset the cache of the finished points.

Method best(): Returns the best scoring evaluation(s). For single-crit optimization, the solution
that minimizes / maximizes the objective function. For multi-crit optimization, the Pareto set /
front.

Usage:

ArchiveAsync$best(n_select = 1, ties_method = "first")

Arguments:

n_select (integer(1L))
Amount of points to select. Ignored for multi-crit optimization.

ties_method (character(1L))
Method to break ties when multiple points have the same score. Either "first” (default) or
"random”. Ignored for multi-crit optimization. If n_select > 1L, the tie method is ignored
and the first point is returned.

Returns: data.table::data.table()

Method nds_selection(): Calculate best points w.r.t. non dominated sorting with hypervol-
ume contribution.

Usage:
ArchiveAsync$nds_selection(n_select = 1, ref_point = NULL)
Arguments:

n_select (integer(1L))
Amount of points to select.

ref_point (numeric())
Reference point for hypervolume.

Returns: data.table::data.table()

Method clear(): Clear all evaluation results from archive.

Usage:
ArchiveAsync$clear()

Method clone(): The objects of this class are cloneable with this method.

ArchiveAsyncFrozen 11

Usage:
ArchiveAsync$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

ArchiveAsyncFrozen Frozen Rush Data Storage

Description

Freezes the Redis data base of an ArchiveAsync to a data.table::data.table(). No further
points can be added to the archive but the data can be accessed and analyzed. Useful when the Redis
data base is not permanently available. Use the callback bbotk.async_freeze_archive to freeze the
archive after the optimization has finished.

S3 Methods

e as.data.table(archive)
ArchiveAsync -> data.table: :data.table()
Returns a tabular view of all performed function calls of the Objective. The x_domain column
is unnested to separate columns.

Super classes

bbotk: :Archive -> bbotk: :ArchiveAsync -> ArchiveAsyncFrozen

Active bindings
data (data.table::data.table)
Data table with all finished points.

queued_data (data.table::data.table)
Data table with all queued points.

running_data (data.table::data.table)
Data table with all running points.

finished_data (data.table::data.table)
Data table with all finished points.

failed_data (data.table::data.table)
Data table with all failed points.

n_queued (integer(1))
Number of queued points.

n_running (integer(1))
Number of running points.

n_finished (integer(1))
Number of finished points.

12 ArchiveAsyncFrozen

n_failed (integer(1))
Number of failed points.

n_evals (integer(1))
Number of evaluations stored in the archive.

Methods
Public methods:

* ArchiveAsyncFrozen$new()

e ArchiveAsyncFrozen$push_points()

* ArchiveAsyncFrozen$pop_point()

* ArchiveAsyncFrozen$push_running_point()
e ArchiveAsyncFrozen$push_result()

* ArchiveAsyncFrozen$push_failed_point()
ArchiveAsyncFrozen$data_with_state()
ArchiveAsyncFrozen$clear()

ArchiveAsyncFrozen$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
ArchiveAsyncFrozen$new(archive)
Arguments:

archive (ArchiveAsync)
The archive to freeze.

Method push_points(): Push queued points to the archive.
Usage:
ArchiveAsyncFrozen$push_points(xss)
Arguments:

xss (list of named 1list())
List of named lists of point values.

Method pop_point(): Pop a point from the queue.

Usage:
ArchiveAsyncFrozen$pop_point ()

Method push_running_point(): Push running point to the archive.

Usage:
ArchiveAsyncFrozen$push_running_point(xs, extra = NULL)

Arguments:

xs (named list)
Named list of point values.

extra (list())
Named list of additional information.

ArchiveAsyncFrozen 13

Method push_result(): Push result to the archive.
Usage:
ArchiveAsyncFrozen$push_result(key, ys, x_domain, extra = NULL)
Arguments:
key (character())
Key of the point.
ys (list())
Named list of results.
x_domain (list())
Named list of transformed point values.

extra (list())
Named list of additional information.

Method push_failed_point(): Push failed point to the archive.
Usage:
ArchiveAsyncFrozen$push_failed_point(key, message)
Arguments:
key (character())
Key of the point.
message (character())
Error message.

Method data_with_state(): Fetch points with a specific state.

Usage:
ArchiveAsyncFrozen$data_with_state(
fields = c("xs", "ys", "xs_extra”, "worker_extra"”, "ys_extra”, "condition"),

states = c("queued”, "running”, "finished", "failed"),
reset_cache = FALSE

)

Arguments:

fields (character())
Fields to fetch. Defaultsto c("xs"”, "ys", "xs_extra”, "worker_extra", "ys_extra").

states (character())
States of the tasks to be fetched. Defaults to c("queued”, "running"”, "finished"”,
"failed").

reset_cache (logical(1))
Whether to reset the cache of the finished points.

Method clear(): Clear all evaluation results from archive.
Usage:
ArchiveAsyncFrozen$clear()
Method clone(): The objects of this class are cloneable with this method.
Usage:
ArchiveAsyncFrozen$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

14 ArchiveBatch

ArchiveBatch Data Table Storage

Description

The ArchiveBatch stores all evaluated points and performance scores in a data. table: :data. table().

S3 Methods

* as.data.table(archive)
ArchiveBatch -> data. table: :data.table()
Returns a tabular view of all performed function calls of the Objective. The x_domain column
is unnested to separate columns.

Super class

bbotk: :Archive -> ArchiveBatch

Public fields
data (data.table::data.table)
Contains all performed Objective function calls.

data_extra (named list)
Data created by specific Optimizers that does not relate to any individual function evaluation
and can therefore not be held in $data. Every optimizer should create and refer to its own
entry in this list, named by its class().

Active bindings
n_evals (integer(1))
Number of evaluations stored in the archive.

n_batch (integer(1))
Number of batches stored in the archive.

Methods

Public methods:
e ArchiveBatch$new()
* ArchiveBatch$add_evals()
¢ ArchiveBatch$best()
e ArchiveBatch$nds_selection()
e ArchiveBatch$clear()
¢ ArchiveBatch$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

ArchiveBatch 15

ArchiveBatch$new(search_space, codomain, check_values = FALSE)

Arguments:

search_space (paradox::ParamSet)
Specifies the search space for the Optimizer. The paradox::ParamSet describes either a
subset of the domain of the Objective or it describes a set of parameters together with
a trafo function that transforms values from the search space to values of the domain.
Depending on the context, this value defaults to the domain of the objective.

codomain (paradox::ParamSet)
Specifies codomain of function. Most importantly the tags of each output "Parameter” de-
fine whether it should be minimized or maximized. The default is to minimize each com-
ponent.

check_values (logical(1))
Should x-values that are added to the archive be checked for validity? Search space that is
logged into archive.

Method add_evals(): Adds function evaluations to the archive table.

Usage:
ArchiveBatch$add_evals(xdt, xss_trafoed = NULL, ydt)

Arguments:
xdt (data.table::data.table())
Set of untransformed points / points from the search space. One point per row, e.g. data. table(x1
=c(1, 3), x2=c(2, 4)). Column names have to match ids of the search_space. How-
ever, xdt can contain additional columns.
xss_trafoed (1list())
Transformed point(s) in the domain space.
ydt (data.table::data.table())
Optimal outcome.

Method best(): Returns the best scoring evaluation(s). For single-crit optimization, the solution
that minimizes / maximizes the objective function. For multi-crit optimization, the Pareto set /
front.

Usage:

ArchiveBatch$best(batch = NULL, n_select = 1L, ties_method = "first")

Arguments:

batch (integer())
The batch number(s) to limit the best results to. Default is all batches.

n_select (integer(1L))
Amount of points to select. Ignored for multi-crit optimization.

ties_method (character(1L))
Method to break ties when multiple points have the same score. Either "first” (default) or
"random”. Ignored for multi-crit optimization. If n_select > 1L, the tie method is ignored
and the first point is returned.

Returns: data.table::data.table()

Method nds_selection(): Calculate best points w.r.t. non dominated sorting with hypervol-
ume contribution.

16 as_terminator

Usage:
ArchiveBatch$nds_selection(batch = NULL, n_select = 1, ref_point = NULL)
Arguments:

batch (integer())
The batch number(s) to limit the best points to. Default is all batches.

n_select (integer(1L))
Amount of points to select.

ref_point (numeric())
Reference point for hypervolume.

Returns: data.table::data.table()

Method clear(): Clear all evaluation results from archive.

Usage:
ArchiveBatch$clear()

Method clone(): The objects of this class are cloneable with this method.

Usage:
ArchiveBatch$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

as_terminator Convert to a Terminator

Description

Convert object to a Terminator or a list of Terminator.

Usage

as_terminator(x, ...)

S3 method for class 'Terminator'
as_terminator(x, clone = FALSE, ...)

as_terminators(x, ...)

Default S3 method:
as_terminators(x, ...)

S3 method for class 'list'
as_terminators(x, ...)

bbotk.async_freeze_archive 17

Arguments
X (any)
Object to convert.
(any)
Additional arguments.
clone (logical(1))

If TRUE, ensures that the returned object is not the same as the input x.

bbotk.async_freeze_archive
Freeze Archive Callback

Description

This CallbackAsync freezes the ArchiveAsync to ArchiveAsyncFrozen after the optimization has
finished.

Examples

clbk("bbotk.async_freeze_archive")

bbotk.backup Backup Archive Callback

Description

This CallbackBatch writes the Archive after each batch to disk.

Examples

clbk("bbotk.backup”, path = "backup.rds")

18 bb_optimize

bb_optimize Black-Box Optimization

Description

This function optimizes a function or Objective with a given method.

Usage

bb_optimize(
X,
method = "random_search”,
max_evals = 1000,
max_time = NULL,

)

S3 method for class '~function™'
bb_optimize(

X,

method = "random_search”,

max_evals = 1000,

max_time = NULL,

lower = NULL,

upper = NULL,

maximize = FALSE,

)

S3 method for class 'Objective'
bb_optimize(
X,
method = "random_search”,
max_evals = 1000,
max_time = NULL,
search_space = NULL,

Arguments
X (function | Objective).
method (character (1) | Optimizer)
Key to retrieve optimizer from mlr_optimizers dictionary or Optimizer.
max_evals (integer(1))

Number of allowed evaluations.

bb_optimize

max_time

lower

upper

maximize

search_space

Value

list of

19

(integer(1))

Maximum allowed time in seconds.

(named list())

Named arguments passed to objective function. Ignored if Objective is opti-
mized.

(numeric())
Lower bounds on the parameters. If named, names are used to create the domain.

(numeric())

Upper bounds on the parameters.

(logical())

Logical vector used to create the codomain e.g. ¢(TRUE, FALSE) -> ps(yl =
p_dbl(tags = "maximize"), y2 = pd_dbl(tags = "minimize")). If named, names
are used to create the codomain.

(paradox::ParamSet).

e "par” - Best found parameters

e "value" - Optimal outcome

* "instance” - OptimInstanceBatchSingleCrit | OptimInstanceBatchMultiCrit

Note

If both max_evals and max_time are NULL, TerminatorNone is used. This is useful if the Optimizer
can terminate itself. If both are given, TerminatorCombo is created and the optimization stops if the
time or evaluation budget is exhausted.

Examples

function and bounds
fun = function(xs) {
-(xs[[11]1 - 2)*2 - (xs[[2]1] + 3)*2 + 10

3

bb_optimize(fun, lower = c(-10, -5), upper

c(19, 5), max_evals = 10)

function and constant
fun = function(xs, c) {

-(xs[[1]1] - 2)*2 - (xs[[2]1] + 3)*2 + ¢

}

bb_optimize(fun, lower = c(-10, -5), upper = c(10, 5), max_evals = 10, c = 1)

objective

fun = function(xs) {
c(z = ~(xs[[11] - 2)*2 - (xs[[21] + 3)*2 + 10)

}

20

branin

define domain and codomain using a ~ParamSet~ from paradox
domain = ps(x1 = p_dbl(-10, 10), x2 = p_dbl(-5, 5))

codomain = ps(z = p_dbl(tags = "minimize"))

objective = ObjectiveRFun$new(fun, domain, codomain)

bb_optimize(objective, method = "random_search”, max_evals = 10)
branin Branin Function
Description

Us

Classic 2-D Branin function with noise branin(x1, x2, noise) and Branin function with fidelity
parameter branin_wu(x1, x2, fidelity).

age

branin(x1, x2, noise = 0)

branin_wu(x1, x2, fidelity)

Arguments
x1 (numeric()).
X2 (numeric()).
noise (numeric()).
fidelity (numeric()).
Value
numeric()
Source

Wu J, Toscano-Palmerin S, Frazier PI, Wilson AG (2019). “Practical Multi-fidelity Bayesian Opti-
mization for Hyperparameter Tuning.” 1903.04703.

Examples

branin(x1 = 12, x2 = 2, noise = 0.05)
branin_wu(x1 = 12, x2 = 2, fidelity = 1)

CallbackAsync 21

CallbackAsync Create Asynchronous Optimization Callback

Description

Specialized mlr3misc::Callback for asynchronous optimization. Callbacks allow to customize the
behavior of processes in bbotk. The callback_async() function creates a CallbackAsync. Pre-
defined callbacks are stored in the dictionary mlr_callbacks and can be retrieved with clbk(). For
more information on optimization callbacks see callback_async().

Super class

mlr3misc::Callback -> CallbackAsync

Public fields

on_optimization_begin (function())

Stage called at the beginning of the optimization in the main process. Called in Optimizer$optimize().

on_worker_begin (function())
Stage called at the beginning of the optimization on the worker. Called in the worker loop.

on_optimizer_before_eval (function())
Stage called after the optimizer proposes points. Called in OptimInstance$.eval_point().

on_optimizer_after_eval (function())
Stage called after points are evaluated. Called in OptimInstance$.eval_point().

on_worker_end (function())
Stage called at the end of the optimization on the worker. Called in the worker loop.

on_result_begin (function())
Stage called before the results are written. Called in OptimInstance$assign_result().

on_result_end (function())
Stage called after the results are written. Called in OptimInstance$assign_result().

on_optimization_end (function())

Stage called at the end of the optimization in the main process. Called in Optimizer$optimize().

Methods

Public methods:
e CallbackAsync$clone()

Method clone(): The objects of this class are cloneable with this method.
Usage:
CallbackAsync$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

22 CallbackBatch

CallbackBatch Create Batch Optimization Callback

Description

Specialized mlr3misc::Callback for batch optimization. Callbacks allow to customize the behav-
ior of processes in bbotk. The callback_batch() function creates a CallbackBatch. Predefined
callbacks are stored in the dictionary mlr_callbacks and can be retrieved with clbk(). For more
information on optimization callbacks see callback_batch().

Super class

mlr3misc::Callback -> CallbackBatch

Public fields

on_optimization_begin (function())
Stage called at the beginning of the optimization. Called in Optimizer$optimize().

on_optimizer_before_eval (function())
Stage called after the optimizer proposes points. Called in OptimInstance$eval_batch().

on_optimizer_after_eval (function())
Stage called after points are evaluated. Called in OptimInstance$eval_batch().

on_result_begin (function())
Stage called before the results are written. Called in OptimInstance$assign_result().

on_result_end (function())
Stage called after the results are written. Called in OptimInstance$assign_result().

on_optimization_end (function())
Stage called at the end of the optimization. Called in Optimizer$optimize().

Methods

Public methods:
e CallbackBatch$clone()

Method clone(): The objects of this class are cloneable with this method.

Usage:
CallbackBatch$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

callback_async 23

Examples

write archive to disk
callback_batch("bbotk.backup”,
on_optimization_end = function(callback, context) {
saveRDS(context$instance$archive, "archive.rds")
}
)

callback_async Create Asynchronous Optimization Callback

Description

Function to create a CallbackAsync.

Optimization callbacks can be called from different stages of optimization process. The stages are
prefixed with on_x.

Start Optimization
- on_optimization_begin
Start Worker
- on_worker_begin
Start Optimization on Worker
- on_optimizer_before_eval
- on_optimizer_after_eval
End Optimization on Worker
- on_worker_end
End Worker
- on_result_begin
- on_result_end
- on_optimization_end
End Optimization

See also the section on parameters for more information on the stages. A optimization callback
works with ContextAsync.

Usage

callback_async(
id,
label = NA_character_,
man = NA_character_,
on_optimization_begin = NULL,
on_worker_begin = NULL,
on_optimizer_before_eval = NULL,
on_optimizer_after_eval = NULL,
on_worker_end = NULL,

24 callback_async

on_result_begin = NULL,
on_result_end = NULL,
on_result = NULL,
on_optimization_end = NULL

)
Arguments
id (character(1))
Identifier for the new instance.
label (character(1))
Label for the new instance.
man (character(1))

String in the format [pkg]: : [topic] pointing to a manual page for this object.
The referenced help package can be opened via method $help().
on_optimization_begin
(function())
Stage called at the beginning of the optimization in the main process. Called
in Optimizer$optimize(). The functions must have two arguments named
callback and context.
on_worker_begin
(function())
Stage called at the beginning of the optimization on the worker. Called in the
worker loop. The functions must have two arguments named callback and
context.
on_optimizer_before_eval
(function())
Stage called after the optimizer proposes points. Called in OptimInstance$.eval_point().
The functions must have two arguments named callback and context. The ar-
gument of instance$.eval_point(xs) and xs_trafoed and extra are avail-
able in the context. Or xs and xs_trafoed of instance$.eval_queue() are
available in the context.
on_optimizer_after_eval
(function())
Stage called after points are evaluated. Called in OptimInstance$.eval_point().
The functions must have two arguments named callback and context. The
outcome y is available in the context.

on_worker_end (function())
Stage called at the end of the optimization on the worker. Called in the worker
loop. The functions must have two arguments named callback and context.
on_result_begin
(function())
Stage called before result are written. Called in OptimInstance$assign_result().
The functions must have two arguments named callback and context. The ar-
guments of $.assign_result(xdt, y, extra) are available in the context.

on_result_end (function())
Stage called after result are written. Called in OptimInstance$assign_result().

callback_batch 25

The functions must have two arguments named callback and context. The fi-
nal result instance$result is available in the context.

on_result (function())
Deprecated. Use on_result_end instead. Stage called after result are written.
Called in OptimInstance$assign_result(). The functions must have two
arguments named callback and context.

on_optimization_end
(function())
Stage called at the end of the optimization in the main process. Called in
Optimizer$optimize(). The functions must have two arguments named callback
and context.

Details

A callback can write data to its state ($state), e.g. settings that affect the callback itself. The
ContextAsync allows to modify the instance, archive, optimizer and final result.

callback_batch Create Batch Optimization Callback

Description

Function to create a CallbackBatch.

Optimization callbacks can be called from different stages of optimization process. The stages are
prefixed with on_x.

Start Optimization
- on_optimization_begin
Start Optimizer Batch
- on_optimizer_before_eval
- on_optimizer_after_eval
End Optimizer Batch
- on_result_begin
- on_result_end
- on_optimization_end
End Optimization

See also the section on parameters for more information on the stages. A optimization callback
works with ContextBatch.

Usage

callback_batch(
id,
label = NA_character_,
man = NA_character_,

callback batch

on_optimization_begin = NULL,
on_optimizer_before_eval = NULL,
on_optimizer_after_eval = NULL,

on_optimization_end = NULL

(character(1))
Identifier for the new instance.

(character(1))
Label for the new instance.

26
on_result_begin = NULL,
on_result_end = NULL,
on_result = NULL,
)
Arguments
id
label
man

(character(1))
String in the format [pkg]: : [topic] pointing to a manual page for this object.
The referenced help package can be opened via method $help().

on_optimization_begin

(function())
Stage called at the beginning of the optimization. Called in Optimizer$optimize().
The functions must have two arguments named callback and context.

on_optimizer_before_eval

(function())

Stage called after the optimizer proposes points. Called in OptimInstance$eval_batch().
The functions must have two arguments named callback and context. The ar-

gument of $eval_batch(xdt) is available in context.

on_optimizer_after_eval

on_result_begin

on_result_end

on_result

(function())

Stage called after points are evaluated. Called in OptimInstance$eval_batch().
The functions must have two arguments named callback and context. The
new points and outcomes in instance$archive are available in context.

(function())

Stage called before result are written to the instance. Called in OptimInstance$assign_result().
The functions must have two arguments named callback and context. The ar-

guments of $assign_result(xdt, y, extra) are available in context.

(function())

Stage called after result are written to the instance. Called in OptimInstance$assign_result().
The functions must have two arguments named callback and context. The fi-

nal result instance$result is available in context.

(function())

Deprecated. Use on_result_end instead. Stage called after result are written.
Called in OptimInstance$assign_result(). The functions must have two
arguments named callback and context.

Codomain 27

on_optimization_end
(function())
Stage called at the end of the optimization. Called in Optimizer$optimize().
The functions must have two arguments named callback and context.

Details

A callback can write data to its state ($state), e.g. settings that affect the callback itself. The
ContextBatch allows to modify the instance, archive, optimizer and final result.

Examples

write archive to disk
callback_batch("bbotk.backup”,
on_optimization_end = function(callback, context) {
saveRDS(context$instance$archive, "archive.rds")
}
)

Codomain Codomain of Function

Description

A paradox::ParamSet defining the codomain of a function. The parameter set must contain at least
one target parameter tagged with "minimize” or "maximize"”. The codomain may contain extra
parameters which are ignored when calling the Archive methods $best (), $nds_selection() and
$cols_y. This class is usually constructed internally from a paradox::ParamSet when Objective is
initialized.

Super class

paradox: :ParamSet -> Codomain

Active bindings

is_target (named logical())
Position is TRUE for target parameters.

target_length (integer())
Returns number of target parameters.

target_ids (character())
IDs of contained target parameters.

target_tags (named list() of character())
Tags of target parameters.

maximization_to_minimization (integer())
Returns a numeric vector with values -1 and 1. Multiply with the outcome of a maximization
problem to turn it into a minimization problem.

28 Codomain

direction (integer())
Returns 1 for minimization and -1 for maximization. If the codomain contains multiple pa-
rameters an integer vector is returned. Multiply with the outcome of a maximization problem

to turn it into a minimization problem.

Methods
Public methods:

e Codomain$new()
* Codomain$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Codomain$new(params)

Arguments:

params (list())
Named list with which to initialize the codomain. This argument is analogous to para-
dox::ParamSet’s $initialize() params argument.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Codomain$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

define objective function
fun = function(xs) {

c(y = =(xs[[11] - 2)*2 - (xs[[2]]1 + 3)*2 + 10)
3

set domain

domain = ps(
x1 = p_dbl(-10, 10),
x2 = p_dbl(-5, 5)

)

set codomain

codomain = ps(
y = p_dbl(tags = "maximize"),
time = p_dbl()

)

create Objective object
objective = ObjectiveRFun$new(
fun = fun,
domain = domain,

ContextAsync 29

codomain = codomain,

properties = "deterministic”
)
ContextAsync Asynchronous Optimization Context
Description

A CallbackAsync accesses and modifies data during the optimization via the ContextAsync. See
the section on active bindings for a list of modifiable objects. See callback_async() for a list of
stages which access ContextAsync.

Details

Changes to $instance and $optimizer in the stages executed on the workers are not reflected in
the main process.

Super class

mlr3misc::Context -> ContextAsync

Public fields

instance (OptimInstance).
optimizer (Optimizer).

queue logical(1)
Whether the point is from the queue.

Active bindings

xs (list())
The point to be evaluated in instance$.eval_point().

xs_trafoed (list())
The transformed point to be evaluated in instance$.eval_point().

extra (list())
Additional information of the point to be evaluated in instance$.eval_point().

ys (list())
The result of the evaluation in instance$.eval_point().

result_xdt (data.table::data.table)
The xdt passed to instance$assign_result().

result_y (numeric(1))
The y passed to instance$assign_result(). Only available for single criterion optimiza-
tion.

30 ContextBatch

result_ydt (data.table::data.table)
The ydt passed to instance$assign_result(). Only available for multi criterion optimiza-

tion.

result_extra (data.table::data.table)
Additional information about the result passed to instance$assign_result().

result (data.table::data.table)
The result of the optimization in instance$assign_result().

Methods

Public methods:
* ContextAsync$new()

e ContextAsync$clone()
Method new(): Creates a new instance of this R6 class.

Usage:
ContextAsync$new(inst, optimizer)

Arguments:
inst (Optimlnstance).
optimizer (Optimizer).

Method clone(): The objects of this class are cloneable with this method.

Usage:
ContextAsync$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

ContextBatch Batch Optimization Context

Description

A CallbackBatch accesses and modifies data during the optimization via the ContextBatch. See
the section on active bindings for a list of modifiable objects. See callback_batch() for a list of

stages which that ContextBatch.

Super class

mlr3misc: :Context -> ContextBatch

Public fields

instance (OptimlInstance).

optimizer (Optimizer).

ContextBatch 31

Active bindings

xdt (data.table::data.table)
The points of the latest batch in instance$eval_batch(). Contains the values in the search
space i.e. transformations are not yet applied.

result_xdt (data.table::data.table)
The xdt passed to instance$assign_result().

result_y (numeric(1))
The y passed to instance$assign_result(). Only available for single criterion optimiza-
tion.

result_ydt (data.table::data.table)
The ydt passed to instance$assign_result(). Only available for multi criterion optimiza-
tion.

result_extra (data.table::data.table)
Additional information about the result passed to instance$assign_result().

result (data.table::data.table)
The result of the optimization in instance$assign_result().

Methods

Public methods:

e ContextBatch$new()
e ContextBatch$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
ContextBatch$new(inst, optimizer)
Arguments:

inst (Optimlnstance).

optimizer (Optimizer).

Method clone(): The objects of this class are cloneable with this method.

Usage:
ContextBatch$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

32 local search

is_dominated Calculate which points are dominated

Description

Returns which points from a set are dominated by another point in the set.

Usage

is_dominated(ymat)

Arguments
ymat (matrix())
A numeric matrix. Each column (!) contains one point.
local_search Local Search
Description

Runs a local search on the objective function. Somewhat similar to what is used in SMAC for
acquisition function optimization of mixed type search spaces with hierarchical dependencies.

The function always minimizes. If the objective is to be maximized, we handle it by multiplying
with "obj_mult" (which will be -1).

’Currently, automatically applying the search space transformations is not supported, if you need
this, do this yourself in the objective function or use OptimInstanceBatchLocalSearch.

Usage

local_search(
objective,
search_space,
control = local_search_control(),
init_points = NULL

Arguments

objective (function(xdt))
Objective to optimize. The first arg (name ’xdt’ is not enforced) will be a
data.table with (scalar) columns corresponding exactly the search space, in the
same order. The function should must return numeric vector of exactly the same
length as the number of rows in the dt, containing the objective values.

https://github.com/automl/SMAC3/blob/main/smac/acquisition/maximizer/local_search.py

local search_control 33

search_space (paradox::ParamSet)
Search space for decision variables. Must be non-empty, can only contain p_int,
p_dbl, p_fct, p_lgl, all must be bounded.

control (local_search_control)
Control parameters for the local search, generated by local_search_control().

init_points (data.table)
Initial points to start the local search from, same format as described for the
argument of "objective’. Must have as many rows as ’control$n_searches’. If
NULL, we generate "n_searches" random points.

Details

We run "n_searches" in parallel. Each search runs "n_steps" iterations. For each search in every
iteration we generate "n_neighs" neighbors. A neighbor is the current point, but with exactly one
parameter mutated.

Mutation works like this: For num params: we scale to 0,1, add Gaussian noise with sd "mut_sd",
and scale back. We then clip to the lower and upper bounds. For int params: We do the same as
for numeric parameters, but round at the end. For factor params: We sample a new level from the
unused levels of the parameter. For logical params: We flip the bit.

Hierarchical dependencies are handled like this: Only active params can be mutated. After a muta-
tion has happened, we check the conditions of the search space in topological order. If a condition
is not met, we set the param to NA (making it inactive); if all conditions are met for a param, but it
currently has is NA, we set it a random valid value.

After the neighbors are generated, we evaluate them. We go to the best neighbor, or stay at the
current point if the best neighbor is worse.

There is a restart mechanism to avoid local minima. For each search, we keep track of the number of
no-improvement steps. If this number exceeds "stagnate_max", we restart the search with a random
point.

Value

(named list). List with elements:

e ’x’: (list)
The best point found, length and element names and their order correspond exactly to the
search space.

e ’y’: (numeric(1))
The objective value of the best point.

local_search_control Local Search Control

Description

Control parameters for local search optimizer, see local_search() for details.

34 mlr_optimizers

Usage

local_search_control(
minimize = TRUE,
n_searches = 10L,

n_steps = 5L,
n_neighs = 10L,
mut_sd = 0.1,
stagnate_max = 10L
)
Arguments
minimize (logical(1))
Whether to minimize the objective.
n_searches (integer(1))
Number of local searches.
n_steps (integer(1))
Number of steps per local search.
n_neighs (integer(1))
Number of neighbors per local search.
mut_sd (numeric(1))

Standard deviation of the mutation.

stagnate_max (integer(1))

Maximum number of no-improvement steps for a local search before it is ran-
domly restarted.

Value

(local_search_control)
List with control params as S3 object.

mlr_optimizers Dictionary of Optimizer

Description

A simple mlr3misc::Dictionary storing objects of class Optimizer. Each optimizer has an associated
help page, see mlr_optimizer_[id].

This dictionary can get populated with additional optimizer by add-on packages.

For a more convenient way to retrieve and construct optimizer, see opt()/opts().

Format

R6::R6Class object inheriting from mlr3misc::Dictionary.

mlr_optimizers_async_design_points 35

Methods

See mlr3misc::Dictionary.

S3 methods

e as.data.table(dict, ..., objects = FALSE)
mlr3misc::Dictionary -> data. table: :data. table()
Returns a data.table::data.table() with fields "key", "label", "param_classes", "prop-
erties" and "packages" as columns. If objects is set to TRUE, the constructed objects are
returned in the list column named object.

See Also

Sugar functions: opt(), opts()

Examples

as.data.table(mlr_optimizers)
mlr_optimizers$get(”"random_search")
opt("random_search")

mlr_optimizers_async_design_points
Asynchronous Optimization via Design Points

Description
OptimizerAsyncDesignPoints class that implements optimization w.r.t. fixed design points. We
simply search over a set of points fully specified by the ser.

Dictionary
This Optimizer can be instantiated via the dictionary mlr_optimizers or with the associated sugar

function opt ():

mlr_optimizers$get("async_design_points")
opt("async_design_points")
Parameters
design data.table::data.table
Design points to try in search, one per row.
Super classes

bbotk: :Optimizer -> bbotk: :0ptimizerAsync -> OptimizerAsyncDesignPoints

36 mlir_optimizers_async_grid_search

Methods

Public methods:
* OptimizerAsyncDesignPoints$new()
* OptimizerAsyncDesignPoints$optimize()
* OptimizerAsyncDesignPoints$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
OptimizerAsyncDesignPoints$new()

Method optimize(): Starts the asynchronous optimization.

Usage:
OptimizerAsyncDesignPoints$optimize(inst)

Arguments:
inst (Optimlnstance).

Returns: data.table::data.table.

Method clone(): The objects of this class are cloneable with this method.

Usage:
OptimizerAsyncDesignPoints$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

mlr_optimizers_async_grid_search
Asynchronous Optimization via Grid Search

Description

OptimizerAsyncGridSearch class that implements a grid search. The grid is constructed as a
Cartesian product over discretized values per parameter, see paradox: : generate_design_grid().
The points of the grid are evaluated in a random order.

Dictionary

This Optimizer can be instantiated via the dictionary mlr_optimizers or with the associated sugar
function opt():

mlr_optimizers$get("async_grid_search”)
opt("async_grid_search”)

Parameters

batch_size integer(1)
Maximum number of points to try in a batch.

mlr_optimizers_async_random_search 37
Super classes

bbotk: :Optimizer -> bbotk: :OptimizerAsync -> OptimizerAsyncGridSearch

Methods
Public methods:

e OptimizerAsyncGridSearch$new()
e OptimizerAsyncGridSearch$optimize()
e OptimizerAsyncGridSearch$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
OptimizerAsyncGridSearch$new()

Method optimize(): Starts the asynchronous optimization.

Usage:
OptimizerAsyncGridSearch$optimize(inst)

Arguments:
inst (OptimlInstance).

Returns: data.table::data.table.

Method clone(): The objects of this class are cloneable with this method.

Usage:
OptimizerAsyncGridSearch$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Source

Bergstra J, Bengio Y (2012). “Random Search for Hyper-Parameter Optimization.” Journal of Ma-
chine Learning Research, 13(10), 281-305. https://jmlr.csail.mit.edu/papers/v13/bergstrail2a.

html.

mlr_optimizers_async_random_search
Asynchronous Optimization via Random Search

Description

OptimizerAsyncRandomSearch class that implements a simple Random Search.

https://jmlr.csail.mit.edu/papers/v13/bergstra12a.html
https://jmlr.csail.mit.edu/papers/v13/bergstra12a.html

38 mlr_optimizers_chain

Dictionary

This Optimizer can be instantiated via the dictionary mlr_optimizers or with the associated sugar
function opt ():

mlr_optimizers$get("”async_random_search")
opt("async_random_search")

Super classes

bbotk: :Optimizer -> bbotk: :0ptimizerAsync -> OptimizerAsyncRandomSearch

Methods
Public methods:

e OptimizerAsyncRandomSearch$new()
e OptimizerAsyncRandomSearch$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
OptimizerAsyncRandomSearch$new()

Method clone(): The objects of this class are cloneable with this method.
Usage:
OptimizerAsyncRandomSearch$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Source

Bergstra J, Bengio Y (2012). “Random Search for Hyper-Parameter Optimization.” Journal of Ma-
chine Learning Research, 13(10), 281-305. https://jmlr.csail.mit.edu/papers/v13/bergstrail2a.
html.

mlr_optimizers_chain Run Optimizers Sequentially

Description

OptimizerBatchChain allows to run multiple OptimizerBatch sequentially.

For each OptimizerBatch an (optional) additional Terminator can be specified during construc-
tion. While the original Terminator of the OptimInstanceBatch guards the optimization process as
a whole, the additional Terminators guard each individual OptimizerBatch.

The optimization process works as follows: The first OptimizerBatch is run on the OptimInstance-
Batch relying on a TerminatorCombo of the original Terminator of the OptimInstanceBatch and the

https://jmlr.csail.mit.edu/papers/v13/bergstra12a.html
https://jmlr.csail.mit.edu/papers/v13/bergstra12a.html

mlr_optimizers_chain 39

(optional) additional Terminator as passed during construction. Once this TerminatorCombo indi-
cates termination (usually via the additional Terminator), the second OptimizerBatch is run. This
continues for all optimizers unless the original Terminator of the OptimInstanceBatch indicates
termination.

OptimizerBatchChain can also be used for random restarts of the same Optimizer (if applicable)
by setting the Terminator of the OptimInstanceBatch to TerminatorNone and setting identical addi-
tional Terminators during construction.

Dictionary

This Optimizer can be instantiated via the dictionary mlr_optimizers or with the associated sugar
function opt ():

mlr_optimizers$get(”chain”)
opt(”chain™)

Parameters

Parameters are inherited from the individual OptimizerBatch and collected as a paradox::ParamSetCollection
(with set_ids potentially postfixed via _1, _2, ..., if the same OptimizerBatch are used multiple
times).

Progress Bars

$optimize() supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr: :handlers("progress”).

Super classes

bbotk: :Optimizer -> bbotk: :OptimizerBatch -> OptimizerBatchChain

Methods

Public methods:

e OptimizerBatchChain$new()
e OptimizerBatchChain$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
OptimizerBatchChain$new(
optimizers,
terminators = rep(list(NULL), length(optimizers))
)
Arguments:
optimizers (list of Optimizers).
terminators (list of Terminators | NULL).

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress

40 mlr_optimizers_chain

Method clone(): The objects of this class are cloneable with this method.
Usage:
OptimizerBatchChain$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

domain = ps(x = p_dbl(lower = -1, upper = 1))
search_space = ps(x = p_dbl(lower = -1, upper = 1))
codomain = ps(y = p_dbl(tags = "minimize"))

objective_function = function(xs) {
list(y = as.numeric(xs)*2)

}

objective = ObjectiveRFun$new(
fun = objective_function,
domain = domain,
codomain = codomain

terminator = trm("evals”, n_evals = 10)

run optimizers sequentially

instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
search_space = search_space,
terminator = terminator

optimizer = opt(”chain”,
optimizers = list(opt("random_search”), opt("grid_search")),
terminators = list(trm("evals”, n_evals = 5), trm("evals”, n_evals = 5))

)
optimizer$optimize(instance)

random restarts
instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
search_space = search_space,
terminator = trm("none")
)
optimizer = opt(”chain”,
optimizers = list(opt(”gensa”), opt(“gensa”)),
terminators = list(trm("evals”, n_evals = 10), trm("evals”, n_evals = 10))
)

optimizer$optimize(instance)

mlr_optimizers_cmaes 41

mlr_optimizers_cmaes Optimization via Covariance Matrix Adaptation Evolution Strategy

Description

OptimizerBatchCmaes class that implements CMA-ES. Calls adagio: : pureCMAES() from pack-
age adagio. The algorithm is typically applied to search space dimensions between three and fifty.
Lower search space dimensions might crash.

Dictionary

This Optimizer can be instantiated via the dictionary mlr_optimizers or with the associated sugar
function opt ():

mlr_optimizers$get(”cmaes"”)
opt("cmaes")

Parameters

sigma numeric(1)

start_values character(1)
Create "random"” start values or based on "center” of search space? In the latter case, it is
the center of the parameters before a trafo is applied. If set to "custom”, the start values can
be passed via the start parameter.

start numeric()
Custom start values. Only applicable if start_values parameter is set to "custom”.

For the meaning of the control parameters, see adagio: : pureCMAES (). Note that we have removed
all control parameters which refer to the termination of the algorithm and where our terminators
allow to obtain the same behavior.

Progress Bars

$optimize() supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr: :handlers("progress”).

Super classes

bbotk: :Optimizer -> bbotk: :OptimizerBatch -> OptimizerBatchCmaes

Methods
Public methods:

e OptimizerBatchCmaes$new()
e OptimizerBatchCmaes$clone()

Method new(): Creates a new instance of this R6 class.

https://CRAN.R-project.org/package=adagio
https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress

42 mlr_optimizers_design_points

Usage:
OptimizerBatchCmaes$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
OptimizerBatchCmaes$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

if (requireNamespace("adagio”)) {
search_space = domain = ps(
x1 = p_dbl(-10, 10),
x2 = p_dbl(-5, 5)
)

codomain = ps(y = p_dbl(tags = "maximize"))

objective_function = function(xs) {
C(y = -(XS[U]] - 2)"2 - (XS[[Z]] + 3)A2 + 10)
}

objective = ObjectiveRFun$new(
fun = objective_function,
domain = domain,
codomain = codomain)

instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
search_space = search_space,
terminator = trm("evals”, n_evals = 10))

optimizer = opt(“"cmaes”)

modifies the instance by reference
optimizer$optimize(instance)

returns best scoring evaluation
instance$result

allows access of data.table of full path of all evaluations
as.data.table(instance$archive$data)

mlr_optimizers_design_points
Optimization via Design Points

mlr_optimizers_design_points 43

Description

OptimizerBatchDesignPoints class that implements optimization w.r.t. fixed design points. We
simply search over a set of points fully specified by the user. The points in the design are evaluated
in order as given.

In order to support general termination criteria and parallelization, we evaluate points in a batch-
fashion of size batch_size. Larger batches mean we can parallelize more, smaller batches imply a
more fine-grained checking of termination criteria.

Dictionary

This Optimizer can be instantiated via the dictionary mlr_optimizers or with the associated sugar
function opt ():

mlr_optimizers$get("design_points")
opt("design_points"”)

Parameters

batch_size integer(1)
Maximum number of configurations to try in a batch.

design data.table::data.table
Design points to try in search, one per row.

Progress Bars

$optimize() supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr: :handlers("progress”).

Super classes

bbotk: :Optimizer -> bbotk: :0ptimizerBatch -> OptimizerBatchDesignPoints

Methods

Public methods:
e OptimizerBatchDesignPoints$new()
e OptimizerBatchDesignPoints$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
OptimizerBatchDesignPoints$new()
Method clone(): The objects of this class are cloneable with this method.
Usage:
OptimizerBatchDesignPoints$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress

44 mlir_optimizers_focus_search

Examples

library(data. table)
search_space = domain = ps(x = p_dbl(lower = -1, upper = 1))

codomain = ps(y = p_dbl(tags = "minimize"))

objective_function = function(xs) {
list(y = as.numeric(xs)*2)

3

objective = ObjectiveRFun$new(
fun = objective_function,
domain = domain,
codomain = codomain)

instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
search_space = search_space,
terminator = trm("evals”, n_evals = 10))
design = data.table(x = c(0, 1))

optimizer = opt("design_points”, design = design)

Modifies the instance by reference
optimizer$optimize(instance)

Returns best scoring evaluation
instance$result

Allows access of data.table of full path of all evaluations
as.data.table(instance$archive)

mlr_optimizers_focus_search
Optimization via Focus Search

Description

OptimizerBatchFocusSearch class that implements a Focus Search.

Focus Search starts with evaluating n_points drawn uniformly at random. For 1 to maxit batches,
n_points are then drawn uniformly at random and if the best value of a batch outperforms the
previous best value over all batches evaluated so far, the search space is shrinked around this new
best point prior to the next batch being sampled and evaluated.

For details on the shrinking, see shrink_ps.

Depending on the Terminator this procedure simply restarts after maxit is reached.

mlr_optimizers_focus_search 45

Dictionary

This Optimizer can be instantiated via the dictionary mlr_optimizers or with the associated sugar
function opt():

mlr_optimizers$get("”focus_search”)
opt("focus_search”)

Parameters

n_points integer(1)
Number of points to evaluate in each random search batch.

maxit integer(1)
Number of random search batches to run.

Progress Bars

$optimize () supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr: :handlers("progress”).

Super classes

bbotk: :Optimizer -> bbotk: :OptimizerBatch -> OptimizerBatchFocusSearch

Methods
Public methods:

e OptimizerBatchFocusSearch$new()
* OptimizerBatchFocusSearch$clone()
Method new(): Creates a new instance of this R6 class.
Usage:
OptimizerBatchFocusSearch$new()
Method clone(): The objects of this class are cloneable with this method.

Usage:
OptimizerBatchFocusSearch$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

search_space = domain = ps(x = p_dbl(lower = -1, upper = 1))

codomain = ps(y = p_dbl(tags = "minimize"))

objective_function = function(xs) {
list(y = as.numeric(xs)*2)

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress

46 mlr_optimizers_gensa

objective = ObjectiveRFun$new(
fun = objective_function,
domain = domain,

codomain = codomain)

instance = OptimInstanceBatchSingleCrit$new(
objective = objective,

search_space = search_space,

terminator = trm("evals”, n_evals = 10))

optimizer = opt("focus_search")

modifies the instance by reference
optimizer$optimize(instance)

returns best scoring evaluation
instance$result

allows access of data.table of full path of all evaluations
as.data.table(instance$archive$data)

mlr_optimizers_gensa Generalized Simulated Annealing

Description

OptimizerBatchGenSA class that implements generalized simulated annealing. Calls GenSA: : GenSA()
from package GenSA.

Dictionary

This Optimizer can be instantiated via the dictionary mlr_optimizers or with the associated sugar
function opt ():

mlr_optimizers$get(”gensa”)
opt("gensa")

Parameters

par numeric()
Initial parameter values. Default is NULL, in which case, default values will be generated
automatically.

start_values character(1)
Create "random” start values or based on "center” of search space? In the latter case, it is
the center of the parameters before a trafo is applied. By default, nloptr will generate start
values automatically. Custom start values can be passed via the par parameter.

https://CRAN.R-project.org/package=GenSA

mlr_optimizers_gensa 47

For the meaning of the control parameters, see GenSA: : GenSA(). Note that GenSA: : GenSA() uses
smooth = TRUE as a default. In the case of using this optimizer for Hyperparameter Optimization
you may want to set smooth = FALSE.

Internal Termination Parameters

The algorithm can terminated with all Terminators. Additionally, the following internal termination
parameters can be used:

maxit integer(1)
Maximum number of iterations. Original default is 5000. Overwritten with .Machine$integer.max.

threshold.stop numeric(1)
Threshold stop. Deactivated with NULL. Default is NULL.

nb.stop.improvement integer(1)
Number of stop improvement. Deactivated with -1L. Default is -1L.

max.call integer(1)
Maximum number of calls. Original defaultis 1Te7. Overwritten with .Machine$integer.max.

max.time integer(1)
Maximum time. Deactivate with NULL. Default is NULL.

Progress Bars
$optimize () supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr: :handlers("progress”).

Super classes

bbotk: :Optimizer -> bbotk: :OptimizerBatch -> OptimizerBatchGenSA

Methods

Public methods:
* OptimizerBatchGenSA$new()

e OptimizerBatchGenSA$clone()
Method new(): Creates a new instance of this R6 class.
Usage:
OptimizerBatchGenSA$new()
Method clone(): The objects of this class are cloneable with this method.

Usage:
OptimizerBatchGenSA$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress

48 mlr_optimizers_grid_search

Source

Tsallis C, Stariolo DA (1996). “Generalized simulated annealing.” Physica A: Statistical Mechanics
and its Applications, 233(1-2), 395-406. doi:10.1016/s03784371(96)002713.

Xiang Y, Gubian S, Suomela B, Hoeng J (2013). “Generalized Simulated Annealing for Global
Optimization: The GenSA Package.” The R Journal, 5(1), 13. doi:10.32614/rj2013002.

Examples

search_space = domain = ps(x = p_dbl(lower = -1, upper = 1))
codomain = ps(y = p_dbl(tags = "minimize"))

objective_function = function(xs) {
list(y = as.numeric(xs)*2)

}

objective = ObjectiveRFun$new(
fun = objective_function,
domain = domain,
codomain = codomain)

instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
search_space = search_space,
terminator = trm("evals”, n_evals = 10))

optimizer = opt("”gensa")

Modifies the instance by reference
optimizer$optimize(instance)

Returns best scoring evaluation
instance$result

Allows access of data.table of full path of all evaluations
as.data.table(instance$archive$data)

mlr_optimizers_grid_search
Optimization via Grid Search

Description

OptimizerBatchGridSearch class that implements grid search. The grid is constructed as a Carte-
sian product over discretized values per parameter, see paradox: : generate_design_grid(). The
points of the grid are evaluated in a random order.

https://doi.org/10.1016/s0378-4371%2896%2900271-3
https://doi.org/10.32614/rj-2013-002

mlr_optimizers_grid_search 49

In order to support general termination criteria and parallelization, we evaluate points in a batch-
fashion of size batch_size. Larger batches mean we can parallelize more, smaller batches imply a

more fine-grained checking of termination criteria.

Dictionary
This Optimizer can be instantiated via the dictionary mlr_optimizers or with the associated sugar

function opt ():

mlr_optimizers$get("grid_search”)
opt("grid_search”)

Parameters

resolution integer(1)
Resolution of the grid, see paradox: :generate_design_grid().

param_resolutions named integer()
Resolution per parameter, named by parameter ID, see paradox: :generate_design_grid().

batch_size integer(1)
Maximum number of points to try in a batch.

Progress Bars
$optimize() supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr: :handlers("progress”).

Super classes

bbotk: :Optimizer -> bbotk: :0OptimizerBatch -> OptimizerBatchGridSearch

Methods
Public methods:
e OptimizerBatchGridSearch$new()
e OptimizerBatchGridSearch$clone()
Method new(): Creates a new instance of this R6 class.

Usage:
OptimizerBatchGridSearch$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
OptimizerBatchGridSearch$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress

50

Examples

search_space = domain = ps(x

codomain = ps(y = p_dbl(tags = "minimize"))
objective_function = function(xs) {
list(y = as.numeric(xs)*2)

3

objective = ObjectiveRFun$new(
fun = objective_function,
domain = domain,

codomain = codomain)

instance = OptimInstanceBatchSingleCrit$new(
objective = objective,

search_space = search_space,

terminator = trm("evals”, n_evals = 10))

optimizer = opt("grid_search")

modifies the instance by reference
optimizer$optimize(instance)

returns best scoring evaluation
instance$result

allows access of data.table of full path of all evaluations

as.data.table(instance$archive$data)

p_dbl(lower = -1, upper = 1))

mlr_optimizers_irace

mlr_optimizers_irace [Iterated Racing

Description

OptimizerBatchIrace class that implements iterated racing. Calls irace: :irace() from package

irace.

Parameters

instances list()
A list of instances where the configurations executed on.

targetRunnerParallel function()

A function that executes the objective function with a specific parameter configuration and
instance. A default function is provided, see section "Target Runner and Instances".

For the meaning of all other parameters, see irace: :defaultScenario().

https://CRAN.R-project.org/package=irace

mlr_optimizers_irace 51

Internal Termination Parameters

The algorithm can terminated with TerminatorEvals. Other Terminators do not work with OptimizerBatchIrace.
Additionally, the following internal termination parameters can be used:

maxExperiments integer(1)
Maximum number of runs (invocations of targetRunner) that will be performed. It determines
the maximum budget of experiments for the tuning. Default is 0.

minExperiments integer(1)
Minimum number of runs (invocations of targetRunner) that will be performed. It determines
the minimum budget of experiments for the tuning. The actual budget depends on the number
of parameters and minSurvival. Default is NA.

maxTime integer(1)
Maximum total execution time for the executions of targetRunner. targetRunner must return

two values: cost and time. This value and the one returned by targetRunner must use the same
units (seconds, minutes, iterations, evaluations, ...). Default is 0.

budgetEstimation numeric(1)
Fraction (smaller than 1) of the budget used to estimate the mean computation time of a con-
figuration. Only used when maxTime > 0 Default is 0.05.

minMeasurableTime numeric(1)
Minimum time unit that is still (significantly) measureable. Default is 0.01.

Initial parameter values
e digits:
— Adjusted default: 15.

— This represents double parameters with a higher precision and avoids rounding errors.

Target Runner and Instances

The irace package uses a targetRunner script or R function to evaluate a configuration on a
particular instance. Usually it is not necessary to specify a targetRunner function when using
OptimizerBatchIrace. A default function is used that forwards several configurations and in-
stances to the user defined objective function. As usually, the user defined function has a xs, xss
or xdt parameter depending on the used Objective class. For irace, the function needs an additional
instances parameter.

fun = function(xs, instances) {
function to evaluate configuration in “xs™ on instance “instances”
}

Archive

The Archive holds the following additional columns:

e "race” (integer(1))
Race iteration.

52 mlr_optimizers_irace

e "step” (integer(1))
Step number of race.

* "instance"” (integer (1))
Identifies instances across races and steps.

e "configuration” (integer (1))
Identifies configurations across races and steps.

Result
The optimization result (instance$result) is the best performing elite of the final race. The
reported performance is the average performance estimated on all used instances.

Dictionary
This Optimizer can be instantiated via the dictionary mlr_optimizers or with the associated sugar

function opt ():

mlr_optimizers$get(”irace”)
opt("irace")

Progress Bars
$optimize () supports progress bars via the package progressr combined with a Terminator. Sim-

ply wrap the function in progressr: :with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr: :handlers("progress”).

Super classes
bbotk: :Optimizer -> bbotk: :OptimizerBatch -> OptimizerBatchIrace

Methods

Public methods:
e OptimizerBatchIrace$new()
e OptimizerBatchIrace$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
OptimizerBatchIrace$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
OptimizerBatchIrace$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress

mlr_optimizers_irace 53

Source

Lopez-Ibanez M, Dubois-Lacoste J, Caceres LP, Birattari M, Stuetzle T (2016). “The irace package:
Iterated racing for automatic algorithm configuration.” Operations Research Perspectives, 3, 43—58.
doi:10.1016/j.0rp.2016.09.002.

Examples

runtime of the example is too long

library(data.table)

search_space = domain = ps(
x1 = p_dbl(-5, 10),
x2 = p_dbl(e, 15)

)

codomain = ps(y = p_dbl(tags = "minimize"))

branin function with noise

the noise generates different instances of the branin function

the noise values are passed via the “instances™ parameter

fun = function(xdt, instances) {
ys = branin(xdt[["x1"]]1, xdt[["x2"1], noise = as.numeric(instances))
data.table(y = ys)

3

define objective with instances as a constant
objective = ObjectiveRFunDt$new(

fun = fun,

domain = domain,

codomain = codomain,

constants = ps(instances = p_uty()))

instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
search_space = search_space,
terminator = trm("evals”, n_evals = 96))

create instances of branin function
instances = rnorm(10, mean = @, sd = 0.1)

load optimizer irace and set branin instances
optimizer = opt("”irace”, instances = instances)

modifies the instance by reference
optimizer$optimize(instance)

best scoring configuration
instance$result

https://doi.org/10.1016/j.orp.2016.09.002

54 mlr_optimizers_local_search

all evaluations
as.data.table(instance$archive)

mlr_optimizers_local_search
Local Search

Description
Implements a simple Local Search, see local_search() for details. Currently, setting initial points
is not supported.

Dictionary
This Optimizer can be instantiated via the dictionary mlr_optimizers or with the associated sugar

function opt ():

mlr_optimizers$get(”local_search”)
opt("local_search”)
Parameters

The same as for local_search_control(), with the same defaults (except for minimize).

Progress Bars

$optimize () supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr: :with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr: :handlers("progress”).

Super classes

bbotk: :Optimizer -> bbotk: :0OptimizerBatch -> OptimizerBatchLocalSearch

Methods
Public methods:

* OptimizerBatchLocalSearch$new()
e OptimizerBatchLocalSearch$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
OptimizerBatchLocalSearch$new()

Method clone(): The objects of this class are cloneable with this method.
Usage:

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress

mlr_optimizers_nloptr 55

OptimizerBatchLocalSearch$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

mlr_optimizers_nloptr Non-linear Optimization

Description

OptimizerBatchNLoptr class that implements non-linear optimization. Calls nloptr: :nloptr()
from package nloptr.

Parameters

algorithm character(1)
Algorithm to use. See nloptr::nloptr.print.options() for available algorithms.

X0 numeric()
Initial parameter values. Use start_values parameter to create "random” or "center"” start
values.

start_values character(1)
Create "random"” start values or based on "center” of search space? In the latter case, it is
the center of the parameters before a trafo is applied. Custom start values can be passed via
the x@ parameter.

approximate_eval_grad_f logical(1)
Should gradients be numerically approximated via finite differences (nloptr::nl.grad). Only
required for certain algorithms. Note that function evaluations required for the numerical

gradient approximation will be logged as usual and are not treated differently than regular
function evaluations by, e.g., Terminators.

For the meaning of other control parameters, see nloptr: :nloptr() and nloptr::nloptr.print.options().

Internal Termination Parameters

The algorithm can terminated with all Terminators. Additionally, the following internal termination
parameters can be used:

stopval numeric(1)
Stop value. Deactivate with -Inf. Default is -Inf.
maxtime integer(1)
Maximum time. Deactivate with -1L. Default is -1L.
maxeval integer(1)
Maximum number of evaluations. Deactivate with -1L. Default is -1L.
xtol_rel numeric(1)
Relative tolerance. Original default is 107-4. Deactivate with -1. Overwritten with -1.

xtol_abs numeric(1)
Absolute tolerance. Deactivate with -1. Default is -1.

https://CRAN.R-project.org/package=nloptr

56 mlr_optimizers_nloptr

ftol_rel numeric(1)
Relative tolerance. Deactivate with -1. Default is -1.

ftol_abs numeric(1)
Absolute tolerance. Deactivate with -1. Default is -1.

Progress Bars
$optimize () supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr: :handlers("progress”).

Super classes

bbotk: :Optimizer -> bbotk: :OptimizerBatch -> OptimizerBatchNLoptr

Methods

Public methods:
* OptimizerBatchNLoptr$new()

e OptimizerBatchNLoptr$clone()
Method new(): Creates a new instance of this R6 class.
Usage:
OptimizerBatchNLoptr$new()
Method clone(): The objects of this class are cloneable with this method.

Usage:
OptimizerBatchNLoptr$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Source

Johnson, G S (2020). “The NLopt nonlinear-optimization package.” https://github.com/stevengj/
nlopt.

Examples

p_dbl(lower = -1, upper = 1))

search_space = domain = ps(x

codomain = ps(y = p_dbl(tags "minimize"))

objective_function = function(xs) {
list(y = as.numeric(xs)*2)

}

objective = ObjectiveRFun$new(

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress
https://github.com/stevengj/nlopt
https://github.com/stevengj/nlopt

mlr_optimizers_random_search 57

fun = objective_function,
domain = domain,
codomain = codomain)

We use the internal termination criterion xtol_rel
terminator = trm("none")
instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
search_space = search_space,
terminator = terminator)

optimizer = opt("nloptr”, algorithm = "NLOPT_LN_BOBYQA")

Modifies the instance by reference
optimizer$optimize(instance)

Returns best scoring evaluation
instance$result

Allows access of data.table of full path of all evaluations
as.data.table(instance$archive)

mlr_optimizers_random_search
Optimization via Random Search

Description

OptimizerBatchRandomSearch class that implements a simple Random Search.

In order to support general termination criteria and parallelization, we evaluate points in a batch-
fashion of size batch_size. Larger batches mean we can parallelize more, smaller batches imply a
more fine-grained checking of termination criteria.

Dictionary
This Optimizer can be instantiated via the dictionary mlr_optimizers or with the associated sugar

function opt ():

mlr_optimizers$get("random_search™)
opt("random_search”)
Parameters

batch_size integer(1)
Maximum number of points to try in a batch.

58 mlr_optimizers_random_search

Progress Bars

$optimize() supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr: :with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr: :handlers("progress”).

Super classes

bbotk: :Optimizer -> bbotk: :0OptimizerBatch -> OptimizerBatchRandomSearch

Methods
Public methods:

e OptimizerBatchRandomSearch$new()
* OptimizerBatchRandomSearch$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
OptimizerBatchRandomSearch$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
OptimizerBatchRandomSearch$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Source

Bergstra J, Bengio Y (2012). “Random Search for Hyper-Parameter Optimization.” Journal of Ma-
chine Learning Research, 13(10), 281-305. https://jmlr.csail.mit.edu/papers/v13/bergstrail2a.
html.

Examples

search_space = domain = ps(x = p_dbl(lower = -1, upper = 1))

codomain = ps(y = p_dbl(tags = "minimize"))

objective_function = function(xs) {
list(y = as.numeric(xs)*2)

}

objective = ObjectiveRFun$new(
fun = objective_function,
domain = domain,

codomain = codomain)

instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
search_space = search_space,

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress
https://jmlr.csail.mit.edu/papers/v13/bergstra12a.html
https://jmlr.csail.mit.edu/papers/v13/bergstra12a.html

mlr_terminators 59

terminator = trm("evals”, n_evals = 10))

optimizer = opt("”random_search")

modifies the instance by reference
optimizer$optimize(instance)

returns best scoring evaluation
instance$result

allows access of data.table of full path of all evaluations
as.data.table(instance$archive$data)

mlr_terminators Dictionary of Terminators

Description

A simple mlr3misc::Dictionary storing objects of class Terminator. Each terminator has an associ-
ated help page, see mlr_terminators_[id].

This dictionary can get populated with additional terminators by add-on packages.

For a more convenient way to retrieve and construct terminator, see trm()/trms().

Format

R6::R6Class object inheriting from mlr3misc::Dictionary.

Methods

See mlr3misc::Dictionary.

S3 methods

e as.data.table(dict, ..., objects = FALSE)
mlr3misc::Dictionary -> data. table: :data. table()
Returns a data. table: :data. table() with fields "key", "label", "properties" and "unit" as
columns. If objects is set to TRUE, the constructed objects are returned in the list column
named object.

See Also

Sugar functions: trm(), trms()

Other Terminator: Terminator, mlr_terminators_clock_time, mlr_terminators_combo, mlr_terminators_evals,
mlr_terminators_none,mlr_terminators_perf_reached, mlr_terminators_run_time, mlr_terminators_stagnati
mlr_terminators_stagnation_batch, mlr_terminators_stagnation_hypervolume

60 mlr_terminators_clock_time

Examples

as.data.table(mlr_terminators)
mlr_terminators$get("evals”)
trm("evals”, n_evals = 10)

mlr_terminators_clock_time
Clock Time Terminator

Description

Class to terminate the optimization after a fixed time point has been reached (as reported by Sys. time()).

Dictionary

This Terminator can be instantiated via the dictionary mlr_terminators or with the associated sugar
function trm():

mlr_terminators$get(”"clock_time")
trm("clock_time")

Parameters

stop_time POSIXct(1)
Terminator stops after this point in time.

Super class

bbotk::Terminator -> TerminatorClockTime

Methods
Public methods:

e TerminatorClockTime$new()
* TerminatorClockTime$is_terminated()
e TerminatorClockTime$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

TerminatorClockTime$new()
Method is_terminated(): Is TRUE iff the termination criterion is positive, and FALSE other-
wise.

Usage:

TerminatorClockTime$is_terminated(archive)

Arguments:

mlr_terminators_combo 61

archive (Archive).

Returns: logical(1).
Method clone(): The objects of this class are cloneable with this method.

Usage:
TerminatorClockTime$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other Terminator: Terminator, mlr_terminators, mlr_terminators_combo, mlr_terminators_evals,
mlr_terminators_none,mlr_terminators_perf_reached, mlr_terminators_run_time, mlr_terminators_stagnati

mlr_terminators_stagnation_batch, mlr_terminators_stagnation_hypervolume

Examples

stop_time = as.POSIXct("2030-01-01 00:00:00")
trm("clock_time", stop_time = stop_time)

mlr_terminators_combo Combine Terminators

Description
This class takes multiple Terminators and terminates as soon as one or all of the included terminators

are positive.

Dictionary
This Terminator can be instantiated via the dictionary mlr_terminators or with the associated sugar

function trm():

mlr_terminators$get("combo")
trm("combo”)

Parameters

any logical(1)
Terminate iff any included terminator is positive? (not all). Default is TRUE.

Super class

bbotk: :Terminator -> TerminatorCombo

62

mlir_terminators_combo

Public fields

terminators (list())

List of objects of class Terminator.

Methods

Public methods:
e TerminatorCombo$new()
e TerminatorCombo$is_terminated()
e TerminatorCombo$print()
* TerminatorCombo$remaining_time()
e TerminatorCombo$status_long()
e TerminatorCombo$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
TerminatorCombo$new(terminators = list(TerminatorNone$new()))

Arguments:
terminators (list())
List of objects of class Terminator.

Method is_terminated(): Is TRUE iff the termination criterion is positive, and FALSE other-
wise.

Usage:
TerminatorCombo$is_terminated(archive)
Arguments:

archive (Archive).

Returns: logical(1).

Method print(): Printer.
Usage:
TerminatorCombo$print(...)
Arguments:

... (ignored).

Method remaining_time(): Returns the remaining runtime in seconds. If any = TRUE, the
remaining runtime is determined by the time-based terminator with the shortest time remaining.
If non-time-based terminators are used and any = FALSE, the the remaining runtime is always Inf.

Usage:
TerminatorCombo$remaining_time(archive)

Arguments:

archive (Archive).

Returns: integer(1).

mlr_terminators_evals 63

Method status_long(): Returns max_steps and current_steps for each terminator.

Usage:
TerminatorCombo$status_long(archive)

Arguments:
archive (Archive).

Returns: data.table::data.table.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TerminatorCombo$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other Terminator: Terminator, mlr_terminators, mlr_terminators_clock_time, mlr_terminators_evals,
mlr_terminators_none, mlr_terminators_perf_reached, mlr_terminators_run_time, mlr_terminators_stagnati

mlr_terminators_stagnation_batch, mlr_terminators_stagnation_hypervolume

Examples

trm("combo”,
list(trm("clock_time"”, stop_time = Sys.time() + 60),
trm("evals”, n_evals = 10)), any = FALSE

mlr_terminators_evals Terminator that stops after a number of evaluations

Description

Class to terminate the optimization depending on the number of evaluations. An evaluation is
defined by one resampling of a parameter value. The total number of evaluations B is defined as

B =n_evals+kx*xD

where D is the dimension of the search space.

Dictionary
This Terminator can be instantiated via the dictionary mlr_terminators or with the associated sugar

function trm():

mlr_terminators$get("evals")
trm("evals”)

64 mlr_terminators_evals

Parameters

n_evals integer(1)
See formula above. Default is 100.

k integer(1)
See formula above. Default is O.

Super class

bbotk: :Terminator -> TerminatorEvals

Methods

Public methods:

e TerminatorEvals$new()
* TerminatorEvals$is_terminated()

e TerminatorEvals$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TerminatorEvals$new()

Method is_terminated(): Is TRUE iff the termination criterion is positive, and FALSE other-
wise.

Usage:
TerminatorEvals$is_terminated(archive)

Arguments:

archive (Archive).

Returns: logical(1).

Method clone(): The objects of this class are cloneable with this method.

Usage:
TerminatorEvals$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other Terminator: Terminator, mlr_terminators, mlr_terminators_clock_time, mlr_terminators_combo,
mlr_terminators_none,mlr_terminators_perf_reached, mlr_terminators_run_time, mlr_terminators_stagnati
mlr_terminators_stagnation_batch, mlr_terminators_stagnation_hypervolume

mlr_terminators_none 65

Examples

TerminatorEvals$new()

5 evaluations in total
trm("evals”, n_evals = 5)

3 x [dimension of search space] evaluations in total
trm("evals”, n_evals = @, k = 3)

(3 * [dimension of search space] + 1) evaluations in total
trm("evals”, n_evals = 1, k = 3)

mlr_terminators_none None Terminator

Description

Mainly useful for optimization algorithms where the stopping is inherently controlled by the algo-
rithm itself (e.g. OptimizerBatchGridSearch).

Dictionary
This Terminator can be instantiated via the dictionary mlr_terminators or with the associated sugar

function trm():

mlr_terminators$get("none”)
trm("none")

Super class

bbotk: :Terminator -> TerminatorNone

Methods
Public methods:

e TerminatorNone$new()
e TerminatorNone$is_terminated()
e TerminatorNone$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
TerminatorNone$new()

Method is_terminated(): Is TRUE iff the termination criterion is positive, and FALSE other-
wise.

Usage:
TerminatorNone$is_terminated(archive)

66 mlr_terminators_perf_reached

Arguments:
archive (Archive).

Returns: logical(1).
Method clone(): The objects of this class are cloneable with this method.

Usage:
TerminatorNone$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also
Other Terminator: Terminator, mlr_terminators, mlr_terminators_clock_time, mlr_terminators_combo,
mlr_terminators_evals,mlr_terminators_perf_reached, mlr_terminators_run_time, mlr_terminators_stagnat:

mlr_terminators_stagnation_batch, mlr_terminators_stagnation_hypervolume

mlr_terminators_perf_reached
Performance Level Terminator

Description
Class to terminate the optimization after a performance level has been hit.

Dictionary
This Terminator can be instantiated via the dictionary mlr_terminators or with the associated sugar

function trm():

mlr_terminators$get("perf_reached")
trm("perf_reached")

Parameters
level numeric(1)
Performance level that needs to be reached. Default is 0. Terminates if the performance
exceeds (respective measure has to be maximized) or falls below (respective measure has to

be minimized) this value.

Super class

bbotk: :Terminator -> TerminatorPerfReached

mlr_terminators_perf_reached 67

Methods

Public methods:

e TerminatorPerfReached$new()
e TerminatorPerfReached$is_terminated()

e TerminatorPerfReached$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TerminatorPerfReached$new()

Method is_terminated(): Is TRUE iff the termination criterion is positive, and FALSE other-

wise.

Usage:
TerminatorPerfReached$is_terminated(archive)

Arguments:

archive (Archive).

Returns: logical(1).

Method clone(): The objects of this class are cloneable with this method.

Usage:
TerminatorPerfReached$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other Terminator: Terminator, mlr_terminators, mlr_terminators_clock_time, mlr_terminators_combo,
mlr_terminators_evals,mlr_terminators_none,mlr_terminators_run_time, mlr_terminators_stagnation,
mlr_terminators_stagnation_batch, mlr_terminators_stagnation_hypervolume

Examples

TerminatorPerfReached$new()
trm("perf_reached")

68 mlir_terminators_run_time

mlr_terminators_run_time
Run Time Terminator

Description

Class to terminate the optimization after the optimization process took a number of seconds on the
clock.

Dictionary

This Terminator can be instantiated via the dictionary mlr_terminators or with the associated sugar
function trm():

mlr_terminators$get("run_time")
trm("run_time")

Parameters

secs numeric(1)
Maximum allowed time, in seconds, default is 100.

Super class

bbotk: :Terminator -> TerminatorRunTime

Methods

Public methods:
e TerminatorRunTime$new()
e TerminatorRunTime$is_terminated()
e TerminatorRunTime$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

TerminatorRunTime$new()
Method is_terminated(): Is TRUE iff the termination criterion is positive, and FALSE other-
wise.

Usage:
TerminatorRunTime$is_terminated(archive)

Arguments:
archive (Archive).

Returns: logical(1).

Method clone(): The objects of this class are cloneable with this method.

mlr_terminators_stagnation 69

Usage:
TerminatorRunTime$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Note
This terminator only works if archive$start_time is set. This is usually done by the Optimizer.

See Also

Other Terminator: Terminator, mlr_terminators, mlr_terminators_clock_time, mlr_terminators_combo,
mlr_terminators_evals,mlr_terminators_none,mlr_terminators_perf_reached, mlr_terminators_stagnation,

mlr_terminators_stagnation_batch, mlr_terminators_stagnation_hypervolume

Examples

trm("run_time"”, secs = 1800)

mlr_terminators_stagnation
Terminator that stops when optimization does not improve

Description
Class to terminate the optimization after the performance stagnates, i.e. does not improve more than
threshold over the last iters iterations.

Dictionary
This Terminator can be instantiated via the dictionary mlr_terminators or with the associated sugar

function trm():

mlr_terminators$get(”stagnation”)
trm("stagnation”)

Parameters

iters integer(1)
Number of iterations to evaluate the performance improvement on, default is 10.

threshold numeric(1)
If the improvement is less than threshold, optimization is stopped, default is @.

Super class

bbotk: :Terminator -> TerminatorStagnation

70 mlr_terminators_stagnation

Methods

Public methods:

e TerminatorStagnation$new()
e TerminatorStagnation$is_terminated()

e TerminatorStagnation$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TerminatorStagnation$new()

Method is_terminated(): Is TRUE iff the termination criterion is positive, and FALSE other-

wise.

Usage:
TerminatorStagnation$is_terminated(archive)

Arguments:

archive (Archive).

Returns: logical(1).

Method clone(): The objects of this class are cloneable with this method.

Usage:
TerminatorStagnation$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other Terminator: Terminator, mlr_terminators, mlr_terminators_clock_time, mlr_terminators_combo,
mlr_terminators_evals,mlr_terminators_none,mlr_terminators_perf_reached, mlr_terminators_run_time,
mlr_terminators_stagnation_batch, mlr_terminators_stagnation_hypervolume

Examples

TerminatorStagnation$new()
trm("stagnation”, iters = 5, threshold = 1e-5)

mlr_terminators_stagnation_batch 71

mlr_terminators_stagnation_batch
Terminator that stops when optimization does not improve

Description
Class to terminate the optimization after the performance stagnates, i.e. does not improve more than

threshold over the last n batches.

Dictionary
This Terminator can be instantiated via the dictionary mlr_terminators or with the associated sugar

function trm():

mlr_terminators$get(”stagnation_batch")
trm("stagnation_batch”)

Parameters

n integer(1)
Number of batches to evaluate the performance improvement on, default is 1.

threshold numeric(1)
If the improvement is less than threshold, optimization is stopped, default is @.

Super class
bbotk: :Terminator -> TerminatorStagnationBatch

Methods

Public methods:
e TerminatorStagnationBatch$new()
e TerminatorStagnationBatch$is_terminated()

e TerminatorStagnationBatch$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TerminatorStagnationBatch$new()

Method is_terminated(): Is TRUE iff the termination criterion is positive, and FALSE other-

wise.
Usage:
TerminatorStagnationBatch$is_terminated(archive)
Arguments:
archive (Archive).

72 mlr_terminators_stagnation_hypervolume

Returns: logical(1).
Method clone(): The objects of this class are cloneable with this method.

Usage:
TerminatorStagnationBatch$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

See Also

Other Terminator: Terminator, mlr_terminators, mlr_terminators_clock_time, mlr_terminators_combo,
mlr_terminators_evals,mlr_terminators_none, mlr_terminators_perf_reached, mlr_terminators_run_time,

mlr_terminators_stagnation, mlr_terminators_stagnation_hypervolume

Examples

TerminatorStagnationBatch$new()
trm("stagnation_batch”, n = 1, threshold = 1e-5)

mlr_terminators_stagnation_hypervolume
Stagnation Hypervolume Terminator

Description
Class to terminate the optimization after the hypervolume stagnates, i.e. does not improve more
than threshold over the last iters iterations.

Dictionary
This Terminator can be instantiated via the dictionary mlr_terminators or with the associated sugar

function trm():

mlr_terminators$get(”stagnation_hypervolume")
trm("stagnation_hypervolume")

Parameters

iters integer(1)
Number of iterations to evaluate the performance improvement on, default is 10.

threshold numeric(1)
If the improvement is less than threshold, optimization is stopped, default is @.

Super class
bbotk: :Terminator -> TerminatorStagnationHypervolume

Objective 73
Methods

Public methods:
e TerminatorStagnationHypervolume$new()
e TerminatorStagnationHypervolume$is_terminated()
e TerminatorStagnationHypervolume$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
TerminatorStagnationHypervolume$new()

Method is_terminated(): Is TRUE if the termination criterion is positive, and FALSE otherwise.

Usage:
TerminatorStagnationHypervolume$is_terminated(archive)

Arguments:
archive (Archive).

Returns: logical(1).
Method clone(): The objects of this class are cloneable with this method.

Usage:
TerminatorStagnationHypervolume$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other Terminator: Terminator, mlr_terminators, mlr_terminators_clock_time, mlr_terminators_combo,
mlr_terminators_evals,mlr_terminators_none,mlr_terminators_perf_reached, mlr_terminators_run_time,

mlr_terminators_stagnation, mlr_terminators_stagnation_batch

Examples

TerminatorStagnation$new()
trm("stagnation”, iters = 5, threshold = 1e-5)

Objective Objective Function with Domain and Codomain

Description
The Objective class describes a black-box objective function that maps an arbitrary domain to a

numerical codomain.

74 Objective

Details

non

Objective objects can have the following properties: "noisy”, "deterministic”, "single-crit”
and "multi-crit”.

Public fields
callbacks (list of mlr3misc::Callback)
Callbacks applied during the optimization.

context (ContextBatch)
Stores the context for the callbacks.

id (character(1))).
properties (character()).

domain (paradox::ParamSet)
Specifies domain of function, hence its input parameters, their types and ranges.

codomain (paradox::ParamSet)
Specifies codomain of function, hence its feasible values.

constants (paradox::ParamSet).
Changeable constants or parameters that are not subject to tuning can be stored and accessed
here. Set constant values are passed to $.eval() and $.eval_many() as named arguments.

check_values (logical(1))

Active bindings
label (character(1))
Label for this object. Can be used in tables, plot and text output instead of the ID.

man (character(1))
String in the format [pkg]::[topic] pointing to a manual page for this object. The refer-
enced help package can be opened via method $help().

xdim (integer(1))
Dimension of domain.

ydim (integer(1))
Dimension of codomain.

packages (character())
Set of required packages to run the objective function.

Methods

Public methods:
* Objective$new()
* Objective$format()
* Objective$print()
e Objective$eval ()
* Objective$eval_many()

Objective 75

* Objective$eval_dt()
e Objective$help()
* Objective$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
Objective$new(
id = "f",
properties = character(),
domain,
codomain = ps(y = p_dbl(tags = "minimize")),
constants = ps(),
packages = character(),
check_values = TRUE,
label = NA_character_,
man = NA_character_

)

Arguments:

id (character(1)).

properties (character()).

domain (paradox::ParamSet)
Specifies domain of function. The paradox::ParamSet should describe all possible input
parameters of the objective function. This includes their id, their types and the possible
range.

codomain (paradox::ParamSet)
Specifies codomain of function. Most importantly the tags of each output "Parameter” de-
fine whether it should be minimized or maximized. The default is to minimize each com-
ponent.

constants (paradox::ParamSet)
Changeable constants or parameters that are not subject to tuning can be stored and accessed
here.

packages (character())
Set of required packages to run the objective function.

check_values (logical(1))
Should points before the evaluation and the results be checked for validity?

label (character(1))
Label for this object. Can be used in tables, plot and text output instead of the ID.

man (character(1))
String in the format [pkg]: : [topic] pointing to a manual page for this object. The refer-
enced help package can be opened via method $help().

Method format(): Helper for print outputs.

Usage:
Objective$format(...)

Arguments:

Objective

... (ignored).

Method print(): Print method.

Usage:
Objective$print()

Returns: character().

Method eval(): Evaluates a single input value on the objective function. If check_values =
TRUE, the validity of the point as well as the validity of the result is checked.

Usage:
Objective$eval (xs)

Arguments:
xs (list())

A list that contains a single x value, e.g. 1list(x1 =1, x2 =2).
Returns: 1list() that contains the result of the evaluation, e.g. list(y =1). The list can
also contain additional named entries that will be stored in the archive if called through the
OptimInstance. These extra entries are referred to as extras.

Method eval_many(): Evaluates multiple input values on the objective function. If check_values
= TRUE, the validity of the points as well as the validity of the results are checked. bbotk does not
take care of parallelization. If the function should make use of parallel computing, it has to be
implemented by deriving from this class and overwriting this function.

Usage:
Objective$eval_many(xss)

Arguments:
xss (list())
A list of lists that contains multiple x values, e.g. list(list(x1 =1, x2=2), list(x1 =
3, x2 = 4)).
Returns: data.table::data.table()] that contains one y-column for single-criteria functions and
multiple y-columns for multi-criteria functions, e.g. data.table(y = 1:2) or data. table(y1
=1:2, y2=3:4). It may also contain additional columns that will be stored in the archive if
called through the OptimInstance. These extra columns are referred to as extras.

Method eval_dt(): Evaluates multiple input values on the objective function

Usage:
Objective$eval _dt(xdt)

Arguments:

xdt (data.table::data.table())
Set of untransformed points / points from the search space. One point per row, e.g. data. table(x1
=c(1, 3), x2=c(2, 4)). Column names have to match ids of the search_space. How-
ever, xdt can contain additional columns.

Returns: data.table::data.table()] that contains one y-column for single-criteria functions and
multiple y-columns for multi-criteria functions, e.g. data.table(y = 1:2) or data. table(y1
=1:2,y2=3:4).

ObjectiveRFun 77

Method help(): Opens the corresponding help page referenced by field $man.
Usage:
Objective$help()

Method clone(): The objects of this class are cloneable with this method.
Usage:
Objective$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

ObjectiveRFun Objective interface with custom R function

Description
Objective interface where the user can pass a custom R function that expects a list as input. If the
return of the function is unnamed, it is named with the ids of the codomain.

Super class

bbotk: :0bjective -> ObjectiveRFun

Active bindings
fun (function)
Objective function.
Methods

Public methods:

e ObjectiveRFun$new()
e ObjectiveRFun$eval()
* ObjectiveRFun$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
ObjectiveRFun$new(
fun,
domain,
codomain = NULL,
id = "function”,

properties = character(),
constants = ps(),
check_values = TRUE

78

ObjectiveRFun

Arguments:

fun (function)
R function that encodes objective and expects a list with the input for a single point (e.g.
list(x1 =1, x2 = 2)) and returns the result either as a numeric vector or a list (e.g. list(y
=3)).

domain (paradox::ParamSet)
Specifies domain of function. The paradox::ParamSet should describe all possible input
parameters of the objective function. This includes their id, their types and the possible
range.

codomain (paradox::ParamSet)
Specifies codomain of function. Most importantly the tags of each output "Parameter” de-
fine whether it should be minimized or maximized. The default is to minimize each com-
ponent.

id (character(1)).

properties (character()).

constants (paradox::ParamSet)
Changeable constants or parameters that are not subject to tuning can be stored and accessed

here.

check_values (logical(1))
Should points before the evaluation and the results be checked for validity?

Method eval(): Evaluates input value(s) on the objective function. Calls the R function sup-
plied by the user.

Usage:
ObjectiveRFun$eval (xs)

Arguments:

xs Input values.

Method clone(): The objects of this class are cloneable with this method.
Usage:
ObjectiveRFun$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Examples

#

define objective function

fun = function(xs) {

}

-(xs[[11] - 2)*2 - (xs[[2]1] + 3)*2 + 10

set domain
domain = ps(

)

x1 = p_dbl(-10, 10),
x2 = p_dbl(-5, 5)

ObjectiveRFunDt

set codomain
codomain = ps(y = p_dbl(tags = "maximize"))

create Objective object
obfun = ObjectiveRFun$new(
fun = fun,
domain = domain,
codomain = codomain,

79

properties = "deterministic”
)
ObjectiveRFunDt Objective interface for basic R functions.
Description

Objective interface where user can pass an R function that works on an data. table().

Super class

bbotk: :0bjective -> ObjectiveRFunDt

Active bindings

fun (function)
Objective function.

Methods

Public methods:

* ObjectiveRFunDt$new()

* ObjectiveRFunDt$eval_many()
* ObjectiveRFunDt$eval_dt()

* ObjectiveRFunDt$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
ObjectiveRFunDt$new(
fun,
domain,
codomain = NULL,
id = "function”,

properties = character(),
constants = ps(),
check_values = TRUE

)

Arguments:

80

ObjectiveRFunDt

fun (function)
R function that encodes objective and expects an data. table () as input whereas each point
is represented by one row.

domain (paradox::ParamSet)
Specifies domain of function. The paradox::ParamSet should describe all possible input
parameters of the objective function. This includes their id, their types and the possible
range.

codomain (paradox::ParamSet)
Specifies codomain of function. Most importantly the tags of each output "Parameter” de-
fine whether it should be minimized or maximized. The default is to minimize each com-

ponent.
id (character(1)).
properties (character()).
constants (paradox::ParamSet)
Changeable constants or parameters that are not subject to tuning can be stored and accessed
here.
check_values (logical(1))
Should points before the evaluation and the results be checked for validity?

Method eval_many(): Evaluates multiple input values received as a list, converted to adata. table()
on the objective function. Missing columns in xss are filled with NAs in xdt.

Usage:
ObjectiveRFunDt$eval_many(xss)

Arguments:
xss (list())
A list of lists that contains multiple x values, e.g. list(list(x1 =1, x2=2), list(x1 =
3, x2=4)).
Returns: data.table::data.table() that contains one y-column for single-criteria functions
and multiple y-columns for multi-criteria functions, e.g. data.table(y = 1:2) ordata. table(y1
=1:2,y2=3:4).

Method eval_dt(): Evaluates multiple input values on the objective function supplied by the
user.

Usage:
ObjectiveRFunDt$eval_dt(xdt)

Arguments:

xdt (data.table::data.table())
Set of untransformed points / points from the search space. One point per row, e.g. data.table(x1
=c(1, 3), x2=c(2, 4)). Column names have to match ids of the search_space. How-
ever, xdt can contain additional columns.

Returns: data.table::data.table()] that contains one y-column for single-criteria functions and
multiple y-columns for multi-criteria functions, e.g. data.table(y =1:2) or data. table(y1l
=1:2,y2=3:4).

Method clone(): The objects of this class are cloneable with this method.

ObjectiveRFunMany 81

Usage:

ObjectiveRFunDt$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

ObjectiveRFunMany Objective Interface with Custom R Function

Description

Objective interface where the user can pass a custom R function that expects a list of configurations
as input. If the return of the function is unnamed, it is named with the ids of the codomain.

Super class

bbotk: :0bjective -> ObjectiveRFunMany

Active bindings

fun (function)

Methods

Objective function.

Public methods:
* ObjectiveRFunMany$new()

e ObjectiveRFunMany$eval_many()
* ObjectiveRFunMany$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
ObjectiveRFunMany$new(
fun,
domain,
codomain = NULL,
id = "function”,

)

properties = character(),
constants = ps(),
check_values = TRUE

Arguments:
fun (function)

R function that encodes objective and expects a list of lists that contains multiple x val-
ues, e.g. list(list(x1 =1, x2=2), list(x1 =3, x2=4)). The function must return a
data.table: :data. table() that contains one y-column for single-criteria functions and
multiple y-columns for multi-criteria functions, e.g. data. table(y = 1:2) ordata. table(y1
=1:2,y2=3:4).

82 ObjectiveRFunMany
domain (paradox::ParamSet)
Specifies domain of function. The paradox::ParamSet should describe all possible input
parameters of the objective function. This includes their id, their types and the possible
range.
codomain (paradox::ParamSet)
Specifies codomain of function. Most importantly the tags of each output "Parameter” de-
fine whether it should be minimized or maximized. The default is to minimize each com-
ponent.
id (character(1)).
properties (character()).
constants (paradox::ParamSet)
Changeable constants or parameters that are not subject to tuning can be stored and accessed
here.
check_values (logical(1))
Should points before the evaluation and the results be checked for validity?
Method eval_many(): Evaluates input value(s) on the objective function. Calls the R function
supplied by the user.
Usage:
ObjectiveRFunMany$eval_many(xss)
Arguments:
xss (list())
A list of lists that contains multiple x values, e.g. list(list(x1 =1, x2=2), list(x1=
3, x2=4)).
Returns: data.table::data.table() that contains one y-column for single-criteria functions
and multiple y-columns for multi-criteria functions, e.g. data.table(y = 1:2) ordata. table(y1
=1:2, y2=3:4). It may also contain additional columns that will be stored in the archive if
called through the OptimInstance. These extra columns are referred to as extras.
Method clone(): The objects of this class are cloneable with this method.
Usage:
ObjectiveRFunMany$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
Examples

define objective function

fun = function(xss) {
res = lapply(xss, function(xs) -(xs[[1]] - 2)*2 - (xs[[2]] + 3)*2 + 10)
data.table(y = as.numeric(res))

set domain

domain = ps(
x1 = p_dbl(-10, 10),
x2 = p_dbl(-5, 5)

oi 83

)

set codomain
codomain = ps(y = p_dbl(tags = "maximize"))

create Objective object
obfun = ObjectiveRFunMany$new(
fun = fun,
domain = domain,
codomain = codomain,

properties = "deterministic”
)
oi Syntactic Sugar for Optimization Instance Construction
Description

Function to construct a OptimInstanceBatchSingleCrit and OptimInstanceBatchMultiCrit.

Usage
0i(
objective,
search_space = NULL,
terminator,
callbacks = NULL,
check_values = TRUE,

keep_evals = "all"”
)
Arguments
objective (Objective)

Objective function.

search_space (paradox::ParamSet)
Specifies the search space for the Optimizer. The paradox::ParamSet describes
either a subset of the domain of the Objective or it describes a set of parameters
together with a trafo function that transforms values from the search space
to values of the domain. Depending on the context, this value defaults to the
domain of the objective.

terminator Terminator
Termination criterion.
callbacks (list of mIr3misc::Callback)
List of callbacks.

check_values (logical(1))
Should points before the evaluation and the results be checked for validity?

84 oi_async

keep_evals (character(1))
Keep all or only best evaluations in archive?

oi_async Syntactic Sugar for Asynchronous Optimization Instance Construction

Description

Function to construct an OptimInstanceAsyncSingleCrit and OptimInstance AsyncMultiCrit.

Usage
oi_async(
objective,
search_space = NULL,
terminator,
check_values = FALSE,

callbacks = NULL,
rush = NULL

Arguments

objective (Objective)
Objective function.

search_space (paradox::ParamSet)
Specifies the search space for the Optimizer. The paradox::ParamSet describes
either a subset of the domain of the Objective or it describes a set of parameters
together with a trafo function that transforms values from the search space
to values of the domain. Depending on the context, this value defaults to the
domain of the objective.

terminator Terminator
Termination criterion.

check_values (logical(1))
Should points before the evaluation and the results be checked for validity?

callbacks (list of mIr3misc::Callback)
List of callbacks.
rush (Rush)

If a rush instance is supplied, the tuning runs without batches.

opt 85

opt Syntactic Sugar Optimizer Construction

Description

This function complements mlr_optimizers with functions in the spirit of mlr_sugar from mlr3.

Usage
opt(.key, ...)
opts(.keys, ...)
Arguments
.key (character(1))
Key passed to the respective dictionary to retrieve the object.
(named list())
Named arguments passed to the constructor, to be set as parameters in the para-
dox::ParamSet, or to be set as public field. See mlr3misc: :dictionary_sugar_get()
for more details.
.keys (character())
Keys passed to the respective dictionary to retrieve multiple objects.
Value

* Optimizer for opt ().
* list of Optimizer for opts().

Examples

opt("random_search”, batch_size = 10)

OptimInstance Optimization Instance

Description

The OptimInstance specifies an optimization problem for an Optimizer.

Details

OptimInstance is an abstract base class that implements the base functionality each instance must
provide. The Optimizer writes the final result to the . result field by using the $assign_result()
method. .result stores a data.table::data.table consisting of x values in the search space, (trans-
formed) x values in the domain space and y values in the codomain space of the Objective. The
user can access the results with active bindings (see below).

https://CRAN.R-project.org/package=mlr3

86

Public fields

objective (Objective)

Objective function of the instance.

search_space (paradox::ParamSet)
Specification of the search space for the Optimizer.

terminator Terminator

Termination criterion of the optimization.

archive (Archive)

Contains all performed function calls of the Objective.

progressor (progressor())
Stores progressor function.

Active bindings

label (character(1))

OptimInstance

Label for this object. Can be used in tables, plot and text output instead of the ID.

man (character(1))

String in the format [pkg]::[topic] pointing to a manual page for this object. The refer-

enced help package can be opened via method $help().
result (data.table::data.table)

Get result

result_x_search_space (data.table::data.table)
x part of the result in the search space.

is_terminated (logical(1)).

Methods

Public methods:

e OptimInstance$new()

e OptimInstance$format()

e OptimInstance$print()

* OptimInstance$assign_result()
e OptimInstance$clear()

e OptimInstance$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

OptimInstance$new(

objective,
search_space =
terminator,

check_values = TRUE,
callbacks = NULL,

archive = NULL,

NULL,

OptimInstance 87

label = NA_character_,
man = NA_character_

)

Arguments:

objective (Objective)
Objective function.

search_space (paradox::ParamSet)
Specifies the search space for the Optimizer. The paradox::ParamSet describes either a
subset of the domain of the Objective or it describes a set of parameters together with
a trafo function that transforms values from the search space to values of the domain.
Depending on the context, this value defaults to the domain of the objective.

terminator Terminator
Termination criterion.

check_values (logical(1))
Should points before the evaluation and the results be checked for validity?

callbacks (list of mlr3misc::Callback)
List of callbacks.

archive (Archive).

label (character(1))
Label for this object. Can be used in tables, plot and text output instead of the ID.

man (character(1))
String in the format [pkg]: : [topic] pointing to a manual page for this object. The refer-
enced help package can be opened via method $help().

Method format(): Helper for print outputs.
Usage:
OptimInstance$format(...)
Arguments:

... (ignored).

Method print(): Printer.
Usage:
OptimInstance$print(...)
Arguments:

... (ignored).

Method assign_result(): The Optimizer object writes the best found point and estimated
performance value here. For internal use.

Usage:
OptimInstance$assign_result(xdt, y, ...)

Arguments:

xdt (data.table::data.table())
x values as data.table::data.table() with one row. Contains the value in the search
space of the OptimInstance object. Can contain additional columns for extra information.

88 OptimInstanceAsync

y (numeric(1))
Optimal outcome.

... (any)
ignored.

Method clear(): Reset terminator and clear all evaluation results from archive and results.
Usage:
OptimInstance$clear()

Method clone(): The objects of this class are cloneable with this method.

Usage:
OptimInstance$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

OptimInstanceAsync Optimization Instance for Asynchronous Optimization

Description

The OptimInstanceAsync specifies an optimization problem for an OptimizerAsync. The function
oi_async() creates an OptimInstanceAsyncSingleCrit or OptimInstance AsyncMultiCrit.

Details

OptimInstanceAsync is an abstract base class that implements the base functionality each instance
must provide.

Super class

bbotk: :OptimInstance ->OptimInstanceAsync

Public fields

rush (Rush)
Rush controller for parallel optimization.

Methods

Public methods:

e OptimInstanceAsync$new()

e OptimInstanceAsync$print()

e OptimInstanceAsync$clear()

* OptimInstanceAsync$reconnect()
e OptimInstanceAsync$clone()

OptimInstanceAsync 89

Method new(): Creates a new instance of this R6 class.

Usage:

OptimInstanceAsync$new(
objective,
search_space = NULL,
terminator,

check_values = FALSE,
callbacks = NULL,
archive = NULL,

rush = NULL,

label = NA_character_,
man = NA_character_

)

Arguments:

objective (Objective)
Objective function.

search_space (paradox::ParamSet)
Specifies the search space for the Optimizer. The paradox::ParamSet describes either a
subset of the domain of the Objective or it describes a set of parameters together with
a trafo function that transforms values from the search space to values of the domain.
Depending on the context, this value defaults to the domain of the objective.

terminator Terminator
Termination criterion.

check_values (logical(1))
Should points before the evaluation and the results be checked for validity?

callbacks (list of mlr3misc::Callback)
List of callbacks.

archive (Archive).

rush (Rush)
If a rush instance is supplied, the tuning runs without batches.

label (character(1))
Label for this object. Can be used in tables, plot and text output instead of the ID.

man (character(1))
String in the format [pkg]: : [topic] pointing to a manual page for this object. The refer-
enced help package can be opened via method $help().

Method print(): Printer.
Usage:
OptimInstanceAsync$print(...)
Arguments:

... (ignored).

Method clear(): Reset terminator and clear all evaluation results from archive and results.

Usage:
OptimInstanceAsync$clear()

90 OptimInstanceAsyncMultiCrit

Method reconnect(): Reconnect to Redis. The connection breaks when the rush::Rush is saved
to disk. Call this method to reconnect after loading the object.

Usage:
OptimInstanceAsync$reconnect()

Method clone(): The objects of this class are cloneable with this method.

Usage:
OptimInstanceAsync$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

OptimInstanceAsyncMultiCrit
Multi Criteria Optimization Instance for Asynchronous Optimization

Description
The OptimInstance AsyncMultiCrit specifies an optimization problem for an OptimizerAsync. The
function oi_async() creates an OptimInstance AsyncMultiCrit.

Super classes
bbotk: :OptimInstance -> bbotk: :OptimInstanceAsync -> OptimInstanceAsyncMultiCrit

Active bindings

result_x_domain (list())
(transformed) x part of the result in the domain space of the objective.

result_y (numeric(1))
Optimal outcome.

Methods

Public methods:
e OptimInstanceAsyncMultiCrit$new()
e OptimInstanceAsyncMultiCrit$assign_result()
* OptimInstanceAsyncMultiCrit$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

OptimInstanceAsyncMultiCrit 91

OptimInstanceAsyncMultiCrit$new(
objective,
search_space = NULL,
terminator,
check_values = FALSE,
callbacks = NULL,
archive = NULL,
rush = NULL

)

Arguments:

objective (Objective)
Objective function.

search_space (paradox::ParamSet)
Specifies the search space for the Optimizer. The paradox::ParamSet describes either a
subset of the domain of the Objective or it describes a set of parameters together with
a trafo function that transforms values from the search space to values of the domain.
Depending on the context, this value defaults to the domain of the objective.

terminator Terminator
Termination criterion.

check_values (logical(1))
Should points before the evaluation and the results be checked for validity?

callbacks (list of mlr3misc::Callback)
List of callbacks.

archive (Archive).

rush (Rush)
If a rush instance is supplied, the tuning runs without batches.

Method assign_result(): The OptimizerAsync writes the best found points and estimated
performance values here (probably the Pareto set / front). For internal use.

Usage:
OptimInstanceAsyncMultiCrit$assign_result(xdt, ydt, extra = NULL, ...)

Arguments:

xdt (data.table::data.table())
Set of untransformed points / points from the search space. One point per row, e.g. data. table(x1
=c(1, 3), x2=c(2, 4)). Column names have to match ids of the search_space. How-
ever, xdt can contain additional columns.
ydt (numeric(1))
Optimal outcomes, e.g. the Pareto front.
extra (data.table::data.table())
Additional information.

... (any)
ignored.

Method clone(): The objects of this class are cloneable with this method.

Usage:

92 OptimInstanceAsyncSingleCrit

OptimInstanceAsyncMultiCrit$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

OptimInstanceAsyncSingleCrit

Single Criterion Optimization Instance for Asynchronous Optimiza-
tion

Description
The OptimInstanceAsyncSingleCrit specifies an optimization problem for an OptimizerAsync.
The function oi_async() creates an OptimInstanceAsyncSingleCrit.

Super classes

bbotk: :OptimInstance -> bbotk: :OptimInstanceAsync ->OptimInstanceAsyncSingleCrit

Active bindings

result_x_domain (list())
(transformed) x part of the result in the domain space of the objective.

result_y (numeric())
Optimal outcome.

Methods

Public methods:

e OptimInstanceAsyncSingleCrit$new()
e OptimInstanceAsyncSingleCrit$assign_result()
e OptimInstanceAsyncSingleCrit$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
OptimInstanceAsyncSingleCrit$new(
objective,
search_space = NULL,
terminator,

check_values = FALSE,
callbacks = NULL,
archive = NULL,
rush = NULL

)

Arguments:

OptimInstanceAsyncSingleCrit 93

objective (Objective)
Objective function.

search_space (paradox::ParamSet)
Specifies the search space for the Optimizer. The paradox::ParamSet describes either a
subset of the domain of the Objective or it describes a set of parameters together with
a trafo function that transforms values from the search space to values of the domain.
Depending on the context, this value defaults to the domain of the objective.

terminator Terminator
Termination criterion.

check_values (logical(1))
Should points before the evaluation and the results be checked for validity?

callbacks (list of mir3misc::Callback)
List of callbacks.

archive (Archive).

rush (Rush)
If a rush instance is supplied, the tuning runs without batches.

Method assign_result(): The OptimizerAsync object writes the best found point and esti-
mated performance value here. For internal use.

Usage:

OptimInstanceAsyncSingleCrit$assign_result(xdt, y, extra = NULL, ...)

Arguments:

xdt (data.table::data.table())
Set of untransformed points / points from the search space. One point per row, e.g. data. table(x1
=c(1, 3), x2=c(2, 4)). Column names have to match ids of the search_space. How-
ever, xdt can contain additional columns.

y (numeric(1))
Optimal outcome.

extra (data.table::data.table())
Additional information.

... (any)
ignored.
Method clone(): The objects of this class are cloneable with this method.

Usage:
OptimInstanceAsyncSingleCrit$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

94 OptimInstanceBatch

OptimInstanceBatch Optimization Instance for Batch Optimization

Description

The OptimInstanceBatch specifies an optimization problem for an OptimizerBatch. The function
0i() creates an OptimInstanceAsyncSingleCrit or OptimInstance AsyncMultiCrit.

Super class

bbotk: :0OptimInstance -> OptimInstanceBatch

Public fields

objective_multiplicator (integer()).

Active bindings
result (data.table::data.table)
Get result

result_x_search_space (data.table::data.table)
x part of the result in the search space.

result_x_domain (list())
(transformed) x part of the result in the domain space of the objective.

result_y (numeric())
Optimal outcome.

is_terminated (logical(1)).

Methods

Public methods:

e OptimInstanceBatch$new()

e OptimInstanceBatch$eval_batch()

* OptimInstanceBatch$objective_function()
e OptimInstanceBatch$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

OptimInstanceBatch$new(
objective,
search_space = NULL,
terminator,

check_values = TRUE,
callbacks = NULL,
archive = NULL,

OptimInstanceBatch 95

label = NA_character_,
man = NA_character_

)

Arguments:

objective (Objective)
Objective function.

search_space (paradox::ParamSet)
Specifies the search space for the Optimizer. The paradox::ParamSet describes either a
subset of the domain of the Objective or it describes a set of parameters together with
a trafo function that transforms values from the search space to values of the domain.
Depending on the context, this value defaults to the domain of the objective.

terminator Terminator
Termination criterion.

check_values (logical(1))
Should points before the evaluation and the results be checked for validity?

callbacks (list of mlr3misc::Callback)
List of callbacks.

archive (Archive).

label (character(1))
Label for this object. Can be used in tables, plot and text output instead of the ID.

man (character(1))
String in the format [pkg]: : [topic] pointing to a manual page for this object. The refer-
enced help package can be opened via method $help().

Method eval_batch(): Evaluates all input values in xdt by calling the Objective. Applies
possible transformations to the input values and writes the results to the Archive.

Before each batch-evaluation, the Terminator is checked, and if it is positive, an exception of class
terminated_error is raised. This function should be internally called by the Optimizer.

Usage:
OptimInstanceBatch$eval_batch(xdt)

Arguments:

xdt (data.table::data.table())
x values as data.table() with one point per row. Contains the value in the search space
of the OptimInstance object. Can contain additional columns for extra information.

Method objective_function(): Evaluates (untransformed) points of only numeric values.
Returns a numeric scalar for single-crit or a numeric vector for multi-crit. The return value(s) are
negated if the measure is maximized. Internally, $eval_batch() is called with a single row. This
function serves as a objective function for optimizers of numeric spaces - which should always be
minimized.

Usage:

OptimInstanceBatch$objective_function(x)

Arguments:

X (numeric())
Untransformed points.

96 OptimInstanceBatchMultiCrit

Returns: Objective value as numeric(1), negated for maximization problems.

Method clone(): The objects of this class are cloneable with this method.

Usage:
OptimInstanceBatch$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

OptimInstanceBatchMultiCrit
Multi Criteria Optimization Instance for Batch Optimization

Description

The OptimInstanceBatchMultiCrit specifies an optimization problem for an OptimizerBatch. The
function oi () creates an OptimInstanceBatchMultiCrit.

Super classes

bbotk: :OptimInstance -> bbotk: :OptimInstanceBatch -> OptimInstanceBatchMultiCrit

Active bindings

result_x_domain (list())
(transformed) x part of the result in the domain space of the objective.

result_y (numeric(1))
Optimal outcome.

Methods

Public methods:

e OptimInstanceBatchMultiCrit$new()
* OptimInstanceBatchMultiCrit$assign_result()
e OptimInstanceBatchMultiCrit$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
OptimInstanceBatchMultiCrit$new(
objective,
search_space = NULL,
terminator,

check_values = TRUE,
callbacks = NULL,
archive = NULL

OptimInstanceBatchMultiCrit 97

Arguments:
objective (Objective)
Objective function.

search_space (paradox::ParamSet)
Specifies the search space for the Optimizer. The paradox::ParamSet describes either a
subset of the domain of the Objective or it describes a set of parameters together with
a trafo function that transforms values from the search space to values of the domain.
Depending on the context, this value defaults to the domain of the objective.

terminator Terminator
Termination criterion.

check_values (logical(1))
Should points before the evaluation and the results be checked for validity?

callbacks (list of mlr3misc::Callback)
List of callbacks.

archive (Archive).

Method assign_result(): The Optimizer object writes the best found points and estimated
performance values here (probably the Pareto set / front). For internal use.

Usage:
OptimInstanceBatchMultiCrit$assign_result(xdt, ydt, extra = NULL, ...)

Arguments:

xdt (data.table::data.table())
Set of untransformed points / points from the search space. One point per row, e.g. data. table(x1
=c(1, 3), x2=c(2, 4)). Column names have to match ids of the search_space. How-
ever, xdt can contain additional columns.

ydt (data.table::data.table())
Optimal outcome.

extra (data.table::data.table())
Additional information.

... (any)
ignored.
Method clone(): The objects of this class are cloneable with this method.

Usage:
OptimInstanceBatchMultiCrit$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

98 OptimInstanceBatchSingleCrit

OptimInstanceBatchSingleCrit
Single Criterion Optimization Instance for Batch Optimization

Description
The OptimInstanceBatchSingleCrit specifies an optimization problem for an OptimizerBatch. The
function oi () creates an OptimInstanceBatchSingleCrit.

Super classes

bbotk: :OptimInstance -> bbotk: :OptimInstanceBatch -> OptimInstanceBatchSingleCrit

Methods

Public methods:

e OptimInstanceBatchSingleCrit$new()
e OptimInstanceBatchSingleCrit$assign_result()
e OptimInstanceBatchSingleCrit$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
OptimInstanceBatchSingleCrit$new(
objective,
search_space = NULL,
terminator,

check_values = TRUE,
callbacks = NULL,
archive = NULL

)

Arguments:

objective (Objective)
Objective function.

search_space (paradox::ParamSet)
Specifies the search space for the Optimizer. The paradox::ParamSet describes either a
subset of the domain of the Objective or it describes a set of parameters together with
a trafo function that transforms values from the search space to values of the domain.
Depending on the context, this value defaults to the domain of the objective.

terminator Terminator
Termination criterion.

check_values (logical(1))
Should points before the evaluation and the results be checked for validity?

callbacks (list of mIr3misc::Callback)
List of callbacks.

archive (Archive).

OptimInstanceMultiCrit 99

Method assign_result(): The Optimizer object writes the best found point and estimated
performance value here. For internal use.
Usage:
OptimInstanceBatchSingleCrit$assign_result(xdt, y, extra = NULL, ...)
Arguments:

xdt (data.table::data.table())
Set of untransformed points / points from the search space. One point per row, e.g. data. table(x1
=c(1, 3), x2=c(2, 4)). Column names have to match ids of the search_space. How-

ever, xdt can contain additional columns.
y (numeric(1))
Optimal outcome.
extra (data.table::data.table())
Additional information.

... (any)
ignored.

Method clone(): The objects of this class are cloneable with this method.

Usage:
OptimInstanceBatchSingleCrit$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

OptimInstanceMultiCrit
Multi Criteria Optimization Instance for Batch Optimization

Description

OptimInstanceMultiCrit is a deprecated class that is now a wrapper around OptimInstanceBatch-
MultiCerit.

Super classes
bbotk: :0OptimInstance ->bbotk: :OptimInstanceBatch->bbotk: :OptimInstanceBatchMultiCrit
->OptimInstanceMultiCrit

Methods

Public methods:
e OptimInstanceMultiCrit$new()
e OptimInstanceMultiCrit$clone()
Method new(): Creates a new instance of this R6 class.

Usage:

100 OptimInstanceSingleCrit

OptimInstanceMultiCrit$new(

objective,
search_space = NULL,
terminator,
keep_evals = "all",

check_values = TRUE,
callbacks = NULL

)

Arguments:
objective (Objective)
Objective function.

search_space (paradox::ParamSet)
Specifies the search space for the Optimizer. The paradox::ParamSet describes either a
subset of the domain of the Objective or it describes a set of parameters together with
a trafo function that transforms values from the search space to values of the domain.
Depending on the context, this value defaults to the domain of the objective.

terminator Terminator
Termination criterion.

keep_evals (character(1))
Keep all or only best evaluations in archive?

check_values (logical(1))
Should points before the evaluation and the results be checked for validity?

callbacks (list of mlr3misc::Callback)
List of callbacks.
Method clone(): The objects of this class are cloneable with this method.
Usage:
OptimInstanceMultiCrit$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

OptimInstanceSingleCrit
Single Criterion Optimization Instance for Batch Optimization

Description

OptimInstanceSingleCrit is a deprecated class thatis now a wrapper around OptimInstanceBatchSingleCrit.

Super classes

bbotk: :OptimInstance ->bbotk: :0OptimInstanceBatch ->bbotk: :OptimInstanceBatchSingleCrit
-> OptimInstanceSingleCrit

OptimInstanceSingleCrit 101

Methods

Public methods:

* OptimInstanceSingleCrit$new()
* OptimInstanceSingleCrit$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
OptimInstanceSingleCrit$new(
objective,
search_space = NULL,
terminator,
keep_evals = "all",

check_values = TRUE,
callbacks = NULL

)

Arguments:

objective (Objective)
Objective function.

search_space (paradox::ParamSet)
Specifies the search space for the Optimizer. The paradox::ParamSet describes either a
subset of the domain of the Objective or it describes a set of parameters together with
a trafo function that transforms values from the search space to values of the domain.
Depending on the context, this value defaults to the domain of the objective.

terminator Terminator
Termination criterion.

keep_evals (character(1))
Keep all or only best evaluations in archive?

check_values (logical(1))
Should points before the evaluation and the results be checked for validity?

callbacks (list of mlr3misc::Callback)
List of callbacks.

Method clone(): The objects of this class are cloneable with this method.

Usage:
OptimInstanceSingleCrit$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

102 Optimizer

Optimizer Optimizer

Description

The Optimizer implements the optimization algorithm.

Details

Optimizer is an abstract base class that implements the base functionality each optimizer must
provide. A Optimizer object describes the optimization strategy. A Optimizer object must write
its result to the $assign_result() method of the OptimInstance at the end in order to store the
best point and its estimated performance vector.

Progress Bars
$optimize() supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr: :handlers("progress”).

Public fields

id (character(1))
Identifier of the object. Used in tables, plot and text output.

Active bindings

param_set paradox::ParamSet
Set of control parameters.

label (character(1))
Label for this object. Can be used in tables, plot and text output instead of the ID.

man (character(1))
String in the format [pkg]: : [topic] pointing to a manual page for this object. The refer-
enced help package can be opened via method $help().

param_classes (character())
Supported parameter classes that the optimizer can optimize, as given in the paradox: :ParamSet
$class field.

properties (character())
Set of properties of the optimizer. Must be a subset of bbotk_reflections$optimizer_properties.

packages (character())
Set of required packages. A warning is signaled by the constructor if at least one of the
packages is not installed, but loaded (not attached) later on-demand via requireNamespace().

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress

Optimizer 103

Methods

Public methods:
e Optimizer$new()
* Optimizer$format()
e Optimizer$print()
e Optimizer$help()
* Optimizer$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

Optimizer$new(
id = "optimizer",
param_set,
param_classes,
properties,
packages = character(),
label = NA_character_,
man = NA_character_

)
Arguments:
id (character(1))
Identifier for the new instance.

param_set (paradox::ParamSet)
Set of control parameters.

param_classes (character())
Supported parameter classes that the optimizer can optimize, as given in the paradox: : ParamSet
$class field.

properties (character())
Set of properties of the optimizer. Must be a subset of bbotk_reflections$optimizer_properties.

packages (character())
Set of required packages. A warning is signaled by the constructor if at least one of the pack-
ages is not installed, but loaded (not attached) later on-demand via requireNamespace().

label (character(1))
Label for this object. Can be used in tables, plot and text output instead of the ID.

man (character(1))
String in the format [pkg]: : [topic] pointing to a manual page for this object. The refer-
enced help package can be opened via method $help().

Method format(): Helper for print outputs.

Usage:
Optimizer$format(...)

Arguments:

... (ignored).

Method print(): Print method.

104 OptimizerAsync

Usage:
Optimizer$print()

Returns: (character()).

Method help(): Opens the corresponding help page referenced by field $man.

Usage:
Optimizers$help()

Method clone(): The objects of this class are cloneable with this method.
Usage:
Optimizer$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

OptimizerAsync Asynchronous Optimizer

Description

The OptimizerAsync implements the asynchronous optimization algorithm. The optimization is
performed asynchronously on a set of workers.

Details

OptimizerAsync is the abstract base class for all asynchronous optimizers. It provides the basic
structure for asynchronous optimization algorithms. The public method $optimize() is the main
entry point for the optimization and runs in the main process. The method starts the optimization
process by starting the workers and pushing the necessary objects to the workers. Optionally, a set
of points can be created, e.g. an initial design, and pushed to the workers. The private method
$.optimize() is the actual optimization algorithm that runs on the workers. Usually, the method
proposes new points, evaluates them, and updates the archive.

Super class

bbotk: :Optimizer ->OptimizerAsync

Methods

Public methods:
e OptimizerAsync$optimize()
e OptimizerAsync$clone()

Method optimize(): Performs the optimization on a OptimInstanceAsyncSingleCrit or Op-
timInstance AsyncMultiCrit until termination. The single evaluations will be written into the
ArchiveAsync. The result will be written into the instance object.

OptimizerBatch 105

Usage:
OptimizerAsync$optimize(inst)

Arguments:
inst (OptimInstanceAsyncSingleCrit | OptimInstance AsyncMultiCrit).

Returns: data.table::data.table()

Method clone(): The objects of this class are cloneable with this method.

Usage:
OptimizerAsync$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

OptimizerBatch Batch Optimizer

Description

Abstract OptimizerBatch class that implements the base functionality each OptimizerBatch sub-
class must provide. A OptimizerBatch object describes the optimization strategy. A OptimizerBatch
object must write its result to the $assign_result() method of the OptimInstance at the end in
order to store the best point and its estimated performance vector.

Progress Bars
$optimize() supports progress bars via the package progressr combined with a Terminator. Sim-
ply wrap the function in progressr::with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr: :handlers("progress”).

Super class

bbotk: :Optimizer -> OptimizerBatch

Methods

Public methods:
e OptimizerBatch$optimize()
* OptimizerBatch$clone()

Method optimize(): Performs the optimization and writes optimization result into OptimIn-
stanceBatch. The optimization result is returned but the complete optimization path is stored in
ArchiveBatch of OptimInstanceBatch.

Usage:

OptimizerBatch$optimize(inst)

Arguments:

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress

106

inst (OptimInstanceBatch).

Returns: data.table::data.table.

Method clone(): The objects of this class are cloneable with this method.

Usage:
OptimizerBatch$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Progressor

Progressor Progressor

Description

Wraps progressr: :progressor () function and stores current progress.

Public fields

progressor (progressr::progressor()).
max_steps (integer(1)).
current_steps (integer(1)).

unit (character(1)).

Methods

Public methods:
* Progressor$new()
* Progressor$update()
* Progressor$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
Progressor$new(progressor, unit)
Arguments:

progressor (progressr::progressor())
Progressor function.

unit (character(1))
Unit of progress.

Method update(): Updates progressr: :progressor () with current steps.

Usage:
Progressor$update(terminator, archive)

Arguments:

shrink_ps 107

terminator (Terminator).

archive (Archive).

Method clone(): The objects of this class are cloneable with this method.

Usage:
Progressor$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

shrink_ps Shrink a ParamSet towards a point.

Description

Shrinks a paradox::ParamSet towards a point. Boundaries of numeric values are shrinked to an
interval around the point of half of the previous length, while for discrete variables, a random
(currently not chosen) level is dropped.

Note that for paradox::p_lgl()s the value to be shrinked around is set as the default value
instead of dropping a level. Also, a tag shrinked is added.

Note that the returned paradox::ParamSet has lost all its original defaults, as they may have be-
come infeasible.

If the paradox::ParamSet has a trafo, x is expected to contain the transformed values.

Usage

shrink_ps(param_set, x, check.feasible = FALSE)

Arguments
param_set (paradox::ParamSet)
The paradox::ParamSet to be shrinked.
X (data.table::data.table)

data.table::data.table with one row containing the point to shrink around.

check.feasible (logical(1))
Should feasibility of the parameters be checked? If feasibility is not checked,
and invalid values are present, no shrinking will be done. Must be turned off in
the case of the paradox::ParamSet having a trafo. Default is FALSE.

Value

paradox::ParamSet

108 Terminator

Examples

library(paradox)
library(data.table)
param_set = ps(
x = p_dbl(lower = @, upper = 10),
x2 = p_int(lower = -10, upper = 10),
x3 = p_fct(levels = c("a", "b", "c")),
x4 = p_1gl()
)
X = data.table(x1 =5, x2 = @, x3 = "b", x4 = FALSE)
shrink_ps(param_set, x = x)

terminated_error Termination Error

Description

Error class for termination.

Usage

terminated_error(optim_instance)

Arguments

optim_instance OptimInstance
OptimInstance that terminated.

Terminator Abstract Terminator Class

Description

Abstract Terminator class that implements the base functionality each terminator must provide. A
terminator is an object that determines when to stop the optimization.

Termination of optimization works as follows:

 Evaluations in a instance are performed in batches.
* Before each batch evaluation, the Terminator is checked, and if it is positive, we stop.

* The optimization algorithm itself might decide not to produce any more points, or even might
decide to do a smaller batch in its last evaluation.

Therefore the following note seems in order: While it is definitely possible to execute a fine-grained
control for termination, and for many optimization algorithms we can specify exactly when to stop,
it might happen that too few or even too many evaluations are performed, especially if multiple
points are evaluated in a single batch (c.f. batch size parameter of many optimization algorithms).
So it is advised to check the size of the returned archive, in particular if you are benchmarking
multiple optimization algorithms.

Terminator 109

Technical details

Terminator subclasses can overwrite .status() to support progress bars via the package pro-
gressr. The method must return the maximum number of steps (max_steps) and the currently
achieved number of steps (current_steps) as a named integer vector.

Public fields

id (character(1))
Identifier of the object. Used in tables, plot and text output.

Active bindings

param_set paradox::ParamSet
Set of control parameters.

label (character(1))
Label for this object. Can be used in tables, plot and text output instead of the ID.

man (character(1))
String in the format [pkg]: : [topic] pointing to a manual page for this object. The refer-
enced help package can be opened via method $help().

properties (character())
Set of properties of the terminator. Must be a subset of bbotk_reflections$terminator_properties.

unit (character())
Unit of steps.

Methods
Public methods:

e Terminator$new()

e Terminator$format()

e Terminator$print()

e Terminator$status()

* Terminator$remaining_time()
* Terminator$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

Terminator$new(
id,
param_set = ps(),
properties = character(),
unit = "percent”,
label = NA_character_,
man = NA_character_

)

Arguments:

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progressr

110 Terminator

id (character(1))
Identifier for the new instance.

param_set (paradox::ParamSet)
Set of control parameters.

properties (character())
Set of properties of the terminator. Must be a subset of bbotk_reflections$terminator_properties.

unit (character())
Unit of steps.

label (character(1))
Label for this object. Can be used in tables, plot and text output instead of the ID.

man (character(1))
String in the format [pkg]: : [topic] pointing to a manual page for this object. The refer-

enced help package can be opened via method $help().
Method format(): Helper for print outputs.

Usage:
Terminator$format(with_params = FALSE, ...)

Arguments:

with_params (logical(1))
Add parameter values to format string.

... (ignored).

Method print(): Printer.

Usage:
Terminator$print(...)

Arguments:

... (ignored).
Method status(): Returns how many progression steps are made (current_steps) and the
amount steps needed for termination (max_steps).

Usage:
Terminator$status(archive)

Arguments:

archive (Archive).

Returns: named integer(2).
Method remaining_time(): Returns remaining runtime in seconds. If the terminator is not
time-based, the reaming runtime is Inf.

Usage:
Terminator$remaining_time(archive)

Arguments:

archive (Archive).

Returns: integer(1).

trafo_xs 111

Method clone(): The objects of this class are cloneable with this method.

Usage:
Terminator$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other Terminator: mlr_terminators, mlr_terminators_clock_time, mlr_terminators_combo,
mlr_terminators_evals,mlr_terminators_none, mlr_terminators_perf_reached, mlr_terminators_run_time,
mlr_terminators_stagnation, mlr_terminators_stagnation_batch, mlr_terminators_stagnation_hypervolume

trafo_xs Calculate the transformed x-values

Description

Transforms a given 1list() to a list with transformed x values.

Usage

trafo_xs(xs, search_space)

Arguments

XS (1istQ))
List of x-values.

search_space paradox::ParamSet
Search space.

trm Syntactic Sugar Terminator Construction

Description
This function complements mlr_terminators with functions in the spirit of mlr_sugar from mlr3.

Usage
trm(.key, ...)

trms(.keys, ...)

https://CRAN.R-project.org/package=mlr3

112

Arguments

.key

.keys

Value

trm

(character(1))
Key passed to the respective dictionary to retrieve the object.

(named list())

Named arguments passed to the constructor, to be set as parameters in the para-
dox::ParamSet, or to be set as public field. Seemlr3misc::dictionary_sugar_get()
for more details.

(character())
Keys passed to the respective dictionary to retrieve multiple objects.

¢ Terminator for trm().

e list of Terminator for trms().

Examples

trm("evals”, n_evals = 10)

Index

* Dictionary
mlr_optimizers, 34

* Optimizer
mlr_optimizers, 34

+x Terminator
mlr_terminators, 59
mlr_terminators_clock_time, 60
mlr_terminators_combo, 61
mlr_terminators_evals, 63
mlr_terminators_none, 65
mlr_terminators_perf_reached, 66
mlr_terminators_run_time, 68
mlr_terminators_stagnation, 69
mlr_terminators_stagnation_batch

71
mlr_terminators_stagnation_hypervolume,
72

Terminator, 108

x datasets
mlr_optimizers, 34
mlr_terminators, 59

adagio: :pureCMAES(), 41

Archive, 5, 17,27, 51, 61-64, 66-68, 70, 71
73,86, 87, 89, 91, 93, 95, 97, 98,
107,110

ArchiveAsync, 7,7,11, 12,17, 104

ArchiveAsyncFrozen, 11, 17

ArchiveBatch, /4, 14, 105

as_terminator, 16

as_terminators (as_terminator), 16

bb_optimize, 18

bbotk (bbotk-package), 4
bbotk-package, 4
bbotk.async_freeze_archive, 11, 17
bbotk.backup, 17

bbotk: :Archive, 7, 11, 14

bbotk: :ArchiveAsync, 11

bbotk: :Objective, 77, 79, 81

113

bbotk: :OptimInstance, 88, 90, 92, 94, 96,
98—-100
:OptimInstanceAsync, 90, 92
:OptimInstanceBatch, 96, 98—-100
:OptimInstanceBatchMultiCrit, 99
:OptimInstanceBatchSingleCrit,
100
:Optimizer, 35, 37-39,41, 43,45, 47,
49, 52, 54, 56, 58, 104, 105
:OptimizerAsync, 35, 37, 38
:OptimizerBatch, 39,41, 43,45, 47,
49, 52, 54, 56, 58
:Terminator, 60, 61, 64—66, 68, 69,
71,72
bbotk_reflections$optimizer_properties
102, 103
bbotk_reflections$terminator_properties,
109, 110
branin, 20
branin_wu (branin), 20

bbotk:
bbotk:
bbotk:
bbotk:

bbotk:

bbotk:
bbotk:

bbotk:

callback_async, 23
callback_async(), 21, 29
callback_batch, 25
callback_batch(), 22, 30
CallbackAsync, 17, 21,21, 23, 29
CallbackBatch, 17, 22, 22, 25, 30
clbk(), 21, 22

Codomain, 5, 27
ContextAsync, 23, 25, 29
ContextBatch, 25, 27, 30, 74

data.table::data.table, 7, 11, 14, 29-31,
35-37,43, 63, 85, 86, 94, 106, 107

data.table::data.table(), 7, 10, 11,
14-16, 35, 59, 76, 80-82, 91, 93, 97,
99, 105

dictionary, 21, 22, 35, 36, 38, 39,41, 43,45
46, 49, 52, 54, 57, 60, 61, 63, 65, 60,
68, 69,71,72,85,112

114

GenSA: :GenSA(), 46, 47

irace: :defaultScenario(), 50
irace::irace(), 50
is_dominated, 32

local_search, 32
local_search(), 33, 54
local_search_control, 33, 33
local_search_control(), 33, 54

mlr3misc::Callback, 21, 22, 74, 83, 84, 87.
89, 91, 93, 95, 97, 98, 100, 101
mlr3misc: :Context, 29, 30
mlr3misc::Dictionary, 34, 35, 59
mlr3misc::dictionary_sugar_get(), 85,
112
mlr_callbacks, 21, 22
mlr_optimizers, 18, 34, 35, 36, 38, 39, 41,
43,45, 46,49, 52, 54, 57, 85
mlr_optimizers_async_design_points, 35
mlr_optimizers_async_grid_search, 36
mlr_optimizers_async_random_search, 37
mlr_optimizers_chain, 38
mlr_optimizers_cmaes, 41
mlr_optimizers_design_points, 42
mlr_optimizers_focus_search, 44
mlr_optimizers_gensa, 46
mlr_optimizers_grid_search, 48
mlr_optimizers_irace, 50
mlr_optimizers_local_search, 54
mlr_optimizers_nloptr, 55
mlr_optimizers_random_search, 57
mlr_terminators, 59, 60, 61, 63-73, 111
mlr_terminators_clock_time, 59, 60, 63
64, 66, 67,69, 70,72, 73,111
mlr_terminators_combo, 59, 61, 61, 64, 66,
67,69, 70,72, 73,111
mlr_terminators_evals, 59, 61, 63, 63, 66,
67,69, 70,72, 73,111
mlr_terminators_none, 59, 61, 63, 64, 65,
67,69, 70,72, 73, 111
mlr_terminators_perf_reached, 59, 61, 63,
64, 66, 66, 69, 70,72, 73,111
mlr_terminators_run_time, 59, 61, 63, 64,
66, 67,68, 70,72, 73,111
mlr_terminators_stagnation, 59, 61, 63
64, 66, 67,69, 69, 72, 73,111

INDEX

mlr_terminators_stagnation_batch, 59,
61,63, 64,66, 67,69, 70,71,73, 111

mlr_terminators_stagnation_hypervolume,
59,61, 63, 64, 66, 67,69, 70, 72,72,
111

nloptr::nl.grad, 55
nloptr::nloptr(), 55
nloptr::nloptr.print.options(), 55

Objective, 6,8, 14, 15,18, 19,27, 51,73,
83-87,89, 91, 93, 95, 97, 98, 100,
101

ObjectiveRFun, 77

ObjectiveRFunDt, 79

ObjectiveRFunMany, 81

oi, 83

0i(), 94, 96, 98

oi_async, 84

oi_async(), 88, 90, 92

opt, 85

opt(), 34-36, 38, 39,41, 43,45, 46, 49, 52,
54,57

OptimInstance, 29-31, 36, 37, 76, 82, 85, 87,
95,102, 105, 108

OptimInstanceAsync, 88

OptimInstanceAsyncMultiCrit, 84, 88, 90,
90, 94, 104, 105

OptimInstanceAsyncSingleCrit, 84, 88, 92,
92,94, 104, 105

OptimInstanceBatch, 38, 39, 94, 105, 106

OptimInstanceBatchMultiCrit, 19, 83, 96,
96, 99

OptimInstanceBatchSingleCrit, 19, 83, 98,
98

OptimInstanceMultiCrit, 99

OptimInstanceSingleCrit, 100

Optimizer, 5, 6, 8, 14, 15, 18, 19, 29-31,
34-36, 38, 39,41, 43, 45, 46, 49, 52,
54,57, 69, 83-87, 89, 91, 93, 95,
97-101, 102

OptimizerAsync, 88, 90-93, 104, 104

OptimizerAsyncDesignPoints

(mlr_optimizers_async_design_points),

35
OptimizerAsyncGridSearch

(mlr_optimizers_async_grid_search),

36

INDEX

OptimizerAsyncRandomSearch
(mlr_optimizers_async_random_search),
37

OptimizerBatch, 38, 39, 94, 96, 98, 105

OptimizerBatchChain, 39

OptimizerBatchChain
(mlr_optimizers_chain), 38

OptimizerBatchCmaes
(mlr_optimizers_cmaes), 41

OptimizerBatchDesignPoints
(mlr_optimizers_design_points),
42

OptimizerBatchFocusSearch
(mlr_optimizers_focus_search),
44

OptimizerBatchGenSA
(mlr_optimizers_gensa), 46

OptimizerBatchGridSearch, 65

OptimizerBatchGridSearch
(mlr_optimizers_grid_search),
48

OptimizerBatchIrace
(mlr_optimizers_irace), 50

OptimizerBatchLocalSearch
(mlr_optimizers_local_search),
54

OptimizerBatchNLoptr
(mlr_optimizers_nloptr), 55

OptimizerBatchRandomSearch
(mlr_optimizers_random_search),
57

opts (opt), 85

opts(), 34, 35

paradox: :generate_design_grid(), 36, 48,
49

paradox::p_lgl(), 107

paradox: :ParamSet, 5, 6, 8, 15, 19, 27, 28,
33,74, 75,78, 80,82-87, 89, 91, 93,
95, 97, 98, 100-103, 107, 109-112

paradox: :ParamSetCollection, 39

POSIXct, 5

Progressor, 106

R6, 5, 8, 12, 14, 28, 30, 31, 36-39, 41, 43, 45,
47,49, 52, 54, 56, 58, 60, 62, 64, 65,
67, 68,70, 71,73,75,77,79, 81, 86,
89, 90, 92, 94, 96, 98, 99, 101, 103,
106, 109

115

R6::R6Class, 34, 59
requireNamespace(), 102, 103
rush: :Rush, 7, 90

shrink_ps, 44, 107
Sys.time(), 60

terminated_error, 108

Terminator, 16, 38, 39, 41, 43—45,47,49, 51,
52, 54-56, 58-73, 83, 84, 86, 87, 89,
91, 93, 95, 97, 98, 100-102, 105,
107, 108, 108, 112

TerminatorClockTime
(mlr_terminators_clock_time),
60

TerminatorCombo, /9, 38, 39

TerminatorCombo
(mlr_terminators_combo), 61

TerminatorEvals, 51

TerminatorEvals
(mlr_terminators_evals), 63

TerminatorNone, 19, 39

TerminatorNone (mlr_terminators_none),
65

TerminatorPerfReached
(mlr_terminators_perf_reached),
66

TerminatorRunTime
(mlr_terminators_run_time), 68

TerminatorStagnation
(mlr_terminators_stagnation),
69

TerminatorStagnationBatch
(mlr_terminators_stagnation_batch),
71

TerminatorStagnationHypervolume
(mlr_terminators_stagnation_hypervolume),
72

trafo_xs, 111

trm, 111

trm(), 59-61, 63, 65, 66, 68, 69, 71, 72

trms (trm), 111

trms(), 59

	bbotk-package
	Archive
	ArchiveAsync
	ArchiveAsyncFrozen
	ArchiveBatch
	as_terminator
	bbotk.async_freeze_archive
	bbotk.backup
	bb_optimize
	branin
	CallbackAsync
	CallbackBatch
	callback_async
	callback_batch
	Codomain
	ContextAsync
	ContextBatch
	is_dominated
	local_search
	local_search_control
	mlr_optimizers
	mlr_optimizers_async_design_points
	mlr_optimizers_async_grid_search
	mlr_optimizers_async_random_search
	mlr_optimizers_chain
	mlr_optimizers_cmaes
	mlr_optimizers_design_points
	mlr_optimizers_focus_search
	mlr_optimizers_gensa
	mlr_optimizers_grid_search
	mlr_optimizers_irace
	mlr_optimizers_local_search
	mlr_optimizers_nloptr
	mlr_optimizers_random_search
	mlr_terminators
	mlr_terminators_clock_time
	mlr_terminators_combo
	mlr_terminators_evals
	mlr_terminators_none
	mlr_terminators_perf_reached
	mlr_terminators_run_time
	mlr_terminators_stagnation
	mlr_terminators_stagnation_batch
	mlr_terminators_stagnation_hypervolume
	Objective
	ObjectiveRFun
	ObjectiveRFunDt
	ObjectiveRFunMany
	oi
	oi_async
	opt
	OptimInstance
	OptimInstanceAsync
	OptimInstanceAsyncMultiCrit
	OptimInstanceAsyncSingleCrit
	OptimInstanceBatch
	OptimInstanceBatchMultiCrit
	OptimInstanceBatchSingleCrit
	OptimInstanceMultiCrit
	OptimInstanceSingleCrit
	Optimizer
	OptimizerAsync
	OptimizerBatch
	Progressor
	shrink_ps
	terminated_error
	Terminator
	trafo_xs
	trm
	Index

