Package 'bage'

January 8, 2025

Type Package

Title Bayesian Estimation and Forecasting of Age-Specific Rates

Version 0.9.0

Description Fast Bayesian estimation and forecasting of age-specific rates, probabilities, and means, based on 'Template Model Builder'.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Depends R (>= 4.3.0), rvec (>= 0.0.7)

Imports cli, generics, Matrix, methods, parallel, poputils (>= 0.3.3), sparseMVN, stats, tibble, TMB, utils, vctrs

Suggests bookdown, dplyr, ggplot2, knitr, lifecycle, rmarkdown, testthat (>= 3.0.0), tidyr

Config/testthat/edition 3

RoxygenNote 7.3.2

LinkingTo TMB, RcppEigen

VignetteBuilder knitr

URL https://bayesiandemography.github.io/bage/,

https://github.com/bayesiandemography/bage

BugReports https://github.com/bayesiandemography/bage/issues

NeedsCompilation yes

Author John Bryant [aut, cre], Junni Zhang [aut], Bayesian Demography Limited [cph]

Maintainer John Bryant <john@bayesiandemography.com>

Repository CRAN

Date/Publication 2025-01-08 05:30:02 UTC

Contents

AR	. 3
AR1	. 5
augment.bage_mod	. 7
components.bage_mod	. 9
components.bage_ssvd	. 11
computations	. 12
datamods	. 13
fit.bage_mod	. 14
forecast.bage_mod	. 16
generate.bage_prior_ar	
generate.bage_ssvd	
HFD	
HMD	
isl_deaths	
is_fitted	
Known	
kor_births	• - •
LFP	
LFP	
Lin_AR	
Lin_AR1	
mod_binom	
mod_norm	
mod_pois	
N	
NFix	
nld_expenditure	
nzl_divorces	
nzl_households	
nzl_injuries	
print.bage_mod	
priors	
replicate_data	. 46
report_sim	. 48
RW	. 50
RW2	. 52
RW2_Infant	. 54
RW2_Seas	. 56
RW_Seas	. 59
set_datamod_outcome_rr3	. 61
set_disp	. 62
set_n_draw	
set prior	
set_var_age	
set_var_sexgender	
set_var_time	

72
75
79
80
81
82
83

Index

AR

Autoregressive Prior

Description

Use an autoregressive process to model a main effect, or use multiple autoregressive processes to model an interaction. Typically used with time effects or with interactions that involve time.

Usage

```
AR(
    n_coef = 2,
    s = 1,
    shape1 = 5,
    shape2 = 5,
    along = NULL,
    con = c("none", "by")
)
```

Arguments

n_coef	Number of lagged terms in the model, ie the order of the model. Default is 2.
S	Scale for the prior for the innovations. Default is 1.
shape1, shape2	Parameters for beta-distribution prior for coefficients. Defaults are 5 and 5.
along	Name of the variable to be used as the 'along' variable. Only used with interac- tions.
con	Constraints on parameters. Current choices are "none" and "by". Default is "none". See below for details.

Details

If AR() is used with an interaction, then separate AR processes are constructed along the 'along' variable, within each combination of the 'by' variables.

By default, the autoregressive processes have order 2. Alternative choices can be specified through the n_coef argument.

Argument s controls the size of innovations. Smaller values for s tend to give smoother estimates.

Value

An object of class "bage_prior_ar".

Mathematical details

When AR() is used with a main effect,

$$\beta_j = \phi_1 \beta_{j-1} + \dots + \phi_{n_coef} \beta_{j-n_coef} + \epsilon_j$$
$$\epsilon_j \sim \mathbf{N}(0, \omega^2),$$

and when it is used with an interaction,

$$\beta_{u,v} = \phi_1 \beta_{u,v-1} + \dots + \phi_{n_coef} \beta_{u,v-n_coef} + \epsilon_{u,v}$$
$$\epsilon_{u,v} \sim \mathbf{N}(0, \omega^2),$$

where

- β is the main effect or interaction;
- *j* denotes position within the main effect;
- v denotes position within the 'along' variable of the interaction; and
- u denotes position within the 'by' variable(s) of the interaction.

Internally, AR() derives a value for ω that gives every element of β a marginal variance of τ^2 . Parameter τ has a half-normal prior

$$\tau \sim \mathbf{N}^+(0, \mathbf{s}^2).$$

The correlation coefficients $\phi_1, \cdots, \phi_{n_coef}$ each have prior

$$\phi_k \sim \text{Beta}(\text{shape1}, \text{shape2}).$$

Constraints

With some combinations of terms and priors, the values of the intercept, main effects, and interactions are are only weakly identified. For instance, it may be possible to increase the value of the intercept and reduce the value of the remaining terms in the model with no effect on predicted rates and only a tiny effect on prior probabilities. This weak identifiability is typically harmless. However, in some applications, such as forecasting, or when trying to obtain interpretable values for main effects and interactions, it can be helpful to increase identifiability through the use of constraints.

Current options for constraints are:

- "none" No constraints. The default.
- "by" Only used in interaction terms that include 'along' and 'by' dimensions. Within each value of the 'along' dimension, terms across each 'by' dimension are constrained to sum to 0.

References

• AR() is based on the TMB function ARk

See Also

- AR1() Special case of AR(). Can be more numerically stable than higher-order models.
- Lin_AR(), Lin_AR1() Straight line with AR errors
- priors Overview of priors implemented in bage
- set_prior() Specify prior for intercept, main effect, or interaction

Examples

AR(n_coef = 3)
AR(n_coef = 3, s = 2.4)
AR(along = "cohort")

AR1

Autoregressive Prior of Order 1

Description

Use an autoregressive process of order 1 to model a main effect, or use multiple AR1 processes to model an interaction. Typically used with time effects or with interactions that involve time.

Usage

```
AR1(
    s = 1,
    shape1 = 5,
    shape2 = 5,
    min = 0.8,
    max = 0.98,
    along = NULL,
    con = c("none", "by")
)
```

Arguments

S	Scale for the prior for the innovations. Default is 1.
shape1, shape2	Parameters for beta-distribution prior for coefficients. Defaults are 5 and 5.
min, max	Minimum and maximum values for autocorrelation coefficient. Defaults are 0.8 and 0.98 .
along	Name of the variable to be used as the 'along' variable. Only used with interactions.
con	Constraints on parameters. Current choices are "none" and "by". Default is "none". See below for details.

Details

If AR() is used with an interaction, separate AR processes are constructed along the 'along' variable, within each combination of the 'by' variables.

Arguments min and max can be used to specify the permissible range for autocorrelation.

Argument s controls the size of innovations. Smaller values for s tend to give smoother estimates.

Value

An object of class "bage_prior_ar".

Mathematical details

When AR1() is used with a main effect,

$$\beta_j = \phi \beta_{j-1} + \epsilon_j$$
$$\epsilon_j \sim \mathbf{N}(0, \omega^2),$$

and when it is used with an interaction,

$$\beta_{u,v} = \phi \beta_{u,v-1} + \epsilon_{u,v}$$
$$\epsilon_{u,v} \sim \mathbf{N}(0, \omega^2),$$

where

- β is the main effect or interaction;
- *j* denotes position within the main effect;
- v denotes position within the 'along' variable of the interaction; and
- u denotes position within the 'by' variable(s) of the interaction.

Internally, AR1() derives a value for ω that gives every element of β a marginal variance of τ^2 . Parameter τ has a half-normal prior

$$\tau \sim \mathbf{N}^+(0, \mathbf{s}^2),$$

where s is provided by the user.

Coefficient ϕ is constrained to lie between min and max. Its prior distribution is

$$\phi = (\mathtt{max} - \mathtt{min}) \phi' - \mathtt{min}$$

where

$$\phi' \sim ext{Beta}(ext{shape1}, ext{shape2}).$$

Constraints

With some combinations of terms and priors, the values of the intercept, main effects, and interactions are are only weakly identified. For instance, it may be possible to increase the value of the intercept and reduce the value of the remaining terms in the model with no effect on predicted rates and only a tiny effect on prior probabilities. This weak identifiability is typically harmless. However, in some applications, such as forecasting, or when trying to obtain interpretable values for main effects and interactions, it can be helpful to increase identifiability through the use of constraints.

Current options for constraints are:

- "none" No constraints. The default.
- "by" Only used in interaction terms that include 'along' and 'by' dimensions. Within each value of the 'along' dimension, terms across each 'by' dimension are constrained to sum to 0.

References

- AR1() is based on the TMB function AR1
- The defaults for min and max are based on the defaults for forecast::ets().

See Also

- AR() Generalization of AR1()
- Lin_AR(), Lin_AR1() Line with AR errors
- priors Overview of priors implemented in bage
- set_prior() Specify prior for intercept, main effect, or interaction

Examples

```
AR1()
AR1(min = 0, max = 1, s = 2.4)
AR1(along = "cohort")
```

augment.bage_mod Extract Data and Modelled Values

Description

Extract data and rates, probabilities, or means from a model object. The return value consists of the original data and one or more columns of modelled values.

Usage

```
## S3 method for class 'bage_mod'
augment(x, quiet = FALSE, ...)
```

Arguments

x	Object of class "bage_mod", typically created with mod_pois(), mod_binom(), or mod_norm().
quiet	Whether to suppress messages. Default is FALSE.
	Unused. Included for generic consistency only.

Value

A tibble, with the original data plus one or more of the following columns:

- .<outcome> Corrected or extended version of the outcome variable, in applications where the outcome variable has missing values, or a data model is being used.
- .observed 'Direct' estimates of rates or probabilities, ie counts divided by exposure or size (in Poisson and binomial models.)
- .fitted Draws of rates, probabilities, or means.
- .expected Draws of expected values for rates or probabilities (in Poisson that include exposure, or in binomial models.)

Uncertain quantities are represented using rvecs.

Fitted vs unfitted models

augment() is typically called on a fitted model. In this case, the modelled values are draws from the joint posterior distribution for rates, probabilities, or means.

augment() can, however, be called on an unfitted model. In this case, the modelled values are draws from the joint prior distribution. In other words, the modelled values are informed by model priors, and by values for exposure, size, or weights, but not by observed outcomes.

Imputed values for outcome variable

augment() automatically imputes any missing values for the outcome variable. If outcome variable var has one or more NAs, then augment creates a variable .var holding original and imputed values.

Data model for outcome variable

If the overall model includes a data model for the outcome variable var, then augment() creates a new variable .var containing estimates of the true value for the outcome.

See Also

- components() Extract values for hyper-parameters from a model
- tidy() Short summary of a model
- mod_pois() Specify a Poisson model
- mod_binom() Specify a binomial model
- mod_norm() Specify a normal model
- fit() Fit a model

- is_fitted() See if a model has been fitted
- unfit() Reset a model
- datamods Overview of data models implemented in bage

Examples

```
## specify model
mod <- mod_pois(divorces ~ age + sex + time,</pre>
                data = nzl_divorces,
                exposure = population) |>
  set_n_draw(n_draw = 100) ## smaller sample, so 'augment' faster
## draw from the prior distribution
mod |> augment()
## fit model
mod <- mod |>
  fit()
## draw from the posterior distribution
mod |> augment()
## insert a missing value into outcome variable
divorces_missing <- nzl_divorces</pre>
divorces_missing$divorces[1] <- NA</pre>
## fitting model and calling 'augument'
## creates a new variable called '.divorces'
## holding observed and imputed values
mod_pois(divorces ~ age + sex + time,
         data = divorces_missing,
         exposure = population) |>
  fit() |>
  augment()
## specifying a data model for the
## original data also leads to a new
## variable called '.divorces'
mod_pois(divorces ~ age + sex + time,
         data = nzl_divorces,
         exposure = population) |>
  set_datamod_outcome_rr3() |>
  fit() |>
  augment()
```

components.bage_mod Extract Values for Hyper-Parameters

Description

Extract values for hyper-parameters from a model object. Hyper-parameters include main effects and interactions, dispersion and variance terms, and SVD or spline coefficients.

Usage

```
## S3 method for class 'bage_mod'
components(object, quiet = FALSE, ...)
```

Arguments

object	Object of class "bage_mod", typically created with mod_pois(), mod_binom(), or mod_norm().
quiet	Whether to suppress messages. Default is FALSE.
	Unused. Included for generic consistency only.

Value

A tibble with four columns columns:

The return value contains the following columns:

- term Model term that the hyper-parameter belongs to.
- component Component within term.
- level Element within component .
- .fitted An rvec containing draws from the posterior distribution.

Fitted vs unfitted models

components() is typically called on a fitted model. In this case, the modelled values are draws from the joint posterior distribution for the hyper-parameters in the model.

components() can, however, be called on an unfitted model. In this case, the modelled values are draws from the joint prior distribution. In other words, the modelled values are informed by model priors, and by any exposure, size, or weights argument in the model, but not by the observed outcomes.

See Also

- augment() Extract data and values for rates, means, or probabilities
- tidy() Extract a one-line summary of a model
- mod_pois() Specify a Poisson model
- mod_binom() Specify a binomial model
- mod_norm() Specify a normal model
- fit() Fit a model
- is_fitted() See if a model has been fitted
- unfit() Reset a model

components.bage_ssvd

Examples

components.bage_ssvd Extract Components used by SVD Summary

Description

Extract the matrix and offset used by a scaled SVD summary of a demographic database.

Usage

```
## S3 method for class 'bage_ssvd'
components(object, n_comp = NULL, indep = NULL, age_labels = NULL, ...)
```

Arguments

object	An object of class "bage_ssvd".
n_comp	The number of components. The default is half the total number of components of object.
indep	Whether to use independent or joint SVDs for each sex/gender. If no value is supplied, an SVD with no sex/gender dimension is used. Note that the default is different from SVD().
age_labels	Age labels for the desired age or age-sex profile. If no labels are supplied, the most detailed profile available is used.
	Not currently used.

Value

A tibble with the offset and components.

computations

Scaled SVDs of demographic databases in bage

- HMD Mortality rates from the Human Mortality Database.
- HFD Fertility rates from the Human Fertility Database.
- LFP Labor forcce participation rates from the OECD.

See Also

- generate() Randomly generate age-profiles, or age-sex profiles, based on a scaled SVD summary.
- SVD() SVD prior for terms involving age.
- SVD_AR1(), SVD_AR(), SVD_RW(), SVD_RW2() Dynamic SVD priors for terms involving age and time.
- poputils::age_labels() Generate age labels.

Examples

```
## females and males combined
components(LFP, n_comp = 3)
## females and males modelled independently
components(LFP, indep = TRUE, n_comp = 3)
## joint model for females and males
components(LFP, indep = FALSE, n_comp = 3)
## specify age groups
labels <- poputils::age_labels(type = "five", min = 15, max = 60)
components(LFP, age_labels = labels)
```

```
computations
```

Information on Computations Performed Duration Model Fitting

Description

Get information on computations performed by function fit(). The information includes the total time used for fitting, and the time used for two particular tasks that can be slow: running the optimizer stats::nlminb(), and drawing from the multivariate normal returned by the TMB. It also includes values returned by the optimizer: the number of iterations needed, and messages about convergence.

Usage

computations(object)

Arguments

object A fitted object of class "bage_mod".

datamods

Value

A tibble with the following variables:

- time_total Seconds used for whole fitting process.
- time_optim Seconds used for optimisiation.
- time_report Seconds used by function TMB::sdreport().
- iter Number of iterations required for optimization.
- message Message about convergence returned by optimizer.

See Also

• mod_pois(),mod_binom(),mod_norm() Specify a model

Data Models

- fit() Fit a model
- tidy() Summarise a model
- set_n_draw() Specify number of posterior draws

Examples

computations(mod)

datamods

Description

The models for rates, probabilities, or means created with functions mod_pois(), mod_binom(), and mod_norm() can be extended by adding data models, also referred to as measurement error models. Data models can be applied to the outcome variable, the exposure variable (in Poisson models), or the size variable (in binomial models).

Details

Data models for outcome variable

Function	Assumptions about data	pois	binom	norm
<pre>set_datamod_outcome_rr3()</pre>	Outcome randomly rounded to base 3	Yes	Yes	No

Data models for exposure or size variable

None implemented yet

fit.bage_mod

Fit a Model

Description

Calculate the posterior distribution for a model.

Usage

```
## S3 method for class 'bage_mod'
fit(
    object,
    method = c("standard", "inner-outer"),
    vars_inner = NULL,
    optimizer = c("multi", "nlminb", "BFGS", "CG"),
    quiet = TRUE,
    start_oldpar = FALSE,
    ...
)
```

Arguments

object	A bage_mod object, created with mod_pois(), mod_binom(), or mod_norm().
method	Estimation method. Current choices are "standard" (the default) and "inner-outer". See below for details.
vars_inner	Names of variables to use for inner model when method is "inner-outer". If NULL(the default) var is the age, sex/gender, and time variables.
optimizer	Which optimizer to use. Current choices are "multi", "nlminb", "BFGS", and "GC". Default is "multi". See below for details.
quiet	Whether to suppress warnings and progress messages from the optimizer. De- fault is TRUE.
start_oldpar	Whether the optimizer should start at previous estimates. Used only when fit() is being called on a fitted model. Default is FALSE.
	Not currently used.

Value

A bage_mod object

Estimation methods

• "standard" All parameters, other than the lowest-level rates, probabilities, or means are jointly estimated within TMB. The default.

fit.bage_mod

• "inner-outer". Multiple-stage estimation, which can be faster than "standard" for models with many parameters. In Step 1, the data is aggregated across all dimensions other than those specified in var_inner, and a model for the inner variables is fitted to the data. In Step 2, the data is aggregated across the remaining variables, and a model for the outer variables is fitted to the data. In Step 3, values for dispersion are calculated. Parameter estimtes from steps 1, 2, and 3 are then combined. "inner-outer" methods are still experimental, and may change in future, eg dividing calculations into chunks in Step 2.

Optimizer

The choices for the optimizer argument are:

- "multi" Try "nlminb", and if that fails, retart from the value where "nlminb" stopped, using "BFGS". The default.
- "nlminb" stats::nlminb()
- "BFGS" stats::optim() using method "BFGS".
- "GC" stats::optim() using method "CG" (conjugate gradient).

See Also

- mod_pois(), mod_binom(), mod_norm() Specify a model
- augment(), components(), tidy() Examine output from a model
- forecast() Forecast, based on a model
- report_sim() Simulation study of a model
- unfit() Reset a model
- is_fitted() Check if a model has been fitted

Examples

```
## specify model
mod <- mod_pois(injuries ~ age + sex + year,</pre>
                 data = nzl_injuries,
                 exposure = popn)
## examine unfitted model
mod
## fit model
mod <- fit(mod)</pre>
## examine fitted model
mod
## extract rates
aug <- augment(mod)</pre>
aug
## extract hyper-parameters
comp <- components(mod)</pre>
comp
```

forecast.bage_mod Use a Model to Make a Forecast

Description

Forecast rates, probabilities, means, and other model parameters.

Usage

```
## S3 method for class 'bage_mod'
forecast(
   object,
   newdata = NULL,
   output = c("augment", "components"),
   include_estimates = FALSE,
   labels = NULL,
   ...
)
```

Arguments

object	A bage_mod object, typically created with mod_pois(), mod_binom(), or mod_norm()
newdata	Data frame with data for future periods.
output	Type of output returned
include_estimat	es
	Whether to include historical estimates along with the forecasts. Default is FALSE.
labels	Labels for future values.
	Not currently used.

Value

A tibble.

How the forecasts are constructed

Internally, the steps involved in a forecast are:

- 1. Forecast time-varying main effects and interactions, e.g. a time main effect, or an age-time interaction.
- 2. Combine forecasts for the time-varying main effects and interactions with non-time-varying parameters, e.g. age effects or dispersion.
- 3. Use the combined parameters to generate values for rates, probabilities or means.
- 4. If a newdata argument has been provided, and output is "augment", draw values for outcome.

vignette("vig2_math") has the technical details.

Output

When output is "augment" (the default), the return value from forecast() looks like output from function augment(). When output is "components", the return value looks like output from components().

When include_estimates is FALSE (the default), the output of forecast() excludes values for time-varying parameters for the period covered by the data. When include_estimates is TRUE, the output includes these values. Setting include_estimates to TRUE can be helpful when creating graphs that combine estimates and forecasts.

Fitted and unfitted models

forecast() is typically used with a fitted model, i.e. a model in which parameter values have been estimated from the data. The resulting forecasts reflect data and priors.

forecast() can, however, be used with an unfitted model. In this case, the forecasts are based entirely on the priors. See below for an example. Experimenting with forecasts based entirely on the priors can be helpful for choosing an appropriate model.

Warning

The interface for forecast() has not been finalised.

See Also

- mod_pois(), mod_binom(), mod_norm() to specify a model
- fit() to fit a model

Examples

```
## specify and fit model
mod <- mod_pois(injuries ~ age * sex + ethnicity + year,</pre>
                data = nzl_injuries,
                exposure = popn) |>
 fit()
mod
## forecasts
mod |>
 forecast(labels = 2019:2024)
## combined estimates and forecasts
mod |>
 forecast(labels = 2019:2024,
           include_estimates = TRUE)
## hyper-parameters
mod |>
 forecast(labels = 2019:2024,
           output = "components")
```

hold back some data and forecast

```
library(dplyr, warn.conflicts = FALSE)
data_historical <- nzl_injuries |>
 filter(year <= 2015)</pre>
data_forecast <- nzl_injuries |>
 filter(year > 2015) |>
 mutate(injuries = NA)
mod_pois(injuries ~ age * sex + ethnicity + year,
         data = data_historical,
         exposure = popn) |>
 fit() |>
 forecast(newdata = data_forecast)
## forecast based on priors only
mod_unfitted <- mod_pois(injuries ~ age * sex + ethnicity + year,</pre>
                         data = nzl_injuries,
                         exposure = popn)
mod_unfitted |>
 forecast(labels = 2019:2024)
```

generate.bage_prior_ar

Generate Values from Priors

Description

Generate draws from priors for model terms.

Usage

```
## S3 method for class 'bage_prior_ar'
generate(x, n_along = 20, n_by = 1, n_draw = 25, ...)
## S3 method for class 'bage_prior_known'
generate(x, n_element = 20, n_draw = 25, ...)
## S3 method for class 'bage_prior_lin'
generate(x, n_along = 20, n_by = 1, n_draw = 25, ...)
## S3 method for class 'bage_prior_linar'
generate(x, n_along = 20, n_by = 1, n_draw = 25, ...)
## S3 method for class 'bage_prior_linex'
generate(x, n_along = 20, n_by = 1, n_draw = 25, ...)
## S3 method for class 'bage_prior_linex'
generate(x, n_along = 20, n_by = 1, n_draw = 25, ...)
## S3 method for class 'bage_prior_norm'
generate(x, n_element = 20, n_draw = 25, ...)
## S3 method for class 'bage_prior_norm'
```

18

```
generate(x, n_element = 20, n_draw = 25, ...)
## S3 method for class 'bage_prior_rwrandom'
generate(x, n_along = 20, n_by = 1, n_draw = 25, ...)
## S3 method for class 'bage_prior_rwrandomseasfix'
generate(x, n_along = 20, n_by = 1, n_draw = 25, ...)
## S3 method for class 'bage_prior_rwrandomseasvary'
generate(x, n_{along} = 20, n_{by} = 1, n_{draw} = 25, ...)
## S3 method for class 'bage_prior_rwzero'
generate(x, n_along = 20, n_by = 1, n_draw = 25, ...)
## S3 method for class 'bage_prior_rwzeroseasfix'
generate(x, n_along = 20, n_by = 1, n_draw = 25, ...)
## S3 method for class 'bage_prior_rwzeroseasvary'
generate(x, n_along = 20, n_by = 1, n_draw = 25, ...)
## S3 method for class 'bage_prior_rw2random'
generate(x, n_along = 20, n_by = 1, n_draw = 25, ...)
## S3 method for class 'bage_prior_rw2randomseasfix'
generate(x, n_{along} = 20, n_{by} = 1, n_{draw} = 25, ...)
## S3 method for class 'bage_prior_rw2randomseasvary'
generate(x, n_along = 20, n_by = 1, n_draw = 25, ...)
## S3 method for class 'bage_prior_rw2zero'
generate(x, n_along = 20, n_by = 1, n_draw = 25, ...)
## S3 method for class 'bage_prior_rw2zeroseasfix'
generate(x, n_along = 20, n_by = 1, n_draw = 25, ...)
## S3 method for class 'bage_prior_rw2zeroseasvary'
generate(x, n_along = 20, n_by = 1, n_draw = 25, ...)
## S3 method for class 'bage_prior_spline'
generate(x, n_along = 20, n_by = 1, n_draw = 25, ...)
## S3 method for class 'bage_prior_svd'
generate(x, n_element = 1, n_draw = 25, ...)
## S3 method for class 'bage_prior_svd_ar'
generate(x, n_along = 5, n_by = 1, n_draw = 25, ...)
## S3 method for class 'bage_prior_svd_rwrandom'
```

```
generate(x, n_along = 5, n_by = 1, n_draw = 25, ...)
## S3 method for class 'bage_prior_svd_rwzero'
generate(x, n_along = 5, n_by = 1, n_draw = 25, ...)
## S3 method for class 'bage_prior_svd_rw2random'
generate(x, n_along = 5, n_by = 1, n_draw = 25, ...)
## S3 method for class 'bage_prior_svd_rw2zero'
generate(x, n_along = 5, n_by = 1, n_draw = 25, ...)
```

Arguments

х	Object of class "bage_prior"
n_along	Number of elements of 'along' dimension. Default is 20.
n_by	Number of combinations of 'by' variables. Default is 1.
n_draw	Number of draws. Default is 25.
	Unused. Included for generic consistency only.
n_element	Number of elements in term, in priors that do not distinguish 'along' and 'by' dimensions. Default is 20.

Details

Some priors distinguish between 'along' and 'by' dimensions, while others do not: see priors for a complete list. Arguments n_along and n_by are used with priors that make the distinction, and argument n_element is used with priors that do not.

Value

A tibble

See Also

• priors Overview of priors implemented in bage

Examples

```
## prior that distinguishes 'along' and 'by'
x <- RW()
generate(x, n_along = 10, n_by = 2)
## prior that does not distinguish
x <- N()
generate(x, n_element = 20)
## SVD_AR(), SVD_RW(), and SVD_RW2()
## distinguish 'along' and 'by'
x <- SVD_AR(HFD)
generate(x, n_along = 5, n_by = 2)</pre>
```

```
## SVD() does not
x <- SVD(HFD)
generate(x, n_element = 10)</pre>
```

generate.bage_ssvd Generate Random Age or Age-Sex Profiles

Description

Generate random age or age-sex profiles from an object of class "bage_ssvd". An object of class "bage_ssvd" holds results from an SVD decomposition of demographic data.

Usage

```
## S3 method for class 'bage_ssvd'
generate(x, n_draw = 20, n_comp = NULL, indep = NULL, age_labels = NULL, ...)
```

Arguments

х	An object of class "bage_ssvd".
n_draw	Number of random draws to generate.
n_comp	The number of components. The default is half the total number of components of object.
indep	Whether to use independent or joint SVDs for each sex/gender. If no value is supplied, an SVD with no sex/gender dimension is used. Note that the default is different from SVD().
age_labels	Age labels for the desired age or age-sex profile. If no labels are supplied, the most detailed profile available is used.
	Unused. Included for generic consistency only.

Value

A tibble

Scaled SVDs of demographic databases in bage

- HMD Mortality rates from the Human Mortality Database.
- HFD Fertility rates from the Human Fertility Database.
- LFP Labor force participation rates from the OECD.

See Also

- components() Components used by SVD prior.
- SVD() SVD prior for term involving age.
- SVD_AR1(), SVD_AR(), SVD_RW(), SVD_RW2() Dynamic SVD priors for terms involving age and time.
- poputils::age_labels() Generate age labels.

Examples

```
## SVD for females and males combined
generate(HMD)
```

```
## separate SVDs for females and males
generate(HMD, indep = TRUE)
```

```
## specify age groups
labels <- poputils::age_labels(type = "lt", max = 60)
generate(HMD, age_labels = labels)</pre>
```

HFD

Components from Human Fertility Database

Description

An object of class "bage_ssvd" holding components extracted from mortality data from the Human Fertility Database. The object holds 5 components.

Usage

HFD

Format

Object of class "bage_ssvd".

Source

Derived from data from the Human Fertility Database.Max Planck Institute for Demographic Research (Germany) and Vienna Institute of Demography (Austria). . Code to create HFD is in folder 'data-raw/ssvd_hfd' in the source code for **bage** package.

HMD

Components from Human Mortality Database

Description

An object of class "bage_ssvd" holding components extracted from mortality data from the Human Mortality Database. The object holds 5 components.

Usage

HMD

isl_deaths

Format

Object of class "bage_ssvd".

Source

Derived from data from the Human Mortality Database. Max Planck Institute for Demographic Research (Germany), University of California, Berkeley (USA), and French Institute for Demographic Studies (France). Code to create HMD is in folder 'data-raw/ssvd_hmd' in the source code for **bage** package.

isl_deaths

Deaths in Iceland

Description

Deaths and mid-year populations in Iceland, by age, sex, and calendar year.

Usage

isl_deaths

Format

A tibble with 5,300 rows and the following columns:

- age Single year of age, up to "105+"
- sex "Female" and "Male"
- time Calendar year, 1998-2022
- deaths Counts of deaths
- popn Mid-year population

Source

Tables "Deaths by municipalities, sex and age 1981-2022", and "Average annual population by municipality, age and sex 1998-2022 - Current municipalities", on the Statistics Iceland website. Data downloaded on 12 July 2023.

is_fitted

Description

Test whether fit() has been called on a model object.

Usage

is_fitted(x)

Arguments

х

An object of class "bage_mod".

Value

TRUE or FALSE

See Also

- mod_pois(), mod_binom(), mod_norm() to specify a model
- fit() to fit a model

Examples

Known

Known Prior

Description

Treat an intercept, a main effect, or an interaction as fixed and known.

Usage

Known(values)

Arguments

values A numeric vector

kor_births

Value

An object of class "bage_prior_known".

See Also

- NFix() Prior where level unknown, but variability known.
- priors Overview of priors implemented in bage
- set_prior() Specify prior for intercept, main effect, or interaction

Examples

Known(-2.3) Known(c(0.1, 2, -0.11))

kor_births

Births in South Korea

Description

Births by age of mother, region, and calendar year, 2011-2023.

Usage

kor_births

Format

A tibble with 1,872 rows and the following columns:

- age Five-year age groups from "10-14" to "50-54"'
- region Administrative region
- time Calendar year, 2011-2023
- births Counts of births
- popn Mid-year population

Source

Tables "Live Births by Age Group of Mother, Sex and Birth Order for Provinces", and "Resident Population in Five-Year Age Groups", on the Korean Statistical Information Service website. Data downloaded on 24 September 2024.

Description

An object of class "bage_ssvd" holding components extracted from labor force participation data from the OECD Data Explorer.

Usage

LFP

Format

Object of class "bage_ssvd".

Source

Derived from data in the "Labor Force Indicators" table of the OECD Data Explorer. Code to create LFS is in folder 'data-raw/ssvd_lfp' in the source code for the **bage** package.

٠	
ъ	n
 т	

Linear Prior with Independent Normal Errors

Description

Use a line or lines with independent normal errors to model a main effect or interaction. Typically used with time.

Usage

Lin(s = 1, mean_slope = 0, sd_slope = 1, along = NULL, con = c("none", "by"))

Arguments

S	Scale for the prior for the errors. Default is 1. Can be 0.
mean_slope	Mean in prior for slope of line. Default is 0.
sd_slope	Standard deviation in prior for slope of line. Default is 1.
along	Name of the variable to be used as the 'along' variable. Only used with interactions.
con	Constraints on parameters. Current choices are "none" and "by". Default is "none". See below for details.

LFP

Details

If Lin() is used with an interaction, then separate lines are constructed along the 'along' variable, within each combination of the 'by' variables.

Argument s controls the size of the errors. Smaller values tend to give smoother estimates. s can be zero.

Argument sd_slope controls the size of the slopes of the lines. Larger values can give more steeply sloped lines.

Value

An object of class "bage_prior_lin".

Mathematical details

When Lin() is used with a main effect,

$$\beta_j = \alpha + j\eta + \epsilon_j$$
$$\alpha \sim \mathbf{N}(0, 1)$$
$$\epsilon_j \sim \mathbf{N}(0, \tau^2),$$

and when it is used with an interaction,

$$\begin{split} \beta_{u,v} &\sim \alpha_u + v\eta_u + \epsilon_{u,v} \\ &\alpha_u &\sim \mathbf{N}(0,1) \\ &\epsilon_{u,v} &\sim \mathbf{N}(0,\tau^2), \end{split}$$

where

- β is the main effect or interaction;
- *j* denotes position within the main effect;
- v denotes position within the 'along' variable of the interaction; and
- u denotes position within the 'by' variable(s) of the interaction.

The slopes have priors

$$\eta \sim \mathrm{N}(\mathrm{mean_slope}, \mathrm{sd_slope}^2)$$

and

$$\eta_u \sim \mathrm{N}(\texttt{mean_slope}, \texttt{sd_slope}^2).$$

Parameter τ has a half-normal prior

$$\tau \sim \mathbf{N}^+(0, \mathbf{s}^2).$$

Constraints

With some combinations of terms and priors, the values of the intercept, main effects, and interactions are are only weakly identified. For instance, it may be possible to increase the value of the intercept and reduce the value of the remaining terms in the model with no effect on predicted rates and only a tiny effect on prior probabilities. This weak identifiability is typically harmless. However, in some applications, such as forecasting, or when trying to obtain interpretable values for main effects and interactions, it can be helpful to increase identifiability through the use of constraints.

Current options for constraints are:

- "none" No constraints. The default.
- "by" Only used in interaction terms that include 'along' and 'by' dimensions. Within each value of the 'along' dimension, terms across each 'by' dimension are constrained to sum to 0.

See Also

- Lin_AR() Linear with AR errors
- Lin_AR1() Linear with AR1 errors
- RW2() Second-order random walk
- priors Overview of priors implemented in bage
- set_prior() Specify prior for intercept, main effect, or interaction

Examples

Lin()
Lin(s = 0.5, sd_slope = 2)
Lin(s = 0)
Lin(along = "cohort")

Lin_AR

Linear Prior with Autoregressive Errors

Description

Use a line or lines with autoregressive errors to model a main effect or interaction. Typically used with time.

Usage

```
Lin_AR(
    n_coef = 2,
    s = 1,
    shape1 = 5,
    shape2 = 5,
    mean_slope = 0,
    sd_slope = 1,
```

28

```
along = NULL,
con = c("none", "by")
)
```

Arguments

n_coef	Number of lagged terms in the model, ie the order of the model. Default is 2.
S	Scale for the innovations in the AR process. Default is 1.
shape1, shape2	Parameters for beta-distribution prior for coefficients. Defaults are 5 and 5.
<pre>mean_slope</pre>	Mean in prior for slope of line. Default is 0.
sd_slope	Standard deviation in the prior for the slope of the line. Larger values imply steeper slopes. Default is 1.
along	Name of the variable to be used as the 'along' variable. Only used with interac- tions.
con	Constraints on parameters. Current choices are "none" and "by". Default is "none". See below for details.

Details

If Lin_AR() is used with an interaction, separate lines are constructed along the 'along' variable, within each combination of the 'by' variables.

The order of the autoregressive errors is controlled by the n_coef argument. The default is 2.

Argument s controls the size of the innovations. Smaller values tend to give smoother estimates.

Argument sd_slope controls the slopes of the lines. Larger values can give more steeply sloped lines.

Value

An object of class "bage_prior_linar".

Mathematical details

When Lin_AR() is used with a main effect,

$$\begin{split} \beta_1 &= \alpha + \epsilon_1 \\ \beta_j &= \alpha + (j-1)\eta + \epsilon_j, \quad j > 1 \\ \alpha &\sim \mathbf{N}(0,1) \\ \epsilon_j &= \phi_1 \epsilon_{j-1} + \dots + \phi_{\mathtt{n_coef}} \epsilon_{j-\mathtt{n_coef}} + \varepsilon_j \\ \varepsilon_j &\sim \mathbf{N}(0,\omega^2), \end{split}$$

and when it is used with an interaction,

$$\beta_{u,1} = \alpha_u + \epsilon_{u,1}$$
$$\beta_{u,v} = \eta(v-1) + \epsilon_{u,v}, \quad v = 2, \cdots, V$$

$$\begin{split} \alpha_u &\sim \mathrm{N}(0,1)\\ \epsilon_{u,v} &= \phi_1 \epsilon_{u,v-1} + \dots + \phi_{\mathtt{n_coef}} \epsilon_{u,v-\mathtt{n_coef}} + \varepsilon_{u,v},\\ \varepsilon_{u,v} &\sim \mathrm{N}(0,\omega^2). \end{split}$$

where

- β is the main effect or interaction;
- *j* denotes position within the main effect;
- u denotes position within the 'along' variable of the interaction; and
- u denotes position within the 'by' variable(s) of the interaction.

The slopes have priors

$$\eta \sim \mathrm{N}(\texttt{mean_slope}, \texttt{sd_slope}^2)$$

and

$$\eta_u \sim \mathrm{N}(\mathtt{mean_slope}, \mathtt{sd_slope}^2).$$

Internally, Lin_AR() derives a value for ω that gives ϵ_j or $\epsilon_{u,v}$ a marginal variance of τ^2 . Parameter τ has a half-normal prior

 $\tau \sim \mathbf{N}^+(0, \mathbf{s}^2).$

The correlation coefficients $\phi_1, \dots, \phi_{n_coef}$ each have prior

$$0.5\phi_k - 0.5 \sim \text{Beta}(\text{shape1}, \text{shape2}).$$

Constraints

With some combinations of terms and priors, the values of the intercept, main effects, and interactions are are only weakly identified. For instance, it may be possible to increase the value of the intercept and reduce the value of the remaining terms in the model with no effect on predicted rates and only a tiny effect on prior probabilities. This weak identifiability is typically harmless. However, in some applications, such as forecasting, or when trying to obtain interpretable values for main effects and interactions, it can be helpful to increase identifiability through the use of constraints.

Current options for constraints are:

- "none" No constraints. The default.
- "by" Only used in interaction terms that include 'along' and 'by' dimensions. Within each value of the 'along' dimension, terms across each 'by' dimension are constrained to sum to 0.

See Also

- Lin_AR1() Special case of Lin_AR()
- Lin() Line with independent normal errors
- AR() AR process with no line
- priors Overview of priors implemented in bage
- set_prior() Specify prior for intercept, main effect, or interaction

Lin_AR1

Examples

Lin_AR() Lin_AR(n_coef = 3, s = 0.5, sd_slope = 2)

```
Lin_AR1
```

Linear Prior with Autoregressive Errors of Order 1

Description

Use a line or lines with AR1 errors to model a main effect or interaction. Typically used with time.

Usage

```
Lin_AR1(
    s = 1,
    shape1 = 5,
    shape2 = 5,
    min = 0.8,
    max = 0.98,
    mean_slope = 0,
    sd_slope = 1,
    along = NULL,
    con = c("none", "by")
)
```

Arguments

S	Scale for the innovations in the AR process. Default is 1.
shape1, shape2	Parameters for beta-distribution prior for coefficients. Defaults are 5 and 5.
min, max	Minimum and maximum values for autocorrelation coefficient. Defaults are 0.8 and 0.98 .
<pre>mean_slope</pre>	Mean in prior for slope of line. Default is 0.
sd_slope	Standard deviation in the prior for the slope of the line. Larger values imply steeper slopes. Default is 1.
along	Name of the variable to be used as the 'along' variable. Only used with interac- tions.
con	Constraints on parameters. Current choices are "none" and "by". Default is "none". See below for details.

Details

If Lin_AR1() is used with an interaction, separate lines are constructed along the 'along' variable, within each combination of the 'by' variables.

Arguments min and max can be used to specify the permissible range for autocorrelation.

Argument s controls the size of the innovations. Smaller values tend to give smoother estimates.

Argument sd_slope controls the slopes of the lines. Larger values can give more steeply sloped lines.

Value

An object of class "bage_prior_linar".

Mathematical details

When Lin_AR1() is being used with a main effect,

$$\begin{split} \beta_1 &= \alpha + \epsilon_1 \\ \beta_j &= \alpha + (j-1)\eta + \epsilon_j, \quad j>1 \\ \alpha &\sim \mathrm{N}(0,1) \\ \epsilon_j &= \phi \epsilon_{j-1} + \varepsilon_j \\ \varepsilon &\sim \mathrm{N}(0,\omega^2), \end{split}$$

and when it is used with an interaction,

$$\beta_{u,1} = \alpha_u + \epsilon_{u,1}$$

$$\beta_{u,v} = \eta(v-1) + \epsilon_{u,v}, \quad v = 2, \cdots, V$$

$$\alpha_u \sim \mathbf{N}(0,1)$$

$$\epsilon_{u,v} = \phi \epsilon_{u,v-1} + \varepsilon_{u,v},$$

$$\varepsilon_{u,v} \sim \mathbf{N}(0, \omega^2).$$

where

- β is the main effect or interaction;
- *j* denotes position within the main effect;
- *u* denotes position within the 'along' variable of the interaction; and
- *u* denotes position within the 'by' variable(s) of the interaction.

The slopes have priors

$$\eta \sim \mathrm{N}(\texttt{mean_slope}, \texttt{sd_slope}^2)$$

and

$$\eta_u \sim \mathrm{N}(\mathrm{mean_slope}, \mathrm{sd_slope}^2).$$

Internally, Lin_AR1() derives a value for ω that gives ϵ_j or $\epsilon_{u,v}$ a marginal variance of τ^2 . Parameter τ has a half-normal prior

$$\tau \sim \mathbf{N}^+(0, \mathbf{s}^2),$$

where a value for s is provided by the user.

Coefficient ϕ is constrained to lie between min and max. Its prior distribution is

$$\phi = (\mathtt{max} - \mathtt{min}) \phi' - \mathtt{min}$$

where

$$\phi' \sim \text{Beta}(\text{shape1}, \text{shape2}).$$

mod_binom

Constraints

With some combinations of terms and priors, the values of the intercept, main effects, and interactions are are only weakly identified. For instance, it may be possible to increase the value of the intercept and reduce the value of the remaining terms in the model with no effect on predicted rates and only a tiny effect on prior probabilities. This weak identifiability is typically harmless. However, in some applications, such as forecasting, or when trying to obtain interpretable values for main effects and interactions, it can be helpful to increase identifiability through the use of constraints.

Current options for constraints are:

- "none" No constraints. The default.
- "by" Only used in interaction terms that include 'along' and 'by' dimensions. Within each value of the 'along' dimension, terms across each 'by' dimension are constrained to sum to 0.

References

• The defaults for min and max are based on the defaults for forecast::ets().

See Also

- Lin_AR() Generalization of Lin_AR1()
- Lin() Line with independent normal errors
- AR1() AR1 process with no line
- priors Overview of priors implemented in bage
- set_prior() Specify prior for intercept, main effect, or interaction

Examples

```
Lin_AR1()
Lin_AR1(min = 0, s = 0.5, sd_slope = 2)
```

mod_binom

Specify a Binomial Model

Description

Specify a model where the outcome is drawn from a binomial distribution.

Usage

mod_binom(formula, data, size)

Arguments

formula	An R formula, specifying the outcome and predictors.
data	A data frame containing the outcome and predictor variables, and the number of trials.
size	Name of the variable giving the number of trials, or a formula.

Details

The model is hierarchical. The probabilities in the binomial distribution are described by a prior model formed from dimensions such as age, sex, and time. The terms for these dimension themselves have models, as described in priors. These priors all have defaults, which depend on the type of term (eg an intercept, an age main effect, or an age-time interaction.)

Value

An object of class bage_mod.

Mathematical details

The likelihood is

$$y_i \sim \text{binomial}(\gamma_i; w_i)$$

where

- y_i is a count, such of number of births, for some combination i of classifying variables, such as age, sex, and region;
- γ_i is a probability of 'success'; and
- w_i is the number of trials.

The probabilities γ_i are assumed to be drawn a beta distribution

$$y_i \sim \text{Beta}(\xi^{-1}\mu_i, \xi^{-1}(1-\mu_i))$$

where

- μ_i is the expected value for γ_i ; and
- ξ governs dispersion (ie variance.)

Expected value μ_i equals, on a logit scale, the sum of terms formed from classifying variables,

$$\text{logit}\mu_i = \sum_{m=0}^M \beta_{j_i^m}^{(m)}$$

where

- β^0 is an intercept;
- $\beta^{(m)}, m = 1, \dots, M$, is a main effect or interaction; and

mod_norm

• j_i^m is the element of $\beta^{(m)}$ associated with cell *i*.

The $\beta^{(m)}$ are given priors, as described in priors.

The prior for ξ is described in set_disp().

Specifying size

The size argument can take two forms:

- the name of a variable in data, with or without quote marks, eg "population" or population; or
- a formula, which is evaluated with data as its environment (see below for example).

See Also

- mod_pois() Specify Poisson model
- mod_norm() Specify normal model
- set_prior() Specify non-default prior for term
- set_disp() Specify non-default prior for dispersion
- fit() Fit a model
- forecast() Forecast a model
- report_sim() Do a simulation study on a model

Examples

mod_norm

Specify a Normal Model

Description

Specify a model where the outcome is drawn from a normal distribution.

Usage

mod_norm(formula, data, weights)

Arguments

formula	An R formula, specifying the outcome and predictors.
data	A data frame containing outcome, predictor, and, optionally, weights variables.
weights	Name of the weights variable, a 1, or a formula. See below for details.

Details

The model is hierarchical. The means in the normal distribution are described by a prior model formed from dimensions such as age, sex, and time. The terms for these dimension themselves have models, as described in priors. These priors all have defaults, which depend on the type of term (eg an intercept, an age main effect, or an age-time interaction.)

Internally, the outcome variable scaled to have mean 0 and sd 1.

Value

An object of class bage_mod_norm.

Mathematical details

The likelihood is

$$y_i \sim \mathbf{N}(\mu_i, \xi^2/w_i)$$

where

- y_i is a scaled value for an, such of the log of income, for some combination i of classifying variables, such as age, sex, and region;
- μ_i is a mean;
- ξ is a standard deviation parameter; and
- w_i is a weight.

The scaling of the outcome variable is done internally. If y_i^* is the original, then $y_i = (y_i^* - m)/s$ where m and s are the sample mean and standard deviation of y_i^* .

In some applications, w_i is set to 1 for all *i*.

The means μ_i equal the sum of terms formed from classifying variables,

$$\mu_i = \sum_{m=0}^M \beta_{j_i^m}^{(m)}$$

where

- β^0 is an intercept;
- $\beta^{(m)}, m = 1, \dots, M$, is a main effect or interaction; and
- j_i^m is the element of $\beta^{(m)}$ associated with cell *i*.

The $\beta^{(m)}$ are given priors, as described in priors.

The prior for ξ is described in set_disp().
mod_pois

Specifying weights

The weights argument can take three forms:

- the name of a variable in data, with or without quote marks, eg "wt" or wt;
- the number 1, in which no weights are used; or
- a formula, which is evaluated with data as its environment (see below for example).

See Also

- mod_pois() Specify Poisson model
- mod_binom() Specify binomial model
- set_prior() Specify non-default prior for term
- set_disp() Specify non-default prior for standard deviation
- fit() Fit a model
- forecast() Forecast a model
- report_sim() Do a simulation study on a model

Examples

```
mod_pois
```

Specify a Poisson Model

Description

Specify a model where the outcome is drawn from a Poisson distribution.

Usage

```
mod_pois(formula, data, exposure)
```

Arguments

formula	An R formula, specifying the outcome and predictors.
data	A data frame containing outcome, predictor, and, optionally, exposure variables
exposure	Name of the exposure variable, or a 1, or a formula. See below for details.

Details

The model is hierarchical. The rates in the Poisson distribution are described by a prior model formed from dimensions such as age, sex, and time. The terms for these dimension themselves have models, as described in priors. These priors all have defaults, which depend on the type of term (eg an intercept, an age main effect, or an age-time interaction.)

Value

An object of class bage_mod_pois.

Mathematical details

The likelihood is

$$y_i \sim \text{Poisson}(\gamma_i w_i)$$

where

- subscript *i* identifies some combination of classifying variables, such as age, sex, and time;
- y_i is an outcome, such as deaths;
- γ_i is rates; and
- w_i is exposure.

In some applications, there is no obvious population at risk. In these cases, exposure w_i can be set to 1 for all i.

The rates γ_i are assumed to be drawn a gamma distribution

$$y_i \sim \text{Gamma}(\xi^{-1}, (\xi \mu_i)^{-1})$$

where

- μ_i is the expected value for γ_i ; and
- ξ governs dispersion (ie variance.)

Expected value μ_i equals, on the log scale, the sum of terms formed from classifying variables,

$$\log \mu_i = \sum_{m=0}^M \beta_{j_i^m}^{(m)}$$

where

- β^0 is an intercept;
- $\beta^{(m)}, m = 1, \dots, M$, is a main effect or interaction; and
- j_i^m is the element of $\beta^{(m)}$ associated with cell *i*.

The $\beta^{(m)}$ are given priors, as described in priors.

The prior for ξ is described in set_disp().

38

Specifying exposure

The exposure argument can take three forms:

- the name of a variable in data, with or without quote marks, eg "population" or population;
- the number 1, in which case a pure "counts" model with no exposure, is produced; or
- a formula, which is evaluated with data as its environment (see below for example).

See Also

- mod_binom() Specify binomial model
- mod_norm() Specify normal model
- set_prior() Specify non-default prior for term
- set_disp() Specify non-default prior for dispersion
- fit() Fit a model
- forecast() Forecast a model
- report_sim() Do a simulation study on a model

Examples

Ν

```
Normal Prior
```

Description

Use independent draws from a normal distribution to model a main effect or interaction. Typically used with variables other than age or time, such as region or ethnicity, where there is no natural ordering.

Usage

N(s = 1)

Arguments

s

Scale for the standard deviation. Default is 1.

Details

Argument s controls the size of errors. Smaller values for s tend to give more tightly clustered estimates.

Value

An object of class "bage_prior_norm".

Mathematical details

$$\beta_j \sim \mathbf{N}(0, \tau^2)$$

where β is the main effect or interaction.

Parameter τ has a half-normal prior

$$\tau \sim \mathbf{N}^+(0, \mathbf{s}^2),$$

where s is provided by the user.

See Also

- NFix() Similar to N() but standard deviation parameter is supplied rather than estimated from data
- priors Overview of priors implemented in bage
- set_prior() Specify prior for intercept, main effect, or interaction

Examples

N() N(s = 0.5)

NFix

Normal Prior with Fixed Variance

Description

Normal prior where, in contrast to N(), the variance is treated as fixed and known. Typically used for main effects or interactions where there are too few elements to reliably estimate variance from the available data.

Usage

NFix(sd = 1)

nld_expenditure

Arguments sd

Standard deviation. Default is 1.

Details

NFix() is the default prior for the intercept.

Value

An object of class "bage_prior_normfixed".

Mathematical details

 $\beta_j \sim \mathbf{N}(0, \tau^2)$

where β is the main effect or interaction, and a value for sd is supplied by the user.

See Also

- N() Similar to NFix(), but standard deviation parameter is estimated from the data rather than being fixed in advance
- priors Overview of priors implemented in bage
- set_prior() Specify prior for intercept, main effect, or interaction

Examples

NFix() NFix(sd = 10)

nld_expenditure Per Capita Health Expenditure in the Netherlands, 2003-2011

Description

Per capita health expenditure, in Euros, by diagnostic group, age group, and year, in the Netherlands.

Usage

```
nld_expenditure
```

Format

A tibble with 1,296 rows and the following columns:

- diag Diagnostic group
- age 5-year age groups, with open age group of 85+
- year 2003, 2005, 2007, and 2011

Source

Calculated from data in table "Expenditure by disease, age and gender under the System of Health Accounts (SHA) Framework : Current health spending by age" from OECD database 'OECD.Stat' (downloaded on 25 May 2016) and in table "Historical population data and projections (1950-2050)" from OECD database 'OECD.Stat' (downloaded 5 June 2016).

nzl_divorces

Divorces in New Zealand

Description

Counts of divorces and population, by age, sex, and calendar year, in New Zealand, 2011-2021.

Usage

nzl_divorces

Format

A tibble with 242 rows and the following columns:

- age: 5-year age groups, "15-19" to "65+"
- sex: "Female" or "Male"
- time: Calendar year
- · divorces: Numbers of divorces during year
- population: Person-years lived during year

Source

Divorce counts from data in table "Age at divorces by sex (marriages and civil unions) (Annual-Dec)" in the online database Infoshare on the Statistics New Zealand website. Data downloaded on 22 March 2023. Population estimates derived from data in table "Estimated Resident Population by Age and Sex (1991+) (Annual-Dec)" in the online database Infoshare on the Statistics New Zealand website. Data downloaded on 26 March 2023.

42

nzl_households

Description

Counts of people in one-person households, and counts of people living in any household, by age, region, and year.

Usage

nzl_households

Format

A tibble with 528 rows and the following columns:

- age: 5-year age groups, with open age group of 65+
- region: Region within New Zealand
- year: Calendar year
- oneperson: Count of people living in one-person households
- total: Count of people living in all types of household

Source

Derived from data in table "Household composition by age group, for people in households in occupied private dwellings, 2006, 2013, and 2018 Censuses (RC, TA, DHB, SA2)" in the online database NZ.Stat, on the Statistics New Zealand website. Data downloaded on 3 January 2023.

nzl_injuries

Fatal Injuries in New Zealand

Description

Counts of fatal injuries in New Zealand, by age, sex, ethnicity, and year, plus estimates of the population at risk.

Usage

nzl_injuries

A tibble with 912 rows and the following columns:

- age: 5-year age groups, up to age 55-59
- sex: "Female" or "Male"
- ethnicity: "Maori" or "Non Maori"
- year: Calendar year
- injuries: Count of injuries, randomly rounded to base 3
- popn: Population on 30 June

Source

Derived from data in tables "Estimated Resident Population by Age and Sex (1991+) (Annual-Jun)" and "Maori Ethnic Group Estimated Resident Population by Age and Sex (1991+) (Annual-Jun)" in the online database Infoshare, and table "Count of fatal and serious non-fatal injuries by sex, age group, ethnicity, cause, and severity of injury, 2000-2021" in the online database NZ.Stat, on the Statistics New Zealand website. Data downloaded on 1 January 2023.

print.bage_mod Printing a Model

Description

After calling a function such as mod_pois() or set_prior() it is good practice to print the model object at the console, to check the model's structure. The output from print() has the following components:

- A header giving the class of the model and noting whether the model has been fitted.
- A formula giving the outcome variable and terms for the model.
- A table giving the number of parameters, and (fitted models only) the standard deviation across those parameters, a measure of the term's importance. See priors() and tidy().
- Values for other model settings. See set_disp(), set_var_age(), set_var_sexgender(), set_var_time(), set_n_draw()
- Details on computations (fitted models only). See computations().

Usage

```
## S3 method for class 'bage_mod'
print(x, ...)
```

Arguments

х	Object of class "bage_mod", typically created with mod_pois(), mod_binom(),
	or mod_norm().
	Unused. Included for generic consistency only.

44

priors

Value

x, invisibly.

See Also

- mod_pois(), mod_binom(), mod_norm() Model specification and class
- fit.bage_mod() and is_fitted() Model fitting
- priors Overview of priors for model terms
- tidy.bage_mod() Number of parameters, and standard deviations
- set_disp() Dispersion
- set_var_age(), set_var_sexgender(), set_var_time() Age, sex/gender and time variables
- set_n_draw() Model draws

Examples

priors

Priors for Intercept, Main Effects, Interactions

Description

The models created with functions mod_pois(), mod_binom(), and mod_norm() always include an intercept, and typically include main effects and interactions formed from variables in input data. Most models, for instance include an age effect, and many include an interaction between age and sex/gender, or age and time.

The intercept, main effects, and interactions all have prior models that capture the expected behavior of the term. Current choices for priors summarised in the table below.

Priors where 'forecast' is yes can be used in forecasts for a time-varying terms such as an age-time interactions.

Priors where 'along' is yes distinguish between 'along' and 'by' dimensions.

replicate_data

Details

Prior	Description	Uses	Forecast	Along
N()	Elements drawn from normal distribution	Term with no natural order	Yes	No
NFix()	As for N(), but standard deviation fixed	Term with few elements	Yes	No
Known()	Values treated as known	Simulations, prior knowledge	No	No
RW()	Random walk	Smoothing	Yes	Yes
RW2()	Second-order random walk	Like RW(), but smoother	Yes	Yes
RW_Seas()	Random walk, with seasonal effect	Terms involving time	Yes	Yes
RW2_Seas()	Second-order random walk, with seasonal effect	Term involving time	Yes	Yes
AR()	Auto-regressive prior of order k	Mean reversion	Yes	Yes
AR1()	Auto-regressive prior of order 1 Special case of AR()	Mean reversion	Yes	Yes
Lin()	Linear trend, with independent normal	Parsimonious model for time	Yes	Yes
Lin_AR()	Linear trend, with autoregressive errors	Term involving time	Yes	Yes
Lin_AR1()	Linear trend, with AR1 errors	Terms involving time	Yes	Yes
Sp()	P-Spline (penalised spline)	Smoothing, eg over age	No	Yes
SVD()	Age or age-sex profile based on SVD of database	Age or age-sex	No	No
SVD_AR()	SVD(), but coefficients follow AR()	Age or age-sex and time	Yes	Yes
SVD_AR1()	SVD(), but coefficients follow AR1()	Age or age-sex and time	Yes	Yes
SVD_RW()	SVD(), but coefficients follow RW()	Age or age-sex and time	Yes	Yes
SVD_RW2()	SVD(), but coefficients follow RW2()	Age or age-sex and time	Yes	Yes

Default prior

The rule for selecting a default prior for a term is:

- if term has less than 3 elements, use NFix();
- otherwise, if the term involves time, use RW(), with time as the 'along' dimension;
- otherwise, if the term involves age, use RW(), with age as the 'along' dimension;
- otherwise, use N().

replicate_data Create Replicate Data

Description

Use a fitted model to create replicate datasets, typically as a way of checking a model.

Usage

```
replicate_data(x, condition_on = NULL, n = 19)
```

46

replicate_data

Arguments

х	A fitted model, typically created by calling mod_pois(), mod_binom(), or mod_norm(), and then fit().
condition_on	Parameters to condition on. Either "expected" or "fitted". See details.
n	Number of replicate datasets to create. Default is 19.

Details

Use n draws from the posterior distribution for model parameters to generate n simulated datasets. If the model is working well, these simulated datasets should look similar to the actual dataset.

Value

A tibble with the following structure:

.replicate	data
"Original"	<pre>Original data supplied to mod_pois(), mod_binom(), mod_norm()</pre>
"Replicate 1"	Simulated data.
"Replicate 2"	Simulated data.
"Replicate <n>"</n>	Simulated data.

The condition_on argument

With Poisson and binomial models that include dispersion terms (which is the default), there are two options for constructing replicate data.

- When condition_on is "fitted", the replicate data is created by (i) drawing values from the posterior distribution for rates or probabilities (the γ_i defined in mod_pois() and mod_binom()), and (ii) conditional on these rates or probabilities, drawing values for the outcome variable.
- When condition_on is "expected", the replicate data is created by (i) drawing values from hyper-parameters governing the rates or probabilities (the μ_i and ξ defined in mod_pois() and mod_binom()), then (ii) conditional on these hyper-parameters, drawing values for the rates or probabilities, and finally (iii) conditional on these rates or probabilities, drawing values for the outcome variable.

The default for condition_on is "expected". The "expected" option provides a more severe test for a model than the "fitted" option, since "fitted" values are weighted averages of the "expected" values and the original data.

As described in mod_norm(), normal models have a different structure from Poisson and binomial models, and the distinction between "fitted" and "expected" does not apply.

Data models for outcomes

If a data model has been provided for the outcome variable, then creation of replicate data will include a step where errors are added to outcomes. For instance, the a rr3 data model is used, then replicate_data() rounds the outcomes to base 3.

See Also

- mod_pois(), mod_binom(), mod_norm() Create model.
- fit() Fit model.
- report_sim() Simulation study of model.

Examples

```
mod <- mod_pois(injuries ~ age:sex + ethnicity + year,</pre>
                data = nzl_injuries,
                exposure = 1) |>
 fit()
rep_data <- mod |>
 replicate_data()
library(dplyr)
rep_data |>
 group_by(.replicate) |>
 count(wt = injuries)
## when the overall model includes an rr3 data model,
## replicate data are rounded to base 3
mod_pois(injuries ~ age:sex + ethnicity + year,
         data = nzl_injuries,
         exposure = popn) |>
 set_datamod_outcome_rr3() |>
 fit() |>
 replicate_data()
```

report_sim Simulation Study of a Model

Description

Use simulated data to assess the performance of an estimation model.

Usage

```
report_sim(
  mod_est,
  mod_sim = NULL,
  method = c("standard", "inner-outer"),
  vars_inner = NULL,
  n_sim = 100,
  point_est_fun = c("median", "mean"),
  widths = c(0.5, 0.95),
  report_type = c("short", "long", "full"),
  n_core = 1
)
```

48

report_sim

Arguments

mod_est	The model whose performance is being assessed. An object of class bage_mod.
mod_sim	The model used to generate the simulated data. If no value is supplied, mod_est is used.
method	Estimation method used for mod_est. See fit().
vars_inner	Variables used in inner model with "inner-outer" estimation method. See fit().
n_sim	Number of sets of simulated data to use. Default is 100.
point_est_fun	Name of the function to use to calculate point estimates. The options are "mean" and "median". The default is "mean".
widths	Widths of credible intervals. A vector of values in the interval $(0, 1]$. Default is $c(0.5, 0.95)$.
report_type	Amount of detail in return value. Options are "short" and "long". Default is "short".
n_core	Number of cores to use for parallel processing. If n_{core} is 1 (the default), no parallel processing is done.

Value

A named list with a tibble called "components" and a tibble called "augment".

Warning

The interface for report_sim() is still under development and may change in future.

See Also

- mod_pois(), mod_binom(), mod_norm() Specify a model
- components(), augment() Draw from joint prior or posterior distribution of model
- replicate_data() Generate replicate data for a model

RW

Random Walk Prior

Description

Use a random walk as a model for a main effect, or use multiple random walks as a model for an interaction. Typically used with terms that involve age or time.

Usage

RW(s = 1, sd = 1, along = NULL, con = c("none", "by"))

Arguments

S	Scale for the prior for the innovations. Default is 1.
sd	Standard deviation of initial value. Default is 1. Can be 0.
along	Name of the variable to be used as the 'along' variable. Only used with interac- tions.
con	Constraints on parameters. Current choices are "none" and "by". Default is "none". See below for details.

Details

If RW2() is used with an interaction, a separate random walk is constructed within each combination of the 'by' variables.

Argument s controls the size of innovations. Smaller values for s tend to produce smoother series.

Argument sd controls variance in initial values. Setting sd to 0 fixes initial values at 0.

Value

An object of class "bage_prior_rwrandom" or "bage_prior_rwzero".

Mathematical details

When RW() is used with a main effect,

$$egin{aligned} η_1 \sim \mathrm{N}(0, \mathrm{sd}^2) \ η_j \sim \mathrm{N}(eta_{j-1}, au^2), \quad j>1 \end{aligned}$$

and when it is used with an interaction,

$$\begin{split} \beta_{u,1} &\sim \mathbf{N}(0, \mathbf{sd}^2) \\ \beta_{u,v} &\sim \mathbf{N}(\beta_{u,v-1}, \tau^2), \quad v > 1 \end{split}$$

where

- β is the main effect or interaction;
- *j* denotes position within the main effect;
- v denotes position within the 'along' variable of the interaction; and
- *u* denotes position within the 'by' variable(s) of the interaction.

Parameter τ has a half-normal prior

$$\tau \sim \mathbf{N}^+(0, \mathbf{s}^2),$$

where s is provided by the user.

Constraints

With some combinations of terms and priors, the values of the intercept, main effects, and interactions are are only weakly identified. For instance, it may be possible to increase the value of the intercept and reduce the value of the remaining terms in the model with no effect on predicted rates and only a tiny effect on prior probabilities. This weak identifiability is typically harmless. However, in some applications, such as forecasting, or when trying to obtain interpretable values for main effects and interactions, it can be helpful to increase identifiability through the use of constraints.

Current options for constraints are:

- "none" No constraints. The default.
- "by" Only used in interaction terms that include 'along' and 'by' dimensions. Within each value of the 'along' dimension, terms across each 'by' dimension are constrained to sum to 0.

See Also

- RW_Seas() Random walk with seasonal effect
- RW2() Second-order random walk
- AR() Autoregressive with order k
- AR1() Autoregressive with order 1
- Sp() Smoothing via splines
- SVD() Smoothing over age using singular value decomposition
- priors Overview of priors implemented in bage
- set_prior() Specify prior for intercept, main effect, or interaction

Examples

```
RW()
RW(s = 0.5)
RW(sd = 0)
RW(along = "cohort")
```

RW2

Second-Order Random Walk Prior

Description

Use a second-order random walk as a model for a main effect, or use multiple second-order random walks as a model for an interaction. A second-order random walk is a random walk with drift where the drift term varies. It is typically used with terms that involve age or time, where there are sustained trends upward or downward.

Usage

RW2(s = 1, sd = 1, sd_slope = 1, along = NULL, con = c("none", "by"))

Arguments

S	Scale for the prior for the innovations. Default is 1.
sd	Standard deviation of initial value. Default is 1. Can be 0.
sd_slope	Standard deviation of initial slope. Default is 1.
along	Name of the variable to be used as the 'along' variable. Only used with interac- tions.
con	Constraints on parameters. Current choices are "none" and "by". Default is "none". See below for details.

Details

If RW2() is used with an interaction, a separate random walk is constructed within each combination of the 'by' variables.

Argument s controls the size of innovations. Smaller values for s tend to give smoother series.

Argument sd controls variance in initial values. Setting sd to 0 fixes initial values at 0.

Argument sd_slope controls variance in the initial slope.

Value

An object of class "bage_prior_rw2random" or "bage_prior_rw2zero".

52

Mathematical details

When RW2() is used with a main effect,

$$\begin{split} \beta_1 &\sim \mathrm{N}(0, \mathtt{sd}^2) \\ \beta_2 &\sim \mathrm{N}(\beta_1, \mathtt{sd_slope}^2) \\ \beta_j &\sim \mathrm{N}(2\beta_{j-1} - \beta_{j-2}, \tau^2), \quad j = 2, \cdots, J \end{split}$$

and when it is used with an interaction,

$$\begin{split} \beta_{u,1} &\sim \mathrm{N}(0, \mathrm{sd}^2) \\ \beta_{u,2} &\sim \mathrm{N}(\beta_{u,1}, \mathrm{sd_slope}^2) \\ \beta_{u,v} &\sim \mathrm{N}(2\beta_{u,v-1} - \beta_{u,v-2}, \tau^2), \quad v = 3, \cdots, V \end{split}$$

where

- β is the main effect or interaction;
- *j* denotes position within the main effect;
- v denotes position within the 'along' variable of the interaction; and
- *u* denotes position within the 'by' variable(s) of the interaction.

Parameter τ has a half-normal prior

$$\tau \sim \mathbf{N}^+(0, \mathbf{s}^2)$$

Constraints

•

With some combinations of terms and priors, the values of the intercept, main effects, and interactions are are only weakly identified. For instance, it may be possible to increase the value of the intercept and reduce the value of the remaining terms in the model with no effect on predicted rates and only a tiny effect on prior probabilities. This weak identifiability is typically harmless. However, in some applications, such as forecasting, or when trying to obtain interpretable values for main effects and interactions, it can be helpful to increase identifiability through the use of constraints.

Current options for constraints are:

- "none" No constraints. The default.
- "by" Only used in interaction terms that include 'along' and 'by' dimensions. Within each value of the 'along' dimension, terms across each 'by' dimension are constrained to sum to 0.

See Also

- RW() Random walk
- RW2_Seas() Second order random walk with seasonal effect
- AR() Autoregressive with order k
- AR1() Autoregressive with order 1
- Sp() Smoothing via splines
- SVD() Smoothing over age via singular value decomposition
- priors Overview of priors implemented in bage
- set_prior() Specify prior for intercept, main effect, or interaction

Examples

RW2() RW2(s = 0.5)

Second-Order Random Walk Prior with 'Infant' Indicator

Description

Use a second-order random walk to model variation over age, with an indicator variable for the first age group. Designed for use in models of mortality rates.

Usage

RW2_Infant(s = 1, sd_slope = 1, con = c("none", "by"))

Arguments

S	Scale for the prior for the innovations. Default is 1.
sd_slope	Standard deviation for initial slope of random walk. Default is 1.
con	Constraints on parameters. Current choices are "none" and "by". Default is
	"none". See below for details.

Details

A second-order random walk prior RW2() works well for smoothing mortality rates over age, except at age 0, where there is a sudden jump in rates, reflecting the special risks of infancy. The RW2_Infant() extends the RW2() prior by adding an indicator variable for the first age group.

If RW2_Infant() is used in an interaction, the 'along' dimension is always age, implying that there is a separate random walk along age within each combination of the 'by' variables.

Argument s controls the size of innovations in the random walk. Smaller values for s tend to give smoother series.

Argument sd controls the sl size of innovations in the random walk. Smaller values for s tend to give smoother series.

RW2_Infant

Value

Object of class "bage_prior_rw2infant".

Mathematical details

When RW2_Infant() is used with a main effect,

$$\begin{split} \beta_1 &\sim \mathrm{N}(0,1) \\ \beta_2 &\sim \mathrm{N}(0, \mathtt{sd_slope}^2) \\ \beta_3 &\sim \mathrm{N}(2\beta_2,\tau^2) \\ \beta_j &\sim \mathrm{N}(2\beta_{j-1}-\beta_{j-2},\tau^2), \quad j=3,\cdots,J \end{split}$$

and when it is used with an interaction,

$$\begin{split} \beta_{u,1} &\sim \mathrm{N}(0,1) \\ \beta_{u,2} &\sim \mathrm{N}(0, \mathrm{sd_slope}^2) \\ \beta_{u,3} &\sim \mathrm{N}(2\beta_{u,2}, \tau^2) \\ \beta_{u,v} &\sim \mathrm{N}(2\beta_{u,v-1} - \beta_{u,v-2}, \tau^2), \quad v = 3, \cdots, V \end{split}$$

where

- β is a main effect or interaction;
- *j* denotes position within the main effect;
- v denotes position within the 'along' variable of the interaction; and
- u denotes position within the 'by' variable(s) of the interaction.

Parameter τ has a half-normal prior

$$\tau \sim \mathbf{N}^+(0, \mathbf{s}^2)$$

Constraints

.

With some combinations of terms and priors, the values of the intercept, main effects, and interactions are are only weakly identified. For instance, it may be possible to increase the value of the intercept and reduce the value of the remaining terms in the model with no effect on predicted rates and only a tiny effect on prior probabilities. This weak identifiability is typically harmless. However, in some applications, such as forecasting, or when trying to obtain interpretable values for main effects and interactions, it can be helpful to increase identifiability through the use of constraints.

Current options for constraints are:

- "none" No constraints. The default.
- "by" Only used in interaction terms that include 'along' and 'by' dimensions. Within each value of the 'along' dimension, terms across each 'by' dimension are constrained to sum to 0.

See Also

- RW2() Second-order random walk, without infant indicator
- Sp() Smoothing via splines
- SVD() Smoothing over age via singular value decomposition
- priors Overview of priors implemented in bage
- set_prior() Specify prior for intercept, main effect, or interaction

Examples

```
RW2_Infant()
RW2_Infant(s = 0.1)
```

RW2_Seas

Second-Order Random Walk Prior with Seasonal Effect

Description

Use a second-oder random walk with seasonal effects as a model for a main effect, or use multiple second-order random walks, each with their own seasonal effects, as a model for an interaction. Typically used with temrs that involve time.

Usage

```
RW2_Seas(
    n_seas,
    s = 1,
    sd = 1,
    sd_slope = 1,
    s_seas = 0,
    sd_seas = 1,
    along = NULL,
    con = c("none", "by")
)
```

Arguments

n_seas	Number of seasons
S	Scale for prior for innovations in random walk. Default is 1.
sd	Standard deviation of initial value. Default is 1. Can be 0.
sd_slope	Standard deviation for initial slope of random walk. Default is 1.
s_seas	Scale for innovations in seasonal effects. Default is 0.
sd_seas	Standard deviation for initial values of seasonal effects. Default is 1.
along	Name of the variable to be used as the 'along' variable. Only used with interac- tions.
con	Constraints on parameters. Current choices are "none" and "by". Default is "none". See below for details.

RW2_Seas

Details

If RW2_Seas() is used with an interaction, a separate series is constructed within each combination of the 'by' variables.

Argument s controls the size of innovations in the random walk. Smaller values for s tend to produce smoother series.

Argument n_seas controls the number of seasons. When using quarterly data, for instance, n_seas should be 4.

By default, the magnitude of seasonal effects is fixed. However, setting s_seas to a value greater than zero produces seasonal effects that evolve over time.

Value

Object of class "bage_prior_rw2randomseasvary", "bage_prior_rw2randomseasfix", "bage_prior_rw2zeroseasvary", "bage_prior_rw2rendomseasfix", "bage_prior_rw2zeroseasfix", "bage_prior_rw2zeroseasfix

Mathematical details

When RW2_Seas() is used with a main effect,

$$\begin{split} \beta_j &= \alpha_j + \lambda_j, \quad j = 1, \cdots, J \\ &\alpha_1 \sim \mathrm{N}(0, \mathrm{sd}^2) \\ &\alpha_2 \sim \mathrm{N}(0, \mathrm{sd_slope}^2) \\ &\alpha_j \sim \mathrm{N}(2\alpha_{j-1} - \alpha_{j-2}, \tau^2), \quad j = 3, \cdots, J \\ &\lambda_j \sim \mathrm{N}(0, \mathrm{sd_seas}^2), \quad j = 1, \cdots, \mathrm{n_seas} - 1 \\ &\lambda_j = -\sum_{s=1}^{\mathrm{n_seas} - 1} \lambda_{j-s}, \quad j = \mathrm{n_seas}, 2\mathrm{n_seas}, \cdots \\ &\lambda_j \sim \mathrm{N}(\lambda_{j-\mathrm{n_seas}}, \omega^2), \quad \mathrm{otherwise}, \end{split}$$

and when it is used with an interaction,

$$\begin{split} \beta_{u,v} &= \alpha_{u,v} + \lambda_{u,v}, \quad v = 1, \cdots, V \\ &\alpha_{u,1} \sim \mathrm{N}(0, \mathrm{sd}^2) \\ &\alpha_{u,2} \sim \mathrm{N}(0, \mathrm{sd_slope}^2) \\ &\alpha_{u,v} \sim \mathrm{N}(2\alpha_{u,v-1} - \alpha_{u,v-2}, \tau^2), \quad v = 3, \cdots, V \\ &\lambda_{u,v} \sim \mathrm{N}(0, \mathrm{sd_seas}^2), \quad v = 1, \cdots, \mathrm{n_seas} - 1 \\ &\lambda_{u,v} = -\sum_{s=1}^{\mathrm{n_seas}-1} \lambda_{u,v-s}, \quad v = \mathrm{n_seas}, 2\mathrm{n_seas}, \cdots \\ &\lambda_{u,v} \sim \mathrm{N}(\lambda_{u,v-n_seas}, \omega^2), \quad \mathrm{otherwise}, \end{split}$$

where

- β is the main effect or interaction;
- α_i or $\alpha_{u,v}$ is an element of the random walk;
- λ_i or $\lambda_{u,v}$ is an element of the seasonal effect;
- *j* denotes position within the main effect;
- v denotes position within the 'along' variable of the interaction; and
- *u* denotes position within the 'by' variable(s) of the interaction.

Parameter ω has a half-normal prior

$$\omega \sim \mathrm{N}^+(0, \mathrm{s_seas}^2)$$

. If s_seas is set to 0, then ω is 0, and the seasonal effects are fixed over time.

Parameter τ has a half-normal prior

$$\tau \sim \mathbf{N}^+(0, \mathbf{s}^2)$$

Constraints

.

With some combinations of terms and priors, the values of the intercept, main effects, and interactions are are only weakly identified. For instance, it may be possible to increase the value of the intercept and reduce the value of the remaining terms in the model with no effect on predicted rates and only a tiny effect on prior probabilities. This weak identifiability is typically harmless. However, in some applications, such as forecasting, or when trying to obtain interpretable values for main effects and interactions, it can be helpful to increase identifiability through the use of constraints.

Current options for constraints are:

- "none" No constraints. The default.
- "by" Only used in interaction terms that include 'along' and 'by' dimensions. Within each value of the 'along' dimension, terms across each 'by' dimension are constrained to sum to 0.

See Also

- RW2() Second-order random walk without seasonal effect
- RW_Seas() Random walk with seasonal effect
- priors Overview of priors implemented in bage
- set_prior() Specify prior for intercept, main effect, or interaction

```
RW2_Seas(n_seas = 4)  ## seasonal effects fixed
RW2_Seas(n_seas = 4, s_seas = 0.5) ## seasonal effects evolve
RW2_Seas(n_seas = 4, sd = 0)  ## first term in random walk fixed at 0
```

RW_Seas

Description

Use a random walk with seasonal effects as a model for a main effect, or use multiple random walks, each with their own seasonal effects, as a model for an interaction. Typically used with terms that involve time.

Usage

```
RW_Seas(
    n_seas,
    s = 1,
    sd = 1,
    s_seas = 0,
    sd_seas = 1,
    along = NULL,
    con = c("none", "by")
)
```

Arguments

n_seas	Number of seasons
S	Scale for prior for innovations in random walk. Default is 1.
sd	Standard deviation of initial value. Default is 1. Can be 0.
s_seas	Scale for innovations in seasonal effects. Default is 0.
sd_seas	Standard deviation for initial values of seasonal effects. Default is 1.
along	Name of the variable to be used as the 'along' variable. Only used with interac- tions.
con	Constraints on parameters. Current choices are "none" and "by". Default is "none". See below for details.

Details

If RW_Seas() is used with an interaction, a separate series is constructed within each combination of the 'by' variables.

Argument s controls the size of innovations in the random walk. Smaller values for s tend to produce smoother series.

Argument sd controls variance in initial values of the random walk. sd can be 0.

Argument n_seas controls the number of seasons. When using quarterly data, for instance, n_seas should be 4.

By default, the magnitude of seasonal effects is fixed. However, setting s_seas to a value greater than zero produces seasonal effects that evolve over time.

Value

Object of class "bage_prior_rwrandomseasvary", "bage_prior_rwrandomseasfix", "bage_prior_rwzeroseasvary", or "bage_prior_rwzeroseasfix".

Mathematical details

When RW_Seas() is used with a main effect,

$$\begin{split} \beta_j &= \alpha_j + \lambda_j, \quad j = 1, \cdots, J \\ \alpha_1 &\sim \mathrm{N}(0, \mathrm{sd}^2) \\ \alpha_j &\sim \mathrm{N}(\alpha_{j-1}, \tau^2), \quad j = 2, \cdots, J \\ \lambda_j &\sim \mathrm{N}(0, \mathrm{sd_seas}^2), \quad j = 1, \cdots, \mathrm{n_seas} - 1 \\ \lambda_j &= -\sum_{s=1}^{\mathrm{n_seas}-1} \lambda_{j-s}, \quad j = \mathrm{n_seas}, 2\mathrm{n_seas}, \cdots \\ \lambda_j &\sim \mathrm{N}(\lambda_{j-\mathrm{n_seas}}, \omega^2), \quad \mathrm{otherwise}, \end{split}$$

and when it is used with an interaction,

$$\begin{split} \beta_{u,v} &= \alpha_{u,v} + \lambda_{u,v}, \quad v = 1, \cdots, V \\ &\alpha_{u,1} \sim \mathrm{N}(0, \mathrm{sd}^2) \\ &\alpha_{u,v} \sim \mathrm{N}(\alpha_{u,v-1}, \tau^2), \quad v = 2, \cdots, V \\ &\lambda_{u,v} \sim \mathrm{N}(0, \mathrm{sd_seas}^2), \quad v = 1, \cdots, \mathrm{n_seas} - 1 \\ &\lambda_{u,v} = -\sum_{s=1}^{\mathrm{n_seas}-1} \lambda_{u,v-s}, \quad v = \mathrm{n_seas}, 2\mathrm{n_seas}, \cdots \\ &\lambda_{u,v} \sim \mathrm{N}(\lambda_{u,v-\mathrm{n_seas}}, \omega^2), \quad \mathrm{otherwise}, \end{split}$$

where

- β is the main effect or interaction;
- α_j or $\alpha_{u,v}$ is an element of the random walk;
- λ_j or $\lambda_{u,v}$ is an element of the seasonal effect;
- *j* denotes position within the main effect;
- v denotes position within the 'along' variable of the interaction; and
- u denotes position within the 'by' variable(s) of the interaction.

Parameter ω has a half-normal prior

$$\omega \sim \mathbf{N}^+(0, \mathbf{s}_{\text{seas}}^2).$$

If s_seas is set to 0, then ω is 0, and seasonal effects are time-invariant. Parameter τ has a half-normal prior

$$\tau \sim \mathbf{N}^+(0, \mathbf{s}^2).$$

Constraints

With some combinations of terms and priors, the values of the intercept, main effects, and interactions are are only weakly identified. For instance, it may be possible to increase the value of the intercept and reduce the value of the remaining terms in the model with no effect on predicted rates and only a tiny effect on prior probabilities. This weak identifiability is typically harmless. However, in some applications, such as forecasting, or when trying to obtain interpretable values for main effects and interactions, it can be helpful to increase identifiability through the use of constraints.

Current options for constraints are:

- "none" No constraints. The default.
- "by" Only used in interaction terms that include 'along' and 'by' dimensions. Within each value of the 'along' dimension, terms across each 'by' dimension are constrained to sum to 0.

See Also

- RW() Random walk without seasonal effect
- RW2_Seas() Second-order random walk with seasonal effect
- priors Overview of priors implemented in bage
- set_prior() Specify prior for intercept, main effect, or interaction

Examples

```
RW_Seas(n_seas = 4)  ## seasonal effects fixed
RW_Seas(n_seas = 4, s_seas = 0.5) ## seasonal effects evolve
RW_Seas(n_seas = 4, sd = 0)  ## first term in random walk fixed at 0
```

set_datamod_outcome_rr3

Specify RR3 Data Model

Description

Specify a data model where the outcome variable has been randomly rounded to base 3.

Usage

```
set_datamod_outcome_rr3(mod)
```

Arguments

mod

An object of class "bage_mod", created with mod_pois(), mod_binom(), or mod_norm().

set_datamod_outcome_rr3() can only be used with Poisson and binomial models (created with mod_pois() and mod_binom().)

Random rounding to base 3 (RR3) is a confidentialization technique that is sometimes applied by statistical agencies. RR3 is applied to integer data. The procedure for rounding value n is as follows:

- If n is divisible by 3, leave it unchanged
- If dividing n by 3 leaves a remainder of 1, then round down (subtract 1) with probability 2/3, and round up (add 2) with probability 1/3.
- If dividing n by 3 leaves a remainder of 1, then round down (subtract 2) with probability 1/3, and round up (add 1) with probability 2/3.

If set_datamod_outcome_rr3() is applied to a fitted model, it 'unfits' the model, deleting existing estimates.

Value

A modified version of mod.

See Also

- datamods Overview of data models implemented in bage
- mod_pois(), mod_binom(), mod_norm() Specify a model for rates, probabilities, or means

Examples

set_disp

```
Specify Prior for Dispersion or Standard Deviation
```

Description

Specify the mean of prior for the dispersion parameter (in Poisson and binomial models) or the standard deviation parameter (in normal models.)

Usage

set_disp(mod, mean)

set_n_draw

Arguments

mod	An object of class "bage_mod", created with mod_pois(), mod_binom(), or mod_norm().
mean	Mean value for the exponential prior. In Poisson and binomial models, can be set to 0.

Details

The dispersion or mean parameter has an exponential distribution with mean μ ,

$$p(\xi) = \frac{1}{\mu} \exp\left(\frac{-\xi}{\mu}\right).$$

In Poisson and binomial models, mean can be set to 0, implying that the dispersion term is also 0. In normal models, mean must be non-negative.

If set_disp() is applied to a fitted model, it 'unfits' the model, deleting existing estimates.

Value

A bage_mod object

See Also

- mod_pois(), mod_binom(), mod_norm() Specify a model for rates, probabilities, or means
- set_prior() Specify prior for a term
- set_n_draw() Specify the number of draws
- is_fitted() Test whether a model is fitted

Examples

set_n_draw

Specify Number of Draws from Prior or Posterior Distribution

Description

Specify the number of draws from the posterior distribution to be used in model output. A newlycreated bage_mod object has an n_draw value of 1000. Higher values may be appropriate for characterizing the tails of distributions, or for publication-quality graphics and summaries.

Usage

set_n_draw(mod, n_draw = 1000L)

Arguments

mod	An object of class "bage_mod", created with mod_pois(), mod_binom(), or mod_norm().
n_draw	Number of draws.

Details

If the new value for n_draw is greater than the old value, and the model has already been fitted, then the model is unfitted, and function fit() may need to be called again.

Value

A bage_mod object

See Also

- augment(), components() functions for drawing from prior or posterior distribution the output of which is affected by the value of n_draw.
- mod_pois(), mod_binom(), mod_norm() Specify a model
- set_prior() Specify prior for a term
- set_disp() Specify prior for dispersion
- fit() Fit a model
- unfit() Reset a model

set_prior

Description

Specify a prior distribution for an intercept, a main effect, or an interaction.

Usage

set_prior(mod, formula)

Arguments

mod	A bage_mod object, created with mod_pois(), mod_binom(), or mod_norm().
formula	A formula giving the term and a function for creating a prior.

Details

If set_prior() is applied to a fitted model, it 'unfits' the model, deleting existing estimates.

Value

A modified bage_mod object.

See Also

- priors Current choices for prior distributions
- is_fitted() Test whether a model is fitted
- set_disp() Specify prior for dispersion

set_var_age

Description

Specify which variable (if any) represents age. Functions mod_pois(), mod_binom(), and mod_norm() try to infer the age variable from variable names, but do not always get it right.

Usage

set_var_age(mod, name)

Arguments

mod	An object of class "bage_mod", created with mod_pois(), mod_binom(), or
	<pre>mod_norm().</pre>
name	The name of the age variable.

Details

In an R formula, a 'variable' is different from a 'term'. For instance,

~ age + region + age:region

contains variables age and region, and terms age, region, and age: region.

By default, **bage** gives a term involving age a (RW()) prior. Changing the age variable via set_var_age() can change priors: see below for an example.

If set_var_age() is applied to a fitted model, it 'unfits' the model, deleting existing estimates.

Value

A bage_mod object

See Also

- set_var_sexgender() Set sex or gender variable
- set_var_time() Set time variable
- is_fitted() Test whether a model is fitted
- internally, **bage** uses poputils::find_var_age() to locate age variables

```
## rename 'age' variable to something unusual
injuries2 <- nzl_injuries
injuries2$age_last_birthday <- injuries2$age
## mod_pois does not recognize age variable
```

```
data = injuries2,
    exposure = popn)
mod
## so we set the age variable explicitly
## (which, as a side effect, changes the prior on
## the age main effect)
mod |>
    set_var_age(name = "age_last_birthday")
```

set_var_sexgender Specify Sex or Gender Variable

Description

Specify which variable (if any) represents sex or gender. Functions mod_pois(), mod_binom(), and mod_norm() try to infer the sex/gender variable from variable names, but do not always get it right.

Usage

set_var_sexgender(mod, name)

Arguments

mod	An object of class "bage_mod", created with mod_pois(), mod_binom(), or
	<pre>mod_norm().</pre>
name	The name of the sex or gender variable.

Details

In an R formula, a 'variable' is different from a 'term'. For instance,

~ gender + region + gender:region

contains variables gender and region, and terms gender, region, and gender:region.

If set_var_sexgender() is applied to a fitted model, it 'unfits' the model, deleting existing estimates.

Value

A "bage_mod" object

See Also

- set_var_age() Set age variable
- set_var_time() Set time variable
- is_fitted() Test whether model is fitted
- internally, **bage** uses poputils::find_var_sexgender() to locate sex or gender variables
- internally, **bage** uses poputils::find_label_female() to locate female categories within a sex or gender variable
- internally, **bage** uses poputils::find_label_male() to locate male categories within a sex or gender variable

Examples

set_var_time Specify Time Variable

Description

Specify which variable (if any) represents time. Functions mod_pois(), mod_binom(), and mod_norm() try to infer the time variable from variable names, but do not always get it right.

Usage

```
set_var_time(mod, name)
```

Arguments

mod	An object of class "bage_mod", created with mod_pois(), mod_binom(), or
	<pre>mod_norm().</pre>

name The name of the time variable.

Details

In an R formula, a 'variable' is different from a 'term'. For instance,

~ time + region + time:region

contains variables time and region, and terms time, region, and time: region.

By default, **bage** gives a term involving time a (RW()) prior. Changing the time variable via set_var_time() can change priors: see below for an example.

If set_var_time() is applied to a fitted model, it 'unfits' the model, deleting existing estimates.

Value

A bage_mod object

See Also

- set_var_age() Set age variable
- set_var_sexgender() Sex sex or gender variable
- is_fitted() Test if model has been fitted
- internally, **bage** uses poputils::find_var_time() to locate time variables

Examples

Sp

P-Spline Prior

Description

Use a p-spline (penalised spline) to model main effects or interactions. Typically used with age, but can be used with any variable where outcomes are expected to vary smoothly from one element to the next.

Usage

```
Sp(
    n_comp = NULL,
    s = 1,
    sd_slope = 1,
    along = NULL,
    con = c("none", "by")
)
```

Arguments

n_comp	Number of spline basis functions (components) to use.
S	Scale for the prior for the innovations. Default is 1.
sd	Standard deviation in prior for first element of random walk.
sd_slope	Standard deviation in prior for initial slope of random walk. Default is 1.
along	Name of the variable to be used as the 'along' variable. Only used with interac- tions.
con	Constraints on parameters. Current choices are "none" and "by". Default is "none". See below for details.

Details

If Sp() is used with an interaction, separate splines are used for the 'along' variable within each combination of the 'by' variables.

Value

An object of class "bage_prior_spline".

Mathematical details

When Sp() is used with a main effect,

$$\beta = X \alpha$$

and when it is used with an interaction,

$$\boldsymbol{\beta}_u = \boldsymbol{X} \boldsymbol{\alpha}_u$$

where

- β is the main effect or interaction, with J elements;
- β_u is a subvector of β holding values for the *u*th combination of the 'by' variables;
- *J* is the number of elements of β ;
- *U* is the number of elements of β_u ;

70

- X is a $J \times n$ or $V \times n$ matrix of spline basis functions; and
- *n* is n_comp.

The elements of α or α_u are assumed to follow a second-order random walk.

Constraints

With some combinations of terms and priors, the values of the intercept, main effects, and interactions are are only weakly identified. For instance, it may be possible to increase the value of the intercept and reduce the value of the remaining terms in the model with no effect on predicted rates and only a tiny effect on prior probabilities. This weak identifiability is typically harmless. However, in some applications, such as forecasting, or when trying to obtain interpretable values for main effects and interactions, it can be helpful to increase identifiability through the use of constraints.

Current options for constraints are:

- "none" No constraints. The default.
- "by" Only used in interaction terms that include 'along' and 'by' dimensions. Within each value of the 'along' dimension, terms across each 'by' dimension are constrained to sum to 0.

References

• Eilers, P.H.C. and Marx B. (1996). "Flexible smoothing with B-splines and penalties". Statistical Science. 11 (2): 89–121.

See Also

- RW() Smoothing via random walk
- RW2() Smoothing via second-order random walk
- SVD() Smoothing of age via singular value decomposition
- priors Overview of priors implemented in bage
- set_prior() Specify prior for intercept, main effect, or interaction
- splines::bs() Function used by bage to construct spline basis functions

```
Sp()
Sp(n_comp = 10)
```

Description

Use components from a Singular Value Decomposition (SVD) to model a main effect or interaction involving age.

Usage

SVD(ssvd, n_comp = NULL, indep = TRUE)

Arguments

ssvd	Object of class "bage_ssvd" holding a scaled SVD. See below for scaled SVDs of databases currently available in bage .
n_comp	Number of components from scaled SVD to use in modelling. The default is half the number of components of $ssvd$.
indep	Whether to use separate or combined SVDs in terms involving sex or gender. Default is TRUE. See below for details.

Details

A SVD() prior assumes that the age, age-sex, or age-gender profiles for the quantity being modelled looks like they were drawn at random from an external demographic database. For instance, the prior obtained via

SVD(HMD)

assumes that age or age-sex profiles look like they were drawn from the Human Mortality Database.

If SVD() is used with an interaction involving variables other than age and sex/gender, separate profiles are constructed within each combination of other variables.

bage chooses the appropriate age-specific or age-sex-specific SVD values internally. The choice depends on the model term that the SVD() prior is applied to, and on the age labels used in data argument to mod_pois(), mod_binom() or mod_norm(). **bage** makes its choice when set_prior() is called.

Value

An object of class "bage_prior_svd".

SVD
Joint or independent SVDs

Two possible ways of extracting patterns from age-sex-specific data are

- 1. carry out separate SVDs on separate datasets for each sex/gender; or
- 2. carry out a single SVD on dataset that has separate entries for each sex/gender.

Option 1 is more flexible. Option 2 is more robust to sampling or measurement errors. Option 1 is obtained by setting the joint argument to FALSE. Option 1 is obtained by setting the indep argument to TRUE. The default is TRUE.

Mathematical details

Case 1: Term involving age and no other variables

When SVD() is used with an age main effect,

$$\boldsymbol{\beta} = \boldsymbol{F}\boldsymbol{\alpha} + \boldsymbol{g},$$

where

- β is a main effect or interaction involving age;
- *J* is the number of elements of β ;
- *n* is the number of components from the SVD;
- \boldsymbol{F} is a known matrix with dimension $J \times n$; and
- g is a known vector with J elements.

F and g are constructed from a large database of age-specific demographic estimates by performing an SVD and standardizing.

The elements of $\boldsymbol{\alpha}$ have prior

$$\alpha_k \sim \mathbf{N}(0,1), \quad k = 1, \cdots, K.$$

Case 2: Term involving age and non-sex, non-gender variable(s)

When SVD() is used with an interaction that involves age but that does not involve sex or gender,

$$\boldsymbol{\beta}_u = \boldsymbol{F} \boldsymbol{\alpha}_u + \boldsymbol{g},$$

where

- β_u is a subvector of β holding values for the *u*th combination of the non-age variables;
- *V* is the number of elements of β_u ;
- *n* is the number of components from the SVD;
- F is a known matrix with dimension $V \times n$; and
- g is a known vector with V elements.

Case 3: Term involving age, sex/gender, and no other variables

When SVD() is used with an interaction that involves age and sex or gender, there are two sub-cases, depending on the value of indep.

When indep is TRUE,

$$\boldsymbol{\beta}_s = \boldsymbol{F}_s \boldsymbol{\alpha}_s + \boldsymbol{g}_s,$$

and when indep is FALSE,

$$\boldsymbol{\beta} = \boldsymbol{F}\boldsymbol{\alpha} + \boldsymbol{g},$$

where

- β is an interaction involving age and sex/gender;
- β_s is a subvector of β , holding values for sex/gender s;
- *J* is the number of elements in β ;
- *S* is the number of sexes/genders;
- *n* is the number of components from the SVD;
- F_s is a known $(J/S) \times n$ matrix, specific to sex/gender s;
- g_s is a known vector with J/S elements, specific to sex/gender s;
- F is a known $J \times n$ matrix, with values for all sexes/genders; and
- g is a known vector with J elements, with values for all sexes/genders.

The elements of $\boldsymbol{\alpha}_s$ and $\boldsymbol{\alpha}$ have prior

 $\alpha_k \sim \mathbf{N}(0, 1).$

Case 4: Term involving age, sex/gender, and other variable(s)

When SVD() is used with an interaction that involves age, sex or gender, and other variables, there are two sub-cases, depending on the value of indep.

When indep is TRUE,

$$\boldsymbol{\beta}_{u,s} = \boldsymbol{F}_s \boldsymbol{\alpha}_{u,s} + \boldsymbol{g}_{s,s}$$

and when indep is FALSE,

$$\boldsymbol{\beta}_u = \boldsymbol{F}\boldsymbol{\alpha}_u + \boldsymbol{g},$$

where

- β is an interaction involving sex/gender;
- $\beta_{u,s}$ is a subvector of β , holding values for sex/gender s for the uth combination of the other variables;
- *V* is the number of elements in β_u ;
- *S* is the number of sexes/genders;

- *n* is the number of components from the SVD;
- F_s is a known $(V/S) \times n$ matrix, specific to sex/gender s;
- g_s is a known vector with V/S elements, specific to sex/gender s;
- F is a known $V \times n$ matrix, with values for all sexes/genders; and
- g is a known vector with V elements, with values for all sexes/genders.

Scaled SVDs of demographic databases in bage

- HMD Mortality rates from the Human Mortality Database.
- HFD Fertility rates from the Human Fertility Database.
- LFP Labor forcce participation rates from the OECD.

References

• For details of the construction of scaled SVDS see the vignette here.

See Also

- SVD_AR(), SVD_AR1(), SVD_RW(), SVD_RW2() SVD priors for for time-varying age profiles;
- RW() Smoothing via random walk
- RW2() Smoothing via second-order random walk
- Sp() Smoothing via splines
- priors Overview of priors implemented in bage
- set_prior() Specify prior for intercept, main effect, or interaction
- set_var_sexgender() Identify sex or gender variable in data

Examples

```
SVD(HMD)
SVD(HMD, n_comp = 3)
```

SVD_AR

Dynamic SVD-Based Priors for Age Profiles or Age-Sex Profiles

Description

Use components from a Singular Value Decomposition (SVD) to model an interaction involving age and time, or age, sex/gender and time, where the coefficients evolve over time.

Usage

```
SVD_AR(
  ssvd,
 n\_comp = NULL,
 indep = TRUE,
 n_coef = 2,
 s = 1,
 shape1 = 5,
 shape2 = 5,
 con = c("none", "by")
)
SVD_AR1(
  ssvd,
 n_{comp} = NULL,
 indep = TRUE,
 min = 0.8,
 max = 0.98,
  s = 1,
  shape1 = 5,
  shape2 = 5,
 con = c("none", "by")
)
SVD_RW(ssvd, n_comp = NULL, indep = TRUE, s = 1, sd = 1, con = c("none", "by"))
SVD_RW2(
 ssvd,
 n_{comp} = NULL,
 indep = TRUE,
 s = 1,
 sd = 1,
 sd_slope = 1,
 con = c("none", "by")
)
```

Arguments

ssvd	Object of class "bage_ssvd" holding a scaled SVD. See below for scaled SVDs of databases currently available in bage .
n_comp	Number of components from scaled SVD to use in modelling. The default is half the number of components of ssvd.
indep	Whether to use separate or combined SVDs in terms involving sex or gender. Default is TRUE. See below for details.
n_coef	Number of AR coefficients in SVD_RW().
S	Scale for standard deviations terms.
shape1, shape2	Parameters for prior for coefficients in SVD_AR(). Defaults are 5 and 5.

76

con	Constraints on parameters. Current choices are "none" and "by". Default is "none". See below for details.
min, max	Minimum and maximum values for autocorrelation coefficient in SVD_AR1(). Defaults are 0.8 and 0.98.
sd	Standard deviation of initial value for random walks. Default is 1. Can be 0.
sd_slope	Standard deviation in prior for initial slope. Default is 1.

Details

SVD_AR(), SVD_AR1(), SVD_RW(), and SVD_RW2() priors assume that, in any given period, the age profiles or age-sex profiles for the quantity being modelled looks like they were drawn at random from an external demographic database. For instance, the SVD_AR() prior obtained via

SVD_AR(HMD)

assumes that profiles look like they were obtained from the Human Mortality Database.

Value

An object of class "bage_prior_svd_ar", "bage_prior_svd_rw", or "bage_prior_svd_rw2".

Mathematical details

When the interaction being modelled only involves age and time, or age, sex/gender, and time

$$\boldsymbol{\beta}_t = \boldsymbol{F} \boldsymbol{\alpha}_t + \boldsymbol{g}_t$$

and when it involves other variables besides age, sex/gender, and time,

$$\boldsymbol{\beta}_{u,t} = \boldsymbol{F}\boldsymbol{\alpha}_{u,t} + \boldsymbol{g},$$

where

- β is an interaction involving age, time, possibly sex/gender, and possibly other variables;
- β_t is a subvector of β holding values for period t;
- $\beta_{u,t}$ is a subvector of β_t holding values for the *u*th combination of the non-age, non-time, non-sex/gender variables for period *t*;
- **F** is a known matrix; and
- g is a known vector.

F and g are constructed from a large database of age-specific demographic estimates by applying the singular value decomposition, and then standardizing.

With SVD_AR(), the prior for the kth element of α_t or $\alpha_{u,t}$ is

$$\alpha_{k,t} = \phi_1 \alpha_{k,t-1} + \dots + \phi_n \beta_{k,t-n} + \epsilon_{k,t}$$

or

$$\alpha_{k,u,t} = \phi_1 \alpha_{k,u,t-1} + \dots + \phi_n \beta_{k,u,t-n} + \epsilon_{k,u,t};$$

with SVD_AR1(), it is

$$\alpha_{k,t} = \phi \alpha_{k,t-1} + \epsilon_{k,t}$$

or

 $\alpha_{k,u,t} = \phi \alpha_{k,u,t-1} + \epsilon_{k,u,t};$

with SVD_RW(), it is

 $\alpha_{k,t} = \alpha_{k,t-1} + \epsilon_{k,t}$

or

 $\alpha_{k,u,t} = \alpha_{k,u,t-1} + \epsilon_{k,u,t};$

and with SVD_RW2(), it is

or

$$\alpha_{k,u,t} = 2\alpha_{k,u,t-1} - \alpha_{k,u,t-2} + \epsilon_{k,u,t-1}$$

 $\alpha_{k,t} = 2\alpha_{k,t-1} - \alpha_{k,t-2} + \epsilon_{k,t}$

For details, see AR(), AR1(), RW(), and RW2().

Constraints

With some combinations of terms and priors, the values of the intercept, main effects, and interactions are are only weakly identified. For instance, it may be possible to increase the value of the intercept and reduce the value of the remaining terms in the model with no effect on predicted rates and only a tiny effect on prior probabilities. This weak identifiability is typically harmless. However, in some applications, such as forecasting, or when trying to obtain interpretable values for main effects and interactions, it can be helpful to increase identifiability through the use of constraints.

Current options for constraints are:

- "none" No constraints. The default.
- "by" Only used in interaction terms that include 'along' and 'by' dimensions. Within each value of the 'along' dimension, terms across each 'by' dimension are constrained to sum to 0.

Scaled SVDs of demographic databases in bage

- HMD Mortality rates from the Human Mortality Database.
- HFD Fertility rates from the Human Fertility Database.
- LFP Labor force participation rates from the OECD.

swe_infant

References

• For details of the construction of scaled SVDS see the vignette here.

See Also

- SVD() SVD prior for non-time-varying terms
- RW() Smoothing via random walk
- RW2() Smoothing via second-order random walk
- Sp() Smoothing via splines
- priors Overview of priors implemented in bage
- set_prior() Specify prior for intercept, main effect, or interaction
- set_var_sexgender() Identify sex or gender variable in data

Examples

```
SVD_AR1(HMD)
SVD_RW(HMD, n_comp = 3)
SVD_RW2(HMD, indep = FALSE)
```

swe_infant

Infant Mortality in Sweden

Description

Counts of births and infant deaths in Sweden by county and year, 1995-2015

Usage

swe_infant

Format

A tibble with 441 rows and the following columns:

- county: A factor with 21 levels, where the levels are ordered by number of births, from "Stockholm" down to "Gotland"
- · 'time: Calendar year
- births: Count of births
- deaths: Count of infant deaths

Details

Dataset used in Chapter 11 of the book Bayesian Demographic Estimation and Forecasting.

Source

Database "Live births by region, mother's age and child's sex. Year 1968 - 2017" and database "Deaths by region, age (during the year) and sex. Year 1968 - 2017" on the Statistics Sweden website. Downloaded on 13 July 2018.

References

Bryant J and Zhang J. 2018. Bayesian Demographic Estimation and Forecasting. CRC Press.

tidy.bage_mod Summarize Terms from a Fitted Model

Description

Summarize the intercept, main effects, and interactions from a fitted model.

Usage

```
## S3 method for class 'bage_mod'
tidy(x, ...)
```

Arguments

х	Object of class "bage_mod", typically created with mod_pois(), mod_binom(),
	or mod_norm().
	Unused. Included for generic consistency only.

Details

The tibble returned by tidy() contains the following columns:

- term Name of the intercept, main effect, or interaction
- prior Specification for prior
- n_par Number of parameters
- n_par_free Number of free parameters
- std_dev Standard deviation for point estimates.

With some priors, the number of free parameters is less than the number of parameters for that term. For instance, an SVD() prior might use three vectors to represent 101 age groups so that the number of parameters is 101, but the number of free parameters is 3.

std_dev is the standard deviation across elements of a term, based on point estimates of those elements. For instance, if the point estimates for a term with three elements are 0.3, 0.5, and 0.1, then the value for std_dev is

sd(c(0.3, 0.5, 0.1))

std_dev is a measure of the contribution of a term to variation in the outcome variable.

unfit

Value

A tibble

References

std_dev is modified from Gelman et al. (2014) Bayesian Data Analysis. Third Edition. pp396-397.

See Also

- augment() Extract data, and values for rates, probabilities, or means
- components() Extract values for hyper-parameters

Examples

unfit

Unfit a Model

Description

Reset a model, deleting all estimates.

Usage

unfit(mod)

Arguments

mod

A fitted object of class "bage_mod", object, created through a call to mod_pois(), mod_binom(), or mod_norm().

Value

An unfitted version of mod.

See Also

- fit() Fit a model
- mod_pois(), mod_binom(), mod_norm() Specify a model
- Functions such as set_prior(), set_disp() and set_var_age() unfit models as side effects.

Examples

usa_deaths

Accidental Deaths in the USA

Description

Counts of accidental deaths in the USA, by month, for 1973-1978.

Usage

usa_deaths

Format

A tibble with 72 rows and the following columns:

- month: Year and month.
- deaths: Count of deaths.

Source

Reformatted version of datasets::USAccDeaths.

82

Index

* datasets HFD, 22 HMD, 22 isl_deaths, 23 kor_births, 25 LFP. 26 nld_expenditure, 41 nzl_divorces, 42 nzl_households, 43 nzl_injuries, 43 swe_infant, 79 usa_deaths, 82 age, 14 AR. 3 AR(), 7, 30, 46, 51, 54, 78 AR1, 5 AR1(), 5, 33, 46, 51, 54, 78 augment(), 10, 15, 17, 49, 64, 81 augment.bage_mod, 7 components(), 8, 15, 17, 21, 49, 64, 81 components.bage_mod, 9 components.bage_ssvd, 11 computations, 12 computations(), 44 data model, 47 datamods, 9, 13, 62 fit(), 8, 10, 12, 13, 17, 24, 35, 37, 39, 47-49, 64,81 fit.bage_mod, 14 fit.bage_mod(), 45 fitted, 8, 10, 17 forecast(), 15, 35, 37, 39 forecast.bage_mod, 16 formula, 34, 36, 37, 44, 66, 67, 69

generate(), 12
generate.bage_prior_ar, 18

generate.bage_prior_known (generate.bage_prior_ar), 18 generate.bage_prior_lin (generate.bage_prior_ar), 18 generate.bage_prior_linar (generate.bage_prior_ar), 18 generate.bage_prior_linex (generate.bage_prior_ar), 18 generate.bage_prior_norm (generate.bage_prior_ar), 18 generate.bage_prior_normfixed (generate.bage_prior_ar), 18 generate.bage_prior_rw2random (generate.bage_prior_ar), 18 generate.bage_prior_rw2randomseasfix (generate.bage_prior_ar), 18 generate.bage_prior_rw2randomseasvary (generate.bage_prior_ar), 18 generate.bage_prior_rw2zero (generate.bage_prior_ar), 18 generate.bage_prior_rw2zeroseasfix (generate.bage_prior_ar), 18 generate.bage_prior_rw2zeroseasvary (generate.bage_prior_ar), 18 generate.bage_prior_rwrandom (generate.bage_prior_ar), 18 generate.bage_prior_rwrandomseasfix (generate.bage_prior_ar), 18 generate.bage_prior_rwrandomseasvary (generate.bage_prior_ar), 18 generate.bage_prior_rwzero (generate.bage_prior_ar), 18 generate.bage_prior_rwzeroseasfix (generate.bage_prior_ar), 18 generate.bage_prior_rwzeroseasvary (generate.bage_prior_ar), 18 generate.bage_prior_spline (generate.bage_prior_ar), 18 generate.bage_prior_svd

(generate.bage_prior_ar), 18
generate.bage_prior_svd_ar
 (generate.bage_prior_ar), 18
generate.bage_prior_svd_rw2random
 (generate.bage_prior_ar), 18
generate.bage_prior_svd_rw2zero
 (generate.bage_prior_ar), 18
generate.bage_prior_svd_rwrandom
 (generate.bage_prior_ar), 18
generate.bage_prior_svd_rwzero
 (generate.bage_prior_ar), 18
generate.bage_prior_ar), 18

HFD, *12*, *21*, 22, *75*, *78* HMD, *12*, *21*, 22, *75*, *78*

is_fitted, 24
is_fitted(), 9, 10, 15, 45, 63, 65, 66, 68, 69
isl_deaths, 23

Known, 24 Known(), 46 kor_births, 25

LFP, *12*, *21*, *26*, *75*, *78* Lin, *26* Lin(), *30*, *33*, *46* Lin_AR, *28* Lin_AR(), *5*, *7*, *28*, *33*, *46* Lin_AR1, *31* Lin_AR1(), *5*, *7*, *28*, *30*, *46*

N, 39 N(), 40, 41, 46 NFix, 40 NFix(), 25, 40, 46 nld_expenditure, 41 nzl_divorces, 42 nzl_households, 43 nzl_injuries, 43

poputils::age_labels(), 12, 21 poputils::find_label_female(), 68 poputils::find_label_male(), 68 poputils::find_var_age(), 66 poputils::find_var_sexgender(), 68 poputils::find_var_time(), 69 print.bage_mod, 44 priors, 5, 7, 20, 25, 28, 30, 33-36, 38, 40, 41, 45, 45, 51, 54, 56, 58, 61, 65, 71, 75, 79 priors(),44 replicate_data, 46 replicate_data(), 49 report_sim, 48 report_sim(), 15, 35, 37, 39, 48 rr3, 47 rvec, 10 rvecs, 8 RW, 50 RW(), 46, 54, 61, 66, 69, 71, 75, 78, 79 RW2, 52 RW2(), 28, 46, 51, 54, 56, 58, 71, 75, 78, 79 RW2_Infant, 54 RW2_Seas, 56 RW2_Seas(), 46, 54, 61 RW_Seas, 59 RW_Seas(), 46, 51, 58 second-order random walk, 71 set_datamod_outcome_rr3, 61 set_datamod_outcome_rr3(), 13 set_disp. 62 set_disp(), 35-39, 44, 45, 64, 65, 81 set_n_draw, 63 set_n_draw(), 13, 44, 45, 63 set_prior, 65 set_prior(), 5, 7, 25, 28, 30, 33, 35, 37, 39-41, 44, 51, 54, 56, 58, 61, 63, 64, 71, 72, 75, 79, 81 set_var_age, 66 set_var_age(), 44, 45, 68, 69, 81 set_var_sexgender, 67 set_var_sexgender(), 44, 45, 66, 69, 75, 79 set_var_time, 68 set_var_time(), 44, 45, 66, 68 sex/gender, 14 Sp, 69 Sp(), 46, 51, 54, 56, 75, 79

INDEX

splines::bs(), 71 stats::nlminb(), 12, 15 stats::optim(), 15 SVD, 21, 72 SVD(), 11, 12, 21, 46, 51, 54, 56, 71, 79, 80 SVD_AR, 75 SVD_AR(), 12, 21, 46, 75 SVD_AR1 (SVD_AR), 75 SVD_AR1(), *12*, *21*, *46*, *75* SVD_RW (SVD_AR), 75 SVD_RW(), *12*, *21*, *46*, *75* SVD_RW2 (SVD_AR), 75 SVD_RW2(), *12*, *21*, *46*, *75* swe_infant, 79 tibble, 8, 10, 13, 16, 20, 23, 25, 41-44, 47, 80-82 tidy(), 8, 10, 13, 15, 44 tidy.bage_mod, 80 tidy.bage_mod(), 45 time, *14* TMB::sdreport(), 13 unfit,<mark>81</mark> unfit(), 9, 10, 15, 64 unfitted, 64 usa_deaths, 82