
Package ‘aws.s3’
October 12, 2022

Type Package

Title 'AWS S3' Client Package

Version 0.3.21

Maintainer Simon Urbanek <simon.urbanek@R-project.org>

Description A simple client package for the Amazon Web Services ('AWS') Simple
Storage Service ('S3') 'REST' 'API' <https://aws.amazon.com/s3/>.

License GPL (>= 2)

URL https://github.com/cloudyr/aws.s3

BugReports https://github.com/cloudyr/aws.s3/issues

Encoding UTF-8

Imports utils, tools, curl, httr, xml2 (> 1.0.0), base64enc, digest,
aws.signature (>= 0.3.7)

Suggests testthat, datasets

RoxygenNote 7.0.2

NeedsCompilation no

Author Thomas J. Leeper [aut] (<https://orcid.org/0000-0003-4097-6326>),
Boettiger Carl [ctb],
Andrew Martin [ctb],
Mark Thompson [ctb],
Tyler Hunt [ctb],
Steven Akins [ctb],
Bao Nguyen [ctb],
Thierry Onkelinx [ctb],
Andrii Degtiarov [ctb],
Dhruv Aggarwal [ctb],
Alyssa Columbus [ctb],
Simon Urbanek [cre, ctb]

Repository CRAN

Date/Publication 2020-04-07 21:10:02 UTC

1

https://aws.amazon.com/s3/
https://github.com/cloudyr/aws.s3
https://github.com/cloudyr/aws.s3/issues
https://orcid.org/0000-0003-4097-6326

2 aws.s3-package

R topics documented:

aws.s3-package . 2
bucketlist . 3
bucket_exists . 4
copy_object . 4
delete_bucket . 5
delete_object . 6
delete_website . 7
getobject . 7
get_acceleration . 8
get_acl . 9
get_bucket . 10
get_bucketname . 12
get_bucket_policy . 13
get_cors . 14
get_encryption . 14
get_lifecycle . 15
get_location . 16
get_notification . 17
get_object . 17
get_replication . 20
get_requestpayment . 21
get_tagging . 22
get_torrent . 23
get_uploads . 23
get_versions . 24
head_object . 25
put_bucket . 26
put_object . 28
s3HTTP . 30
s3save . 32
s3saveRDS . 33
s3source . 35
s3sync . 36
s3write_using . 37

Index 39

aws.s3-package aws.s3-package

Description

AWS S3 Client Package

bucketlist 3

Details

A simple client package for the Amazon Web Services (AWS) Simple Storage Service (S3) REST
API.

Author(s)

Thomas J. Leeper <thosjleeper@gmail.com>

bucketlist List Buckets

Description

List buckets as a data frame

Usage

bucketlist(add_region = FALSE, ...)

bucket_list_df(add_region = FALSE, ...)

Arguments

add_region A logical (by default FALSE) indicating whether to add “Region” column to the
output data frame. This simply induces a loop over get_location for each
bucket.

... Additional arguments passed to s3HTTP.

Details

bucketlist performs a GET operation on the base s3 endpoint and returns a list of all buckets
owned by the authenticated sender of the request. If authentication is successful, this function
provides a list of buckets available to the authenticated user. In this way, it can serve as a “hello
world!” function, to confirm that one’s authentication credentials are working correctly.

bucket_list_df and bucketlist are identical.

Value

A data frame of buckets. Can be empty (0 rows, 0 columns) if there are no buckets, otherwise
contains typically at least columns Bucket and CreationDate.

References

API Documentation

See Also

get_bucket, get_object

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTServiceGET.html

4 copy_object

bucket_exists Bucket exists?

Description

Check whether a bucket exists and is accessible with the current authentication keys.

Usage

bucket_exists(bucket, ...)

Arguments

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.

... Additional arguments passed to s3HTTP.

Value

TRUE if bucket exists and is accessible, else FALSE.

References

API Documentation

See Also

bucketlist, get_bucket, object_exists

copy_object Copy Objects

Description

Copy objects between S3 buckets

Usage

copy_object(
from_object,
to_object = from_object,
from_bucket,
to_bucket,
headers = list(),
...

)

copy_bucket(from_bucket, to_bucket, ...)

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketHEAD.html

delete_bucket 5

Arguments

from_object A character string containing the name the object you want to copy.

to_object A character string containing the name the object should have in the new bucket.

from_bucket A character string containing the name of the bucket you want to copy from.

to_bucket A character string containing the name of the bucket you want to copy into.

headers List of request headers for the REST call.

... Additional arguments passed to s3HTTP.

Details

copy_object copies an object from one bucket to another without bringing it into local memory.
For copy_bucket, all objects from one bucket are copied to another (limit 1000 objects). The same
keys are used in the old bucket as in the new bucket.

Value

Something...

References

API Documentation

delete_bucket Delete Bucket

Description

Deletes an S3 bucket.

Usage

delete_bucket(bucket, ...)

Arguments

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.

... Additional arguments passed to s3HTTP.

Value

TRUE if successful, FALSE otherwise.

References

API Documentation

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETE.html

6 delete_object

delete_object Delete object

Description

Deletes one or more objects from an S3 bucket.

Usage

delete_object(object, bucket, quiet = TRUE, ...)

Arguments

object Character string with the object key, or an object of class “s3_object”. In most
cases, if object is specified as the latter, bucket can be omitted because the
bucket name will be extracted from “Bucket” slot in object.

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.

quiet A logical indicating whether (when object is a list of multiple objects), to run
the operation in “quiet” mode. Ignored otherwise. See API documentation for
details.

... Additional arguments passed to s3HTTP.

Details

object can be a single object key, an object of class “s3_object”, or a list of either.

Value

TRUE if successful, otherwise an object of class aws_error details if not.

References

API Documentation

See Also

put_object

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETE.html

delete_website 7

delete_website Bucket Website configuration

Description

Get/Put/Delete the website configuration for a bucket.

Usage

delete_website(bucket, ...)

put_website(bucket, request_body, ...)

get_website(bucket, ...)

Arguments

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.

... Additional arguments passed to s3HTTP.

request_body A character string containing an XML request body, as defined in the specifica-
tion in the API Documentation.

Value

For put_website and get_website, a list containing the website configuration, if one has been set.
For delete_website: TRUE if successful, FALSE otherwise. An aws_error object may be returned
if the request failed.

References

API Documentation: PUT website API Documentation: GET website API Documentation: DELETE
website

getobject Deprecated

Description

These functions are deprecated.

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTwebsite.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTwebsite.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETwebsite.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEwebsite.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEwebsite.html

8 get_acceleration

Usage

getobject(...)

saveobject(...)

headobject(...)

copyobject(...)

copybucket(...)

putbucket(...)

putobject(...)

deleteobject(...)

getbucket(...)

deletebucket(...)

bucketexists(...)

Arguments

... Arguments passed to updated versions of each function.

get_acceleration Bucket Acceleration

Description

Get/Put acceleration settings or retrieve acceleration status of a bucket.

Usage

get_acceleration(bucket, ...)

put_acceleration(bucket, status = c("Enabled", "Suspended"), ...)

Arguments

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.

... Additional arguments passed to s3HTTP.

status Character string specifying whether acceleration should be “Enabled” or “Sus-
pended”.

get_acl 9

Details

Transfer acceleration is a AWS feature that enables potentially faster file transfers to and from
S3, particularly when making cross-border transfers (such as from a European client location to
the ‘us-east-1’ S3 region). Acceleration must be enabled before it can be used. Once enabled,
accelerate = TRUE can be passed to any aws.s3 function via s3HTTP. get_acceleration returns
the acceleration status of a bucket; put_acceleration enables or suspends acceleration.

Value

For get_acceleration: If acceleration has never been enabled or suspend, the value is NULL.
Otherwise, the status is returned (either “Enabled” or “Suspended”). For put_acceleration: If
acceleration has never been enabled or suspend, the value is NULL.

References

API Documentation: PUT Bucket accelerate API Documentation: GET Bucket accelerate

Examples

Not run:
b <- bucketlist()
get_acceleration(b[[1]])
put_acceleration(b[[1]], "Enabled")
get_acceleration(b[[1]])
put_acceleration(b[[1]], "Suspended")

End(Not run)

get_acl Get or put bucket/object ACLs

Description

Access Control Lists (ACLs) control access to buckets and objects. These functions retrieve and
modify ACLs for either objects or buckets.

Usage

get_acl(object, bucket, ...)

put_acl(object, bucket, acl = NULL, headers = list(), body = NULL, ...)

Arguments

object Character string with the object key, or an object of class “s3_object”. In most
cases, if object is specified as the latter, bucket can be omitted because the
bucket name will be extracted from “Bucket” slot in object.

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTaccelerate.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETaccelerate.html

10 get_bucket

... Additional arguments passed to s3HTTP.
acl A character string indicating a “canned” access control list. By default all bucket

contents and objects therein are given the ACL “private”. This can later be
viewed using get_acl and modified using put_acl.

headers List of request headers for the REST call
body A character string containing an XML-formatted ACL.

Details

get_acl retrieves an XML-formatted ACL for either an object (if specified) or a bucket (if speci-
fied).

Value

For get_acl a character string containing an XML-formatted ACL. For put_acl: if successful,
TRUE.

References

API Reference: GET Object ACL API Reference: PUT Object ACL

get_bucket List bucket contents

Description

List the contents of an S3 bucket as either a list or data frame

Usage

get_bucket(
bucket,
prefix = NULL,
delimiter = NULL,
max = NULL,
marker = NULL,
parse_response = TRUE,
...

)

get_bucket_df(
bucket,
prefix = NULL,
delimiter = NULL,
max = NULL,
marker = NULL,
...

)

http://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTacl.html

get_bucket 11

Arguments

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.

prefix Character string that limits the response to keys that begin with the specified
prefix

delimiter Character string used to group keys. Read the AWS doc for more detail.

max Integer indicating the maximum number of keys to return. The function will
recursively access the bucket in case max > 1000. Use max = Inf to retrieve all
objects.

marker Character string that specifies the key to start with when listing objects in a
bucket. Amazon S3 returns object keys in alphabetical order, starting with key
after the marker in order.

parse_response logical, should we attempt to parse the response?

... Additional arguments passed to s3HTTP.

Details

From the AWS doc: “This implementation of the GET operation returns some or all (up to 1000) of
the objects in a bucket. You can use the request parameters as selection criteria to return a subset of
the objects in a bucket.” The max and marker arguments can be used to retrieve additional pages of
results. Values from a call are store as attributes

Value

get_bucket returns a list of objects in the bucket (with class “s3_bucket”), while get_bucket_df
returns a data frame (the only difference is the application of the as.data.frame() method to the
list of bucket contents. If max is greater than 1000, multiple API requests are executed and the
attributes attached to the response object reflect only the final request.

References

API Documentation

See Also

bucketlist, get_object

Examples

Not run:
basic usage
b <- bucketlist()
get_bucket(b[1,1])
get_bucket_df(b[1,1])

bucket names with dots
this (default) should work:
get_bucket("this.bucket.has.dots", url_style = "path")
this probably wont:

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html

12 get_bucketname

#get_bucket("this.bucket.has.dots", url_style = "virtual")

End(Not run)

get_bucketname Utility Functions

Description

Some utility functions for working with S3 objects and buckets

Usage

get_bucketname(x, ...)

S3 method for class 'character'
get_bucketname(x, ...)

S3 method for class 's3_bucket'
get_bucketname(x, ...)

S3 method for class 's3_object'
get_bucketname(x, ...)

get_objectkey(x, ...)

S3 method for class 'character'
get_objectkey(x, ...)

S3 method for class 's3_object'
get_objectkey(x, ...)

Arguments

x S3 object, s3:// URL or a string

... Ignored.

Value

get_bucketname returns a character string with the name of the bucket.

get_objectkey returns a character string with S3 key which is the part excluding bucket name and
leading slashes

get_bucket_policy 13

get_bucket_policy Bucket policies

Description

Get/Put/Delete the bucket access policy for a bucket.

Usage

get_bucket_policy(bucket, parse_response = TRUE, ...)

put_bucket_policy(bucket, policy, ...)

delete_bucket_policy(bucket, ...)

Arguments

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.

parse_response A logical indicating whether to return the response as is, or parse and return as
a list. Default is FALSE.

... Additional arguments passed to s3HTTP.

policy A character string containing a bucket policy.

Details

Bucket policies regulate who has what access to a bucket and its contents. The header argument
can beused to specify “canned” policies and put_bucket_policy can be used to specify a more
complex policy. The AWS Policy Generator can be useful for creating the appropriate JSON policy
structure.

Value

For get_policy: A character string containing the JSON representation of the policy, if one has
been set. For delete_policy and put_policy: TRUE if successful, FALSE otherwise.

References

API Documentation API Documentation AWS Policy Generator

https://awspolicygen.s3.amazonaws.com/policygen.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETpolicy.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEpolicy.html
https://awspolicygen.s3.amazonaws.com/policygen.html

14 get_encryption

get_cors CORS

Description

Get/Put/Delete the cross origin resource sharing configuration information for a bucket.

Usage

get_cors(bucket, ...)

put_cors(bucket, ...)

delete_cors(bucket, ...)

Arguments

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.

... Additional arguments passed to s3HTTP.

Value

For get_cors: A list with cors configuration and rules. For delete_cors: TRUE if successful,
FALSE otherwise.

References

API Documentation: PUT cors API Documentation: GET cords API Documentation: DELETE
cors

get_encryption Bucket encryption

Description

Get/Put/Delete bucket-level encryption settings.

Usage

get_encryption(bucket, ...)

put_encryption(bucket, algorithm = c("AES256", "KMS"), kms_arn = NULL, ...)

delete_encryption(bucket, ...)

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTcors.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETcors.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEcors.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEcors.html

get_lifecycle 15

Arguments

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.

... Additional arguments passed to s3HTTP.

algorithm A character string specifying whether to use “AES256” or “KMS” encryption.

kms_arn If algorithm = "KMS", a KMS ARN.

Details

get_encryption returns the default encryption of a bucket; put_encryption sets the default en-
cryption. delete_encryption deletes the encryption status.

Value

For get_encryption: if encryption has never been set, the value is NULL. Otherwise, the encryption
type is returned as a charater string. For put_encryption or delete_encryption: a logical TRUE

References

API Documentation API Documentation API Documentation

Examples

Not run:
example bucket
put_bucket("mybucket")

set and check encryption
put_encryption("mybucket", "AES256")
get_encryption("mybucket")

delete encryption
delete_encryption("mybucket")

End(Not run)

get_lifecycle Lifecycle

Description

Get/Put/Delete the lifecycle configuration information for a bucket.

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTencryption.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETencryption.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEencryption.html

16 get_location

Usage

get_lifecycle(bucket, ...)

put_lifecycle(bucket, request_body, ...)

delete_lifecycle(bucket, ...)

Arguments

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.

... Additional arguments passed to s3HTTP.

request_body A character string containing an XML request body, as defined in the specifica-
tion in the API Documentation.

Value

For get_lifecycle: a list with lifecycle configuration, if it has been configured. For delete_lifecycle:
TRUE if successful, FALSE otherwise.

References

API Documentation: PUT lifecycle API Documentation: GET lifecycle API Documentation: DELETE
lifecycle

get_location Bucket location

Description

Get the AWS region location of bucket.

Usage

get_location(bucket, ...)

Arguments

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.

... Additional arguments passed to s3HTTP.

Value

A character string containing the region, if one has been set.

References

API Documentation

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlifecycle.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlifecycle.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETlifecycle.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETElifecycle.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETElifecycle.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETlocation.html

get_notification 17

get_notification Notifications

Description

Get/put the notification configuration for a bucket.

Usage

get_notification(bucket, ...)

put_notification(bucket, request_body, ...)

Arguments

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.

... Additional arguments passed to s3HTTP.

request_body A character string containing an XML request body, as defined in the specifica-
tion in the API Documentation.

Value

A list containing the notification configuration, if one has been set.

References

API Documentation: GET API Documentation: PUT

get_object Get object

Description

Retrieve an object from an S3 bucket. To check if an object exists, see head_object

Usage

get_object(
object,
bucket,
headers = list(),
parse_response = FALSE,
as = "raw",
...

)

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTnotification.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETnotification.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTnotification.html

18 get_object

save_object(
object,
bucket,
file = basename(object),
headers = list(),
overwrite = TRUE,
...

)

select_object(
object,
bucket,
request_body,
headers = list(),
parse_response = FALSE,
...

)

s3connection(object, bucket, headers = list(), ...)

Arguments

object Character string with the object key, or an object of class “s3_object”. In most
cases, if object is specified as the latter, bucket can be omitted because the
bucket name will be extracted from “Bucket” slot in object.

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.

headers List of request headers for the REST call.

parse_response Passed through to s3HTTP, as this function requires a non-default setting. There
is probably no reason to ever change this.

as Passed through to httr::content.

... Additional arguments passed to s3HTTP.

file An R connection, or file name specifying the local file to save the object into.

overwrite A logical indicating whether to overwrite file. Passed to write_disk. Default
is TRUE.

request_body For select_object, an XML request body as described in the SELECT API
documentation.

Details

get_object retrieves an object into memory as a raw vector. This page describes get_object and
several wrappers that provide additional useful functionality.

save_object saves an object to a local file without bringing it into memory.

s3connection provides a connection interface to an S3 object.

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectSELECTContent.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectSELECTContent.html

get_object 19

select_object uses the SELECT API to select part of a CSV or JSON object. This requires
constructing and passing a fairly tedious request body, which users will have to construct themselves
according to the documentation.

Some users may find the raw vector response format of get_object unfamiliar. The object will
also carry attributes, including “content-type”, which may be useful for deciding how to subse-
quently process the vector. Two common strategies are as follows. For text content types, running
charToRaw may be the most useful first step to make the response human-readable. Alternatively,
converting the raw vector into a connection using rawConnection may also be useful, as that can
often then be passed to parsing functions just like a file connection would be.

Higher-level functions

Value

If file = NULL, a raw object. Otherwise, a character string containing the file name that the object
is saved to.

References

API Documentation: GET Object API Documentation: GET Object torrent API Documentation:
SELECT Object

See Also

get_bucket, object_exists, head_object, put_object, delete_object

Examples

Not run:
get an object in memory
create bucket
b <- put_bucket("myexamplebucket")

save a dataset to the bucket
s3save(mtcars, bucket = b, object = "mtcars")
obj <- get_bucket(b)
get the object in memory
x <- get_object(obj[[1]])
load(rawConnection(x))
"mtcars" %in% ls()

save an object locally
y <- save_object(obj[[1]], file = object[[1]][["Key"]])
y %in% dir()

return object using 'S3 URI' syntax, with progress bar
get_object("s3://myexamplebucket/mtcars", show_progress = TRUE)

return parts of an object
use 'Range' header to specify bytes
get_object(object = obj[[1]], headers = list('Range' = 'bytes=1-120'))

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectSELECTContent.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectSELECTContent.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectSELECTContent.html

20 get_replication

example of streaming connection
setup a bucket and object
b <- put_bucket("myexamplebucket")
s3write_using(mtcars, bucket = b, object = "mtcars.csv", FUN = utils::write.csv)

setup the connection
con <- s3connection("mtcars.csv", bucket = b)

line-by-line read
while(length(x <- readLines(con, n = 1L))) {

print(x)
}

use data.table::fread without saving object to file
library(data.table)
s3write_using(as.data.table(mtcars), bucket = b, object = "mtcars2.csv", FUN = data.table::fwrite)
fread(get_object("mtcars2.csv", bucket = b, as = "text"))

cleanup
close(con)
delete_bucket("myexamplebucket")

End(Not run)

get_replication Bucket replication

Description

Get/Delete the replication configuration for a bucket.

Usage

get_replication(bucket, ...)

put_replication(bucket, request_body, ...)

delete_replication(bucket, ...)

Arguments

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.
... Additional arguments passed to s3HTTP.
request_body A character string containing an XML request body, as defined in the specifica-

tion in the API Documentation.

Details

get_replication gets the current replication policy. delete_replication deletes the replication
policy for a bucket.

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTreplication.html

get_requestpayment 21

Value

For get_replication: A list containing the replication configuration, if one has been set. For
delete_replication: TRUE if successful, FALSE otherwise.

References

API Documentation: PUT replication API Documentation: GET replication API Documentation:
DELETE replication

get_requestpayment requestPayment

Description

Get/Put the requestPayment subresource for a bucket.

Usage

get_requestpayment(bucket, ...)

put_requestpayment(bucket, ...)

Arguments

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.

... Additional arguments passed to s3HTTP.

Value

A list containing the requestPayment information, if set.

References

API Documentation

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTreplication.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETreplication.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEreplication.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEreplication.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTrequestPaymentGET.html

22 get_tagging

get_tagging Bucket tagging

Description

Get/delete the tag set for a bucket.

Usage

get_tagging(bucket, ...)

put_tagging(bucket, tags = list(), ...)

delete_tagging(bucket, ...)

Arguments

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.

... Additional arguments passed to s3HTTP.

tags A list containing key-value pairs of tag names and values.

Value

A list containing the tag set, if one has been set. For delete_tagging: TRUE if successful, FALSE
otherwise.

References

API Documentation: PUT tagging API Documentation: GET tagging API Documentation: DELETE
tagging

Examples

Not run:
put_tagging("mybucket", tags = list(foo = "1", bar = "2"))
get_tagging("mybucket")
delete_tagging("mybucket")

End(Not run)

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTtagging.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETtagging.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEtagging.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEtagging.html

get_torrent 23

get_torrent Get object torrent

Description

Retrieves a Bencoded dictionary (BitTorrent) for an object from an S3 bucket.

Usage

get_torrent(object, bucket, ...)

Arguments

object Character string with the object key, or an object of class “s3_object”. In most
cases, if object is specified as the latter, bucket can be omitted because the
bucket name will be extracted from “Bucket” slot in object.

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.

... Additional arguments passed to s3HTTP.

Value

Something.

References

API Documentation

get_uploads Multipart uploads

Description

Get a list of multipart uploads for a bucket.

Usage

get_uploads(bucket, ...)

Arguments

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.

... Additional arguments passed to s3HTTP.

Value

A list containing the multipart upload information.

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETtorrent.html

24 get_versions

References

API Documentation

get_versions Bucket versions

Description

Get/Put versioning settings or retrieve versions of bucket objects.

Usage

get_versions(bucket, ...)

get_versioning(bucket, ...)

put_versioning(bucket, status = c("Enabled", "Suspended"), ...)

Arguments

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.

... Additional arguments passed to s3HTTP.

status Character string specifying whether versioning should be “Enabled” or “Sus-
pended”.

Details

get_versioning returns the versioning status of a bucket; put_versioning sets the versioning
status. get_versions returns information about bucket versions.

Value

For get_versioning: If versioning has never been enabled or suspend, the value is NULL. Other-
wise, the status is returned (either “Enabled” or “Suspended”). For put_versioning: If versioning
has never been enabled or suspend, the value is NULL. Otherwise, the status is returned (either “En-
abled” or “Suspended”). For get_versions: A list.

References

API Documentation API Documentation API Documentation

http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadListMPUpload.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETVersion.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETversioningStatus.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTVersioningStatus.html

head_object 25

Examples

Not run:
put_versioning("mybucket")
get_versioning("mybucket")
get_versions("mybucket")

End(Not run)

head_object Get object metadata

Description

Check if an object from an S3 bucket exists. To retrieve the object, see get_object

Usage

head_object(object, bucket, ...)

object_exists(object, bucket, ...)

object_size(object, bucket, ...)

Arguments

object Character string with the object key, or an object of class “s3_object”. In most
cases, if object is specified as the latter, bucket can be omitted because the
bucket name will be extracted from “Bucket” slot in object.

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.

... Additional arguments passed to s3HTTP.

Details

head_object is a low-level API wrapper that checks whether an object exists by executing an
HTTP HEAD request; this can be useful for checking object headers such as “content-length” or
“content-type”. object_exists is sugar that returns only the logical.

object_size returns the size of the object (from the “content-length” attribute returned by head_object).

Value

head_object returns a logical. object_exists returns TRUE if bucket exists and is accessible, else
FALSE. object_size returns an integer, which is NA if the request fails.

References

API Documentation: HEAD Object

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html

26 put_bucket

See Also

bucket_exists, get_object, put_object, delete_object

Examples

Not run:
get an object in memory
create bucket
b <- put_bucket("myexamplebucket")

save a dataset to the bucket
s3save(mtcars, bucket = b, object = "mtcars")

check that object exists
object_exists("mtcars", "myexamplebucket")
object_exists("s3://myexamplebucket/mtcars")

get the object's size
object_size("s3://myexamplebucket/mtcars")

get the object
get_object("s3://myexamplebucket/mtcars")

End(Not run)

put_bucket Create bucket

Description

Creates a new S3 bucket.

Usage

put_bucket(
bucket,
region = Sys.getenv("AWS_DEFAULT_REGION"),
acl = c("private", "public-read", "public-read-write", "aws-exec-read",
"authenticated-read", "bucket-owner-read", "bucket-owner-full-control"),

location_constraint = region,
headers = list(),
...

)

Arguments

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.

put_bucket 27

region A character string containing the AWS region. If missing, defaults to value of
environment variable AWS_DEFAULT_REGION.

acl A character string indicating a “canned” access control list. By default all bucket
contents and objects therein are given the ACL “private”. This can later be
viewed using get_acl and modified using put_acl.

location_constraint

A character string specifying a location constraint. If NULL (for example, for
S3-compatible storage), no LocationConstraint body is passed.

headers List of request headers for the REST call.

... Additional arguments passed to s3HTTP.

Details

Bucket policies regulate who has what access to a bucket and its contents. The header argument
can beused to specify “canned” policies and put_bucket_policy can be used to specify a more
complex policy. The AWS Policy Generator can be useful for creating the appropriate JSON policy
structure.

Value

TRUE if successful.

References

API Documentation AWS Policy Generator

See Also

bucketlist, get_bucket, delete_bucket, put_object, put_encryption, put_versioning

Examples

Not run:
put_bucket("examplebucket")

set a "canned" ACL to, e.g., make bucket publicly readable
put_bucket("examplebucket", headers = list(`x-amz-acl` = "public-read")

End(Not run)

http://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl
https://awspolicygen.s3.amazonaws.com/policygen.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html
https://awspolicygen.s3.amazonaws.com/policygen.html

28 put_object

put_object Put object

Description

Puts an object into an S3 bucket

Usage

put_object(
file,
object,
bucket,
multipart = FALSE,
acl = NULL,
headers = list(),
verbose = getOption("verbose", FALSE),
show_progress = getOption("verbose", FALSE),
...

)

put_folder(folder, bucket, ...)

Arguments

file A character string containing the filename (or full path) of the file you want
to upload to S3. Alternatively, an raw vector containing the file can be passed
directly, in which case object needs to be specified explicitly.

object A character string containing the name the object should have in S3 (i.e., its
"object key"). If missing, the filename is used.

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.

multipart A logical indicating whether to use multipart uploads. See http://docs.aws.
amazon.com/AmazonS3/latest/dev/mpuoverview.html. If file is less than
100 MB, this is ignored.

acl A character string indicating a “canned” access control list. By default all bucket
contents and objects therein are given the ACL “private”. This can later be
viewed using get_acl and modified using put_acl.

headers List of request headers for the REST call. If multipart = TRUE, this only applies
to the initialization call.

verbose A logical indicating whether to be verbose. Default is given by options("verbose").

show_progress A logical indicating whether to show a progress bar for uploads. Default is given
by options("verbose").

... Additional arguments passed to s3HTTP.

folder A character string containing a folder name. (A trailing slash is not required.)

http://docs.aws.amazon.com/AmazonS3/latest/dev/mpuoverview.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/mpuoverview.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl

put_object 29

Details

This provide a generic interface for sending files (or serialized, in-memory representations thereof)
to S3. Some convenience wrappers are provided for common tasks: e.g., s3save and s3saveRDS.

Note that S3 is a flat file store. So there is no folder hierarchy as in a traditional hard drive. How-
ever, S3 allows users to create pseudo-folders by prepending object keys with foldername/. The
put_folder function is provided as a high-level convenience function for creating folders. This is
not actually necessary as objects with slashes in their key will be displayed in the S3 web console
as if they were in folders, but it may be useful for creating an empty directory (which is possible in
the web console).

Value

If successful, TRUE.

References

API Documentation

See Also

put_bucket, get_object, delete_object, put_encryption

Examples

Not run:
library("datasets")

write file to S3
tmp <- tempfile()
on.exit(unlink(tmp))
utils::write.csv(mtcars, file = tmp)
put object with an upload progress bar
put_object(tmp, object = "mtcars.csv", bucket = "myexamplebucket", show_progress = TRUE)

create a "folder" in a bucket
put_folder("example", bucket = "myexamplebucket")
write object to the "folder"
put_object(tmp, object = "example/mtcars.csv", bucket = "myexamplebucket")

write serialized, in-memory object to S3
x <- rawConnection(raw(0), "w")
utils::write.csv(mtcars, x)
put_object(rawConnectionValue(x), object = "mtcars.csv", bucket = "myexamplebucketname")

use `headers` for server-side encryption
require appropriate bucket policy
encryption can also be set at the bucket-level using \code{\link{put_encryption}}
put_object(file = tmp, object = "mtcars.csv", bucket = "myexamplebucket",

headers = c('x-amz-server-side-encryption' = 'AES256'))

alternative "S3 URI" syntax:

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html

30 s3HTTP

put_object(rawConnectionValue(x), object = "s3://myexamplebucketname/mtcars.csv")
close(x)

read the object back from S3
read.csv(text = rawToChar(get_object(object = "s3://myexamplebucketname/mtcars.csv")))

multi-part uploads for objects over 5MB
\donttest{
x <- rnorm(3e6)
saveRDS(x, tmp)
put_object(tmp, object = "rnorm.rds", bucket = "myexamplebucket",

show_progress = TRUE, multipart = TRUE)
identical(x, s3readRDS("s3://myexamplebucket/rnorm.rds"))
}

End(Not run)

s3HTTP S3 HTTP Requests

Description

This is the workhorse function for executing API requests for S3.

Usage

s3HTTP(
verb = "GET",
bucket = "",
path = "",
query = NULL,
headers = list(),
request_body = "",
write_disk = NULL,
write_fn = NULL,
accelerate = FALSE,
dualstack = FALSE,
parse_response = TRUE,
check_region = FALSE,
url_style = c("path", "virtual"),
base_url = Sys.getenv("AWS_S3_ENDPOINT", "s3.amazonaws.com"),
verbose = getOption("verbose", FALSE),
show_progress = getOption("verbose", FALSE),
region = NULL,
key = NULL,
secret = NULL,
session_token = NULL,
use_https = TRUE,

s3HTTP 31

...
)

Arguments

verb A character string containing an HTTP verb, defaulting to “GET”.

bucket A character string with the name of the bucket, or an object of class “s3_bucket”.
If the latter and a region can be inferred from the bucket object attributes, then
that region is used instead of region.

path A character string with the name of the object to put in the bucket (sometimes
called the object or ’key name’ in the AWS documentation.)

query Any query arguments, passed as a named list of key-value pairs.

headers A list of request headers for the REST call.

request_body A character string containing request body data.

write_disk If verb = "GET", this is, optionally, an argument like write_disk to write the
result directly to disk.

write_fn If set to a function and verb = "GET" is used then the output is passed in chunks
as a raw vector in the first argument to this function, allowing streaming output.
Note that write_disk and write_fn are mutually exclusive.

accelerate A logical indicating whether to use AWS transfer acceleration, which can pro-
duce significant speed improvements for cross-country transfers. Acceleration
only works with buckets that do not have dots in bucket name.

dualstack A logical indicating whether to use “dual stack” requests, which can resolve to
either IPv4 or IPv6. See http://docs.aws.amazon.com/AmazonS3/latest/
dev/dual-stack-endpoints.html.

parse_response A logical indicating whether to return the response as is, or parse and return as
a list. Default is TRUE.

check_region A logical indicating whether to check the value of region against the apparent
bucket region. This is useful for avoiding (often confusing) out-of-region errors.
Default is FALSE.

url_style A character string specifying either “path” (the default), or “virtual”-style S3
URLs.

base_url A character string specifying the base hostname for the request (it is a misnomer,
the actual URL is constructed from this name, region and use_https flag. There
is no need to set this, as it is provided only to generalize the package to (poten-
tially) support S3-compatible storage on non-AWS servers. The easiest way to
use S3-compatible storage is to set the AWS_S3_ENDPOINT environment variable.
When using non-AWS servers, you may also want to set region="".

verbose A logical indicating whether to be verbose. Default is given by options("verbose").

show_progress A logical indicating whether to show a progress bar for downloads and uploads.
Default is given by options("verbose").

region A character string containing the AWS region. Ignored if region can be inferred
from bucket. If missing, an attempt is made to locate it from credentials. De-
faults to “us-east-1” if all else fails. Should be set to "" when using non-AWS
endpoints that don’t include regions (and base_url must be set).

http://docs.aws.amazon.com/AmazonS3/latest/dev/dual-stack-endpoints.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/dual-stack-endpoints.html

32 s3save

key A character string containing an AWS Access Key ID. If missing, defaults to
value stored in environment variable AWS_ACCESS_KEY_ID.

secret A character string containing an AWS Secret Access Key. If missing, defaults
to value stored in environment variable AWS_SECRET_ACCESS_KEY.

session_token Optionally, a character string containing an AWS temporary Session Token. If
missing, defaults to value stored in environment variable AWS_SESSION_TOKEN.

use_https Optionally, a logical indicating whether to use HTTPS requests. Default is TRUE.

... Additional arguments passed to an HTTP request function. such as GET.

Details

This is mostly an internal function for executing API requests. In almost all cases, users do not need
to access this directly.

Value

the S3 response, or the relevant error.

s3save save/load

Description

Save/load R object(s) to/from S3

Usage

s3save(..., object, bucket, envir = parent.frame(), opts = NULL)

s3save_image(object, bucket, opts = NULL)

s3load(object, bucket, envir = parent.frame(), ...)

Arguments

... For s3save, one or more R objects to be saved via save and uploaded to S3. For
s3load, see opts.

object For s3save, a character string of the name of the object you want to save to. For
s3load, a character string of the name of the object you want to load from S3.

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.

envir For s3save, an R environment to save objects from; for s3load, the environ-
ment to load objects into. Default is the parent.frame() from which the func-
tion is called.

opts Additional arguments passed to s3HTTP.

s3saveRDS 33

Value

For s3save, a logical, invisibly. For s3load, NULL invisibly.

References

API Documentation

See Also

s3saveRDS,s3readRDS

Examples

Not run:
create bucket
b <- put_bucket("myexamplebucket")

save a dataset to the bucket
s3save(mtcars, iris, object = "somedata.Rdata", bucket = b)
get_bucket(b)

load the data from bucket
e <- new.env()
s3load(object = "somedata.Rdata", bucket = b, envir = e)
ls(e)

cleanup
rm(e)
delete_object(object = "somedata.Rdata", bucket = "myexamplebucket")
delete_bucket("myexamplebucket")

End(Not run)

s3saveRDS saveRDS/readRDS

Description

Serialization interface to read/write R objects to S3

Usage

s3saveRDS(
x,
object = paste0(as.character(substitute(x)), ".rds"),
bucket,
compress = TRUE,
...

)

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html

34 s3saveRDS

s3readRDS(object, bucket, ...)

Arguments

x For s3saveRDS, a single R object to be saved via saveRDS and uploaded to S3.
x is analogous to the object argument in saveRDS.

object Character string with the object key, or an object of class “s3_object”. In most
cases, if object is specified as the latter, bucket can be omitted because the
bucket name will be extracted from “Bucket” slot in object.

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.
compress A logical. See saveRDS.
... Additional arguments passed to s3HTTP.

Details

Note that early versions of s3saveRDS from aws.s3 <= 0.2.4 unintentionally serialized objects to
big endian format (due to defaults in serialize. This can create problems when attempting to read
these files using readRDS. The function attempts to catch the issue and read accordingly, but may
fail. The solution used internally is unserialize(memDecompress(get_object(), "gzip"))

Value

For s3saveRDS, a logical. For s3readRDS, an R object.

Author(s)

Steven Akins <skawesome@gmail.com>

See Also

s3save,s3load

Examples

Not run:
create bucket
b <- put_bucket("myexamplebucket")

save a single object to s3
s3saveRDS(x = mtcars, bucket = "myexamplebucket", object = "mtcars.rds")

restore it under a different name
mtcars2 <- s3readRDS(object = "mtcars.rds", bucket = "myexamplebucket")
identical(mtcars, mtcars2)

cleanup
delete_object(object = "mtcars.rds", bucket = "myexamplebucket")
delete_bucket("myexamplebucket")

End(Not run)

s3source 35

s3source Source from S3

Description

Source R code (a la source) from S3

Usage

s3source(object, bucket, ..., opts = NULL)

Arguments

object Character string with the object key, or an object of class “s3_object”. In most
cases, if object is specified as the latter, bucket can be omitted because the
bucket name will be extracted from “Bucket” slot in object.

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.

... Additional arguments passed to s3HTTP.

opts Additional arguments passed to get_object for retrieving the R syntax file.

Value

See source

See Also

s3saveRDS,s3save, get_object

Examples

Not run:
create bucket
b <- put_bucket("myexamplebucket")

save some code to the bucket
cat("x <- 'hello world!'\nx", file = "example.R")
put_object("example.R", object = "example.R", bucket = b)
get_bucket(b)

source the code from the bucket
s3source(object = "example.R", bucket = b, echo = TRUE)

cleanup
unlink("example.R")
delete_object(object = "example.R", bucket = b)
delete_bucket("myexamplebucket")

End(Not run)

36 s3sync

s3sync S3 file sync

Description

Sync files/directories to/from S3

Usage

s3sync(
path = ".",
bucket,
prefix = "",
direction = c("upload", "download"),
verbose = TRUE,
create = FALSE,
...

)

Arguments

path string, path to the directory to synchronize, it will be expanded as needed (NOTE:
older versions had a files argument which expected a full list of files which was
ambiguous).

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.

prefix string, if set to non-empty string, leading part of the objects in the bucket much
have that prefix, other objects are not considered. In practice, this alows the
immitation of sub-directories in the bucket and in that case it is typically required
that the training slash is included in the prefix.

direction A character vector specifying whether to “upload” and/or “download” files. By
default, s3sync is two-way, uploading any files missing from the bucket and
downloading any objects missing from the local directory.

verbose A logical indicating whether to be verbose (the default is TRUE).

create logical, if TRUE the bucket is created if it doesn’t exist, otherwise synchronizing
a non-existing bucket is an error.

... Additional arguments passed to s3HTTP.

Details

s3sync synchronizes specified files to an S3 bucket. If the bucket does not exist, it is created (unless
create=FALSE). Similarly, if local directories do not exist (corresponding to leading portions of
object keys), they are created, recursively. Object keys are generated based on files and local files
are named (and organized into directories) based on object keys. A slash is interpreted as a directory
level. Local objects are copied to S3 and S3 objects are copied locally. This copying is performed
conditionally. Objects existing locally but not in S3 are uploaded using put_object. Objects

s3write_using 37

existing in S3 but not locally, are saved using save_object. If objects exist in both places, the
MD5 checksum for each is compared; when identical, no copying is performed. If the checksums
differ, local files are replaced with the bucket version if the local file is older and the S3 object
is replaced if the local file is newer. If checksums differ but modified times match (which seems
unlikely), a warning is issued. Note that multi-part files don’t have a full MD5 sum recorded in S3
so they cannot be compared and thus are always assumed to be different.

Value

A logical.

References

aws s3 sync command line

See Also

get_bucket, put_object, , save_object

Examples

Not run:
put_bucket("examplebucket")

sync all files in current directory to bucket (upload-only)
s3sync(bucket = "examplebucket", direction = "upload")

two-way sync
s3sync(bucket = "examplebucket")

full sync between a subset of the bucket and a test directory in user's home
corresponding roughly to:
aws s3 sync ~/test s3://examplebucket/test/
aws s3 sync s3://examplebucket/test/ ~/test
s3sync("~/test", "examplebucket", prefix="test/", region="us-east-2")

End(Not run)

s3write_using Custom read and write

Description

Read/write objects from/to S3 using a custom function

Usage

s3write_using(x, FUN, ..., object, bucket, opts = NULL)

s3read_using(FUN, ..., object, bucket, opts = NULL, filename = NULL)

http://docs.aws.amazon.com/cli/latest/reference/s3/sync.html

38 s3write_using

Arguments

x For s3write_using, a single R object to be saved via the first argument to FUN
and uploaded to S3.

FUN For s3write_using, a function to which x and a file path will be passed (in that
order).

... Additional arguments to FUN

object Character string with the object key, or an object of class “s3_object”. In most
cases, if object is specified as the latter, bucket can be omitted because the
bucket name will be extracted from “Bucket” slot in object.

bucket Character string with the name of the bucket, or an object of class “s3_bucket”.

opts Optional additional arguments passed to put_object or save_object, respec-
tively.

filename Optional string, name of the temporary file that will be created. If not specified,
tempfile() with the extension of the object is used.

Value

For s3write_using, a logical, invisibly. For s3read_using, the output of FUN applied to the file
from object.

See Also

s3saveRDS, s3readRDS, put_object,get_object

Examples

Not run:
library("datasets")
create bucket
b <- put_bucket("myexamplebucket")

save a dataset to the bucket as a csv
if (require("utils")) {

s3write_using(mtcars, FUN = write.csv, object = "mtcars.csv", bucket = b)
}

load dataset from the bucket as a csv
if (require("utils")) {

s3read_using(FUN = read.csv, object = "mtcars.csv", bucket = b)
}

cleanup
delete_object(object = "mtcars.csv", bucket = b)
delete_bucket(bucket = b)

End(Not run)

Index

∗ package
aws.s3-package, 2

∗ service
bucketlist, 3

aws.s3 (aws.s3-package), 2
aws.s3-package, 2

bucket_exists, 4, 26
bucket_list_df (bucketlist), 3
bucketexists (getobject), 7
bucketlist, 3, 4, 11, 27

charToRaw, 19
connection, 18
copy_bucket (copy_object), 4
copy_object, 4
copybucket (getobject), 7
copyobject (getobject), 7

delete_bucket, 5, 27
delete_bucket_policy

(get_bucket_policy), 13
delete_cors (get_cors), 14
delete_encryption (get_encryption), 14
delete_lifecycle (get_lifecycle), 15
delete_object, 6, 19, 26, 29
delete_replication (get_replication), 20
delete_tagging (get_tagging), 22
delete_website, 7
deletebucket (getobject), 7
deleteobject (getobject), 7

GET, 32
get_acceleration, 8
get_acl, 9, 10, 27, 28
get_bucket, 3, 4, 10, 19, 27, 37
get_bucket_df (get_bucket), 10
get_bucket_policy, 13
get_bucketname, 12
get_cors, 14

get_encryption, 14
get_lifecycle, 15
get_location, 3, 16
get_notification, 17
get_object, 3, 11, 17, 25, 26, 29, 35, 38
get_objectkey (get_bucketname), 12
get_replication, 20
get_requestpayment, 21
get_tagging, 22
get_torrent, 23
get_uploads, 23
get_versioning (get_versions), 24
get_versions, 24
get_website (delete_website), 7
getbucket (getobject), 7
getobject, 7

head_object, 17, 19, 25
headobject (getobject), 7

object_exists, 4, 19
object_exists (head_object), 25
object_size (head_object), 25

put_acceleration (get_acceleration), 8
put_acl, 10, 27, 28
put_acl (get_acl), 9
put_bucket, 26, 29
put_bucket_policy, 13, 27
put_bucket_policy (get_bucket_policy),

13
put_cors (get_cors), 14
put_encryption, 27, 29
put_encryption (get_encryption), 14
put_folder (put_object), 28
put_lifecycle (get_lifecycle), 15
put_notification (get_notification), 17
put_object, 6, 19, 26, 27, 28, 36–38
put_replication (get_replication), 20

39

40 INDEX

put_requestpayment
(get_requestpayment), 21

put_tagging (get_tagging), 22
put_versioning, 27
put_versioning (get_versions), 24
put_website (delete_website), 7
putbucket (getobject), 7
putobject (getobject), 7

rawConnection, 19
readRDS, 34

s3connection (get_object), 17
s3HTTP, 3–11, 13–18, 20–25, 27, 28, 30, 32,

34–36
s3load, 34
s3load (s3save), 32
s3read_using (s3write_using), 37
s3readRDS, 33, 38
s3readRDS (s3saveRDS), 33
s3save, 29, 32, 34, 35
s3save_image (s3save), 32
s3saveRDS, 29, 33, 33, 35, 38
s3source, 35
s3sync, 36
s3write_using, 37
save, 32
save_object, 37, 38
save_object (get_object), 17
saveobject (getobject), 7
saveRDS, 34
select_object (get_object), 17
serialize, 34
source, 35

write_disk, 18, 31

	aws.s3-package
	bucketlist
	bucket_exists
	copy_object
	delete_bucket
	delete_object
	delete_website
	getobject
	get_acceleration
	get_acl
	get_bucket
	get_bucketname
	get_bucket_policy
	get_cors
	get_encryption
	get_lifecycle
	get_location
	get_notification
	get_object
	get_replication
	get_requestpayment
	get_tagging
	get_torrent
	get_uploads
	get_versions
	head_object
	put_bucket
	put_object
	s3HTTP
	s3save
	s3saveRDS
	s3source
	s3sync
	s3write_using
	Index

