
Creating a simple approximator case study from

scratch: a cookbook

Robin K. S. Hankin

Auckland University of Technology

Abstract

This document constructs a minimal working example of a simple application of the
approximator package, step by step. Datasets and functions have a .vig suffix, repre-
senting “vignette”.

Keywords: emulator, approximator, BACCO, R.

1. Introduction

Package approximator of bundle BACCO performs Bayesian calibration of computer models
when fast approximations are available. This document constructs a minimal working example
of a simple problem, step by step. Datasets and functions have a .vig suffix, representing
“vignette”.

This document is not a substitute for Kennedy and O’Hagan (2000) or Hankin (2005) or the
online help files in approximator. It is not intended to stand alone: for example, the notation
used here is that of Kennedy and O’Hagan (2000), and the user is expected to consult the
online help in the approximator package when appropriate.

This document is primarily didactic, although it is informal.

Nevertheless, many of the points raised here are duplicated in the BACCO helpfiles.

Note that many of the objects created in this document are interdependent and changing one
sometimes implies changing many others.

The author would be delighted to know of any improvements or suggestions. Email me at
hankin.robin@gmail.com.

2. List of objects that the user needs to supply

The user needs to supply five objects:

• A design matrix, here D1.vig (rows of this show where code level 1 has been evaluated)

• A subset object, in the form of a list. Here it is subsets.vig. This list has one element
per level of code. A subset object shows which points in the design matrix have been
evaluated at each level.

2 An approximator cookbook

• Basis functions. Here basis.vig. This shows the basis functions used for fitting the
prior

• Data, here z.vig. This shows the data obtained from evaluating the various levels of
code at the points given by the design matrix and the subsets object.

• A hyperparameter object, here hpa.vig. This object holds correlation scales, the
rhos, and the sigmas. One convenient way to do this is to define a function that
creates a hyperparameter object from a vector; an example is given in the appendix
(hpa.fun.vig()) but this is not strictly necessary.

Each of these is discussed in a separate subsection below.

But the first thing we need to do is install the library:

2.1. Design matrix: USER TO SUPPLY

In these sections I show the objects that the user needs to supply, under a heading like the
one above. In the case of the approximator package, the objects have a simple structure (list
of vectors, function, etc) and so I just show what they look like.

The first thing needed is the design matrix D1.vig, ie the points in parameter space at which
the lowest-level code is executed. The example here has just two parameters, a and b:

> head(D1.vig)

[,1] [,2]

[1,] 0.84375 0.59375

[2,] 0.53125 0.40625

[3,] 0.21875 0.53125

[4,] 0.40625 0.28125

[5,] 0.03125 0.78125

[6,] 0.09375 0.84375

> nrow(D1.vig)

[1] 16

Notes

• Each row is a point in parameter space, here two dimensional. The bottom level code
is run at each of these points (see subsets.vig)

• The parameters are labelled a and b

2.2. Subsets object: USER TO SUPPLY

We now need a subsets.object, which gives the row numbers of the runs at each level.

> subsets.vig

Robin K. S. Hankin 3

$level.1

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

$level.2

[1] 1 3 7 8 10 11 14 16

$level.3

[1] 1 3 7 8 10 14

$level.4

[1] 1 3 7 10 14

Notes

• This is a list of 4 elements (ie the number of levels)

• each element is a subset of those above it

• Use functions is.nested() and is.strict() to verify that the subsets are consistent.

2.3. Basis functions: USER TO SUPPLY

Now we need to choose a basis function. Do this by copying basis.toy() but fiddling with
it:

> basis.vig <-

+ function (x)

+ {

+ if (is.vector(x)) {

+ stopifnot(length(x) == 2)

+ out <- c(1, x , x[1]*x[2])

+ names(out) <- c("const", LETTERS[1:2], "interaction")

+ return(out)

+ }

+ else {

+ return(t(apply(x, 1, match.fun(sys.call()[[1]]))))

+ }

+ }

Notes

• This is shamelessly ripped off from basis.toy(), except that I’ve changed the basis to
be c(1,a,b,ab).

• Also note the rather strange way this function deals with vectors and matrices. Vectors
via the first bit, and matrices via that strange apply() bit at the end.

• The line that reads stopifnot(length(x) == 2) is there to ensure that only vectors
of length 2, or matrices with two columns, are processed.

4 An approximator cookbook

Here is an example of basis.vig() in action:

> head(basis.vig(D1.vig))

const A B interaction

[1,] 1 0.84375 0.59375 0.50097656

[2,] 1 0.53125 0.40625 0.21582031

[3,] 1 0.21875 0.53125 0.11621094

[4,] 1 0.40625 0.28125 0.11425781

[5,] 1 0.03125 0.78125 0.02441406

[6,] 1 0.09375 0.84375 0.07910156

See how the columns become the basis functions (that is, c(1, x , x[1]*x[2])).

2.4. Data: USER TO SUPPLY

The data needed is output from the four levels of code. The code is evaluated at points
specified by the design matrix D1.vig.

Code level 1 is evaluated at each point of D1.vig (ie D1.vig[subsets[[1]],])

Code level 2 is evaluated at D1.vig[subsets[[2]],]

Code level n is evaluated at D1.vig[subsets[[n]],]

The data we have for the .vig example is a list of four elements. Each element is a vector
whose ith element is the code output at the appropriate point in the design matrix. We can
get a feel for the dataset by looking at the head of each vector, and extracting the length:

> lapply(z.vig,head)

[[1]]

[1] 6.475588 4.185674 3.608628 3.164262 3.477331 3.986247

[[2]]

[1] 12.221859 6.774057 12.633986 12.347821 4.246554 14.816785

[[3]]

[1] 16.905056 8.984733 17.296726 16.661611 5.910728 9.561769

[[4]]

[1] 19.694364 10.998183 20.171778 7.735335 11.813646

> lapply(z.vig,length)

[[1]]

[1] 16

[[2]]

Robin K. S. Hankin 5

[1] 8

[[3]]

[1] 6

[[4]]

[1] 5

2.5. Hyperparameters: USER TO SUPPLY

We now need some hyperparameters. The appendix gives an example of how to specify a
function that creates a hyperparameter object. Here I will show an example

> hpa.vig

$sigma_squareds

level1 level2 level3 level4

0.01 0.01 0.01 0.01

$B

$B[[1]]

A B

A 20 0

B 0 20

$B[[2]]

A B

A 20 0

B 0 20

$B[[3]]

A B

A 20 0

B 0 20

$B[[4]]

A B

A 20 0

B 0 20

$rhos

level1 level2 level3

1 1 1

Notes

6 An approximator cookbook

• The hyperparameter object is a list of three elements:

– The first element, sigma_squareds, is a vector of variances (one per level)

– The second element is a list of length n (the number of levels). Each of these
elements is a positive definite matrix of correlation lengths (here diagonal for sim-
plicity)

– The third element is a vector of length n − 1 of the rhos.

• Different problems will have different hyperparameter objects

• In this case it’s probably easier to create a hyperparameter object by hand, but in the
appendix I show how a function to generate hyperparameter objects may be written.
This option is sometimes better.

3. Data analysis

The previous section showed what data and functions the user needs to supply. These all
have a .vig suffix. This section shows the data being analyzed.

3.1. Estimate of the coefficients in the hyperparameter object

This estimate uses the initial value for the hyperparameters.

The hyperparameters themselves may be estimated by using functions opt.1() and opt.gt.1()

for level 1 and levels 2 and greater, respectively.

> jj <- list(trace=100,maxit=10)

> hpa.vig.level1 <- opt.1(D=D1.vig, z=z.vig, basis=basis.vig, subsets=subsets.vig, hpa.start=hpa.vig,control=jj)

Nelder-Mead direct search function minimizer

function value for initial parameters = -79.408070

Scaled convergence tolerance is 1.18327e-06

Stepsize computed as 0.460517

BUILD 3 -73.686651 -79.408070

EXTENSION 5 -75.962894 -84.270727

EXTENSION 7 -79.408070 -88.262074

LO-REDUCTION 9 -84.270727 -88.262074

Exiting from Nelder Mead minimizer

11 function evaluations used

> hpa.vig.level1

$sigma_squareds

level1 level2 level3 level4

0.002511886 0.010000000 0.010000000 0.010000000

$B

Robin K. S. Hankin 7

$B[[1]]

A B

A 22.44037 0.00000

B 0.00000 22.44037

$B[[2]]

A B

A 20 0

B 0 20

$B[[3]]

A B

A 20 0

B 0 20

$B[[4]]

A B

A 20 0

B 0 20

$rhos

level1 level2 level3

1 1 1

Notes

• Function opt.1() takes a whole bunch o’ inputs and returns a modified hyperparameter
object.

• The hyperparamer object that opt.1() returns is identical to hpa.start except for
sigma_squareds[1] and B[[1]], corresponding to the first level.

• We can use this output as a start point to functions opt.gt.1() et seq

> jj <- list(trace=0,maxit=4)

> hpa.vig.level2 <- opt.gt.1(level=2, D=D1.vig, z=z.vig, basis=basis.vig, subsets=subsets.vig,

> hpa.vig.level3 <- opt.gt.1(level=3, D=D1.vig, z=z.vig, basis=basis.vig, subsets=subsets.vig,

> hpa.vig.level4 <- opt.gt.1(level=4, D=D1.vig, z=z.vig, basis=basis.vig, subsets=subsets.vig,

> hpa.vig.level4

$sigma_squareds

level1 level2 level3 level4

0.002511886 0.010000000 0.010000000 0.010000000

$B

$B[[1]]

8 An approximator cookbook

A B

A 22.44037 0.00000

B 0.00000 22.44037

$B[[2]]

A B

A 20 0

B 0 20

$B[[3]]

A B

A 20 0

B 0 20

$B[[4]]

A B

A 20 0

B 0 20

$rhos

level1 level2 level3

1.584893 1.000000 1.584893

Now we can try and estimate the betas using the optimized hyperparameter object:

> betahat.app(D1=D1.vig,subsets=subsets.vig,basis=basis.vig, hpa=hpa.vig.level4, z=z.vig)

level1.const level1.A level1.B level1.interaction

1.14437000 1.82617368 2.79984364 4.29511641

level2.const level2.A level2.B level2.interaction

0.35752870 -0.05162338 1.00623091 1.91906160

level3.const level3.A level3.B level3.interaction

0.89684096 1.08523372 0.95208425 4.47268094

level4.const level4.A level4.B level4.interaction

-0.08100690 -2.00060825 -3.74932540 -6.15048092

Not too bad.

3.2. The package in use

The final stage would be using function mdash.fun(), which gives the posterior expectation
of the Gaussian process (for level 4):

> mdash.fun(x=c(0.5,0.5),D1=D1.vig, subsets=subsets.vig,hpa=hpa.vig.level4,z=z.vig,basis=basis.vig)

[1] 13.90281

Robin K. S. Hankin 9

We can now give an error estimate here:

> cdash.fun(x=c(0.5,0.5), D1=D1.vig, subsets=subsets.vig,

+ basis=basis.vig, hpa=hpa.vig)

[,1]

[1,] 0.03224639

10 An approximator cookbook

Appendix

A. Data generation

In practice the user generates data from a climate model. Here, I will generate data that
matches the assumptions of the approximator software exactly.

Now we need a design matrix:

> n <- 16

> set.seed(0)

> D1.vig <- latin.hypercube(n,2)

See how the function latin.hypercube() is used.

Now we need to specify which rows of the design matrix are run at each of the various levels.
We can generate some of this randomly. The lowest level code will use all rows of D1.vig,
level 2 will use about half of them, level 3 (ie the top level) will use about half of them, and
level 4 about half of them:

> subsets.vig <- subsets.fun(n,levels=4,prob=0.6)

> names(subsets.vig) <- paste("level",1:4,sep=".")

Notes

• See the .vig suffix, for "vignette".

• randomly chosen values illustrate the general nature of the software

Notes

• The is.vector() test allows one to treat matrices and vectors in a consistent way

• the last line is a kludge, but no better way seems to exist

Now we need a function that creates a hyperparameter object:

> hpa.fun.vig

function (x)

{

if (length(x) != 15) {

stop("x must have 19 elements")

}

"pdm.maker" <- function(x) {

jj <- diag(x[1:2],nrow=2)

rownames(jj) <- LETTERS[1:2]

colnames(jj) <- LETTERS[1:2]

Robin K. S. Hankin 11

return(jj)

}

sigma_squareds <- x[1:4]

names(sigma_squareds) <- paste("level", 1:4, sep = "")

B <- list()

B[[1]] <- pdm.maker(x[05:06])

B[[2]] <- pdm.maker(x[07:08])

B[[3]] <- pdm.maker(x[09:10])

B[[4]] <- pdm.maker(x[11:12])

rhos <- x[13:15]

names(rhos) <- paste("level", 1:3, sep = "")

return(list(sigma_squareds = sigma_squareds, B = B, rhos = rhos))

}

<bytecode: 0x7f9dd8e62ba0>

Notes:

• This is a modification of hpa.fun.toy() but with a smaller number of params

• This function isn’t strictly necessary, but the alternative (defining a hyperparameter
object ab initio) is fiddly and error-prone.

Now we can call this function and create a hyperparameter object

> hpa.vig <- hpa.fun.vig(c(rep(0.01,4),rep(20,8),rep(1,3)))

Now we can generate some data. In practice, this data will come from a climate model. Here I
will cheat and define a function generate.vig.observations() to generate data that comes
from a known distribution:

First define a function ripped off from generate.toy.obs():

> "generate.vig.observations" <-

+ function (D1, subsets, basis.fun, hpa, betas = NULL, export.truth=FALSE)

+ {

+

+ if(is.null(betas)){

+ betas <-

+ rbind(c(1, 2, 3, 4),

+ c(1, 1, 3, 4),

+ c(1, 1, 1, 4),

+ c(1, 1, 1, 1))

+ colnames(betas) <- c("const", LETTERS[1:2], "interaction")

+ rownames(betas) <- paste("level", 1:4, sep = "")

+ }

+

+ if(export.truth){

+ return(list(

12 An approximator cookbook

+ hpa=hpa,

+ betas=betas

+)

+)

+ }

+

+

+ sigma_squareds <- hpa$sigma_squareds

+ B <- hpa$B

+ rhos <- hpa$rhos

+ delta <- function(i) {

+ out <- rmvnorm(n = 1,

+ mean = basis.fun(D1[subsets[[i]], , drop =

+ FALSE]) %*% betas[i,],

+ sigma = sigma_squareds[i] * corr.matrix(xold = D1[subsets[[i]], , drop

+)

+ out <- drop(out)

+ names(out) <- rownames(D1[subsets[[i]], , drop = FALSE])

+ return(out)

+ }

+

+ use.clever.but.untested.method <- FALSE

+

+ if(use.clever.but.untested.method){

+ z1 <- delta(1)

+ z2 <- delta(2) + rhos[1] * z1[match(subsets[[2]], subsets[[1]])]

+ z3 <- delta(3) + rhos[2] * z2[match(subsets[[3]], subsets[[2]])]

+ z4 <- delta(4) + rhos[3] * z3[match(subsets[[4]], subsets[[3]])]

+ return(list(z1 = z1, z2 = z2, z3 = z3, z4 = z4))

+ } else {

+ out <- NULL

+ out[[1]] <- delta(1)

+ for(i in 2:length(subsets)){

+ out[[i]] <- delta(i) + rhos[i-1] *

+ out[[i-1]][match(subsets[[i]], subsets[[i-1]])]

+ }

+ return(out)

+ }

+ }

Then call it:

> z.vig <-

+ generate.vig.observations(D1=D1.vig,subsets=subsets.vig, basis.fun=basis.vig,hpa=hpa.vig)

> z.vig

Robin K. S. Hankin 13

[[1]]

[1] 6.475588 4.185674 3.608628 3.164262 3.477331 3.986247 6.643481 6.439524

[9] 4.749577 2.357228 7.815461 1.749314 2.678957 3.918604 4.751868 5.259022

[[2]]

[1] 12.221859 6.774057 12.633986 12.347821 4.246554 14.816785 6.912137

[8] 9.595989

[[3]]

[1] 16.905056 8.984733 17.296726 16.661611 5.910728 9.561769

[[4]]

[1] 19.694364 10.998183 20.171778 7.735335 11.813646

References

Hankin RKS (2005). “Introducing BACCO, an R bundle for Bayesian analysis of computer
code output.” Journal of Statistical Software, 14(16).

Kennedy MC, O’Hagan A (2000). “Predicting the output from a complex computer code
when fast approximations are available.” Biometrika, 87(1), 1–13.

Affiliation:

Robin K. S. Hankin
Auckland University of Technology
Wakefield Street
Auckland, NZ
E-mail: hankin.robin@gmail.com

mailto:hankin.robin@gmail.com

	Introduction
	List of objects that the user needs to supply
	Design matrix: USER TO SUPPLY
	Subsets object: USER TO SUPPLY
	Basis functions: USER TO SUPPLY
	Data: USER TO SUPPLY
	Hyperparameters: USER TO SUPPLY

	Data analysis
	Estimate of the coefficients in the hyperparameter object
	The package in use

	Data generation

