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Scope and Purpose of this Document

This document is a user manual for the R package apcluster [2]. It is only meant as a gentle
introduction into how to use the basic functions implemented in this package. Not all features of
the R package are described in full detail. Such details can be obtained from the documentation
enclosed in the R package. Further note the following: (1) this is neither an introduction to affin-
ity propagation nor to clustering in general; (2) this is not an introduction to R. If you lack the
background for understanding this manual, you first have to read introductory literature on these
subjects.
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1 Introduction

Affinity propagation (AP) is a relatively new clustering algorithm that has been introduced by
Brendan J. Frey and Delbert Dueck [6].1 The authors themselves describe affinity propagation as
follows:

“An algorithm that identifies exemplars among data points and forms clusters of data
points around these exemplars. It operates by simultaneously considering all data
point as potential exemplars and exchanging messages between data points until a
good set of exemplars and clusters emerges.”

AP has been applied in various fields recently, among which bioinformatics is becoming in-
creasingly important. Frey and Dueck have made their algorithm available as Matlab code.1 Mat-
lab, however, is relatively uncommon in bioinformatics. Instead, the statistical computing platform
R has become a widely accepted standard in this field. In order to leverage affinity propagation
for bioinformatics applications, we have implemented affinity propagation as an R package. Note,
however, that the given package is in no way restricted to bioinformatics applications. It is as
generally applicable as Frey’s and Dueck’s original Matlab code.1

Starting with Version 1.1.0, the apcluster package also features exemplar-based agglomer-
ative clustering which can be used as a clustering method on its own or for creating a hierarchy
of clusters that have been computed previously by affinity propagation. Leveraged Affinity Prop-
agation, a variant of AP especially geared to applications involving large data sets, has first been
included in Version 1.3.0.

2 Installation

2.1 Installation via CRAN

The R package apcluster (current version: 1.4.13) is part of the Comprehensive R Archive Net-
work (CRAN)2. The simplest way to install the package, therefore, is to enter the following com-
mand into your R session:

install.packages("apcluster")

If you use R on Windows or Mac OS, you can also conveniently use the package installation
menu of your R GUI.

2.2 Manual installation from source

Under special circumstances, e.g. if you want to compile the C++ code included in the package
with some custom options, you may prefer to install the package manually from source. To this
end, open the package’s page at CRAN3 and then proceed as follows:

1https://psi.toronto.edu/research/affinity-propagation-clustering-by-message-passing/
2http://cran.r-project.org/
3https://CRAN.R-project.org/package=apcluster

https://psi.toronto.edu/research/affinity-propagation-clustering-by-message-passing/
http://cran.r-project.org/
https://CRAN.R-project.org/package=apcluster
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1. Download apcluster_1.4.13.tar.gz and save it to your harddisk.

2. Open a shell/terminal/command prompt window and change to the directory where you put
apcluster_1.4.13.tar.gz. Enter

R CMD INSTALL apcluster_1.4.13.tar.gz

to install the package.

Note that this might require additional software on some platforms. Windows requires Rtools4 to
be installed and to be available in the default search path (environment variable PATH). Mac OS X
requires Xcode developer tools5 (make sure that you have the command line tools installed with
Xcode).

2.3 Compatibility issues

All versions downloadable from CRAN have been built using the latest version, R 4.4.0. However,
the package should work without severe problems on R versions ≥3.0.0.

3 Getting Started

To load the package, enter the following in your R session:

library(apcluster)

If this command terminates without any error message or warning, you can be sure that the
package has been installed successfully. If so, the package is ready for use now and you can start
clustering your data with affinity propagation.

The package includes both a user manual (this document) and a reference manual (help pages
for each function). To view the user manual, enter

vignette("apcluster")

Help pages can be viewed using the help command. It is recommended to start with

help(apcluster)

Affinity propagation does not require the data samples to be of any specific kind or structure.
AP only requires a similarity matrix, i.e., given l data samples, this is an l × l real-valued matrix
S, in which an entry Sij corresponds to a value measuring how similar sample i is to sample j.
AP does not require these values to be in a specific range. Values can be positive or negative. AP
does not even require the similarity matrix to be symmetric (although, in most applications, it will

4http://cran.r-project.org/bin/windows/Rtools/
5https://developer.apple.com/technologies/tools/

http://cran.r-project.org/bin/windows/Rtools/
https://developer.apple.com/technologies/tools/
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be symmetric anyway). A value of −∞ is interpreted as “absolute dissimilarity”. The higher a
value, the more similar two samples are considered.

To get a first impression, let us create a random data set in R2 as the union of two “Gaussian
clouds”:

cl1 <- cbind(rnorm(30, 0.3, 0.05), rnorm(30, 0.7, 0.04))

cl2 <- cbind(rnorm(30, 0.7, 0.04), rnorm(30, 0.4, .05))

x1 <- rbind(cl1, cl2)

plot(x1, xlab="", ylab="", pch=19, cex=0.8)
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The package apcluster offers several different ways for clustering data. The simplest way is the
following:

apres1a <- apcluster(negDistMat(r=2), x1)

In this example, the function apcluster() first computes a similarity matrix for the input data
x1 using the similarity function passed as first argument. The choice negDistMat(r=2) is the
standard similarity measure used in the papers of Frey and Dueck — negative squared distances.

Alternatively, one can compute the similarity matrix beforehand and call apcluster() for the
similarity matrix (for a more detailed description of the differences, see 10.1):

s1 <- negDistMat(x1, r=2)

apres1b <- apcluster(s1)

The function apcluster() creates an object belonging to the S4 class APResult which is
defined by the present package. To get detailed information on which data are stored in such
objects, enter
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help(APResult)

The simplest thing we can do is to enter the name of the object (which implicitly calls show())
to get a summary of the clustering result:

apres1a

##

## APResult object

##

## Number of samples = 60

## Number of iterations = 131

## Input preference = -0.1416022

## Sum of similarities = -0.1955119

## Sum of preferences = -0.2832044

## Net similarity = -0.4787163

## Number of clusters = 2

##

## Exemplars:

## 25 44

## Clusters:

## Cluster 1, exemplar 25:

## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

## 26 27 28 29 30

## Cluster 2, exemplar 44:

## 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

## 53 54 55 56 57 58 59 60

The apcluster package allows for plotting the original data set along with a clustering result:

plot(apres1a, x1)



8 3 Getting Started

0.3 0.4 0.5 0.6 0.7

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

In this plot, each color corresponds to one cluster. The exemplar of each cluster is marked by a
box and all cluster members are connected to their exemplars with lines.

A heatmap is plotted with heatmap():

heatmap(apres1a)
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In the heatmap, the samples are grouped according to clusters. The above heatmap confirms again
that there are two main clusters in the data. A heatmap can be plotted for the object apres1a be-
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cause apcluster(), if called for data and a similarity function, by default includes the similarity
matrix in the output object (unless it was called with the switch includeSim=FALSE). If the simi-
larity matrix is not included (which is the default if apcluster() has been called on a similarity
matrix directly), heatmap() must be called with the similarity matrix as second argument:

heatmap(apres1b, s1)
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Suppose we want to have better insight into what the algorithm did in each iteration. For this
purpose, we can supply the option details=TRUE to apcluster():

apres1c <- apcluster(s1, details=TRUE)

This option tells the algorithm to keep a detailed log about its progress. For example, this
allows for plotting the three performance measures that AP uses internally for each iteration:

plot(apres1c)
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These performance measures are:

1. Sum of exemplar preferences

2. Sum of similarities of exemplars to their cluster members

3. Net fitness: sum of the two former

For details, the user is referred to the original affinity propagation paper [6] and the supplemen-
tary material published on the affinity propagation Web page.1 We see from the above plot that
the algorithm has not made any change for the last 100 iterations. AP, through its parameter
convits, allows to control for how long AP waits for a change until it terminates (the default is
convits=100). If the user has the feeling that AP will probably converge quicker on his/her data
set, a lower value can be used:

apres1c <- apcluster(s1, convits=15, details=TRUE)

apres1c

##

## APResult object

##

## Number of samples = 60

## Number of iterations = 46

## Input preference = -0.1416022

## Sum of similarities = -0.1955119

## Sum of preferences = -0.2832044

## Net similarity = -0.4787163

## Number of clusters = 2

##

## Exemplars:

## 25 44

## Clusters:

## Cluster 1, exemplar 25:

## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

## 26 27 28 29 30

## Cluster 2, exemplar 44:

## 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

## 53 54 55 56 57 58 59 60

4 Adjusting Input Preferences

Apart from the similarity matrix itself, the most important input parameter of AP is the so-called
input preference which can be interpreted as the tendency of a data sample to become an exemplar
(see [6] and supplementary material on the AP homepage1 for a more detailed explanation). This
input preference can either be chosen individually for each data sample or it can be a single value
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shared among all data samples. Input preferences largely determine the number of clusters, in
other words, how fine- or coarse-grained the clustering result will be.

The input preferences one can specify for AP are roughly in the same range as the similarity
values, but they do not have a straightforward interpretation. Frey and Dueck have introduced the
following rule of thumb: “The shared value could be the median of the input similarities (resulting
in a moderate number of clusters) or their minimum (resulting in a small number of clusters).” [6]

Our AP implementation uses the median rule by default if the user does not supply a custom
value for the input preferences. In order to provide the user with a knob that is — at least to some
extent — interpretable, the function apcluster() provides an argument q that allows to set the
input preference to a certain quantile of the input similarities: resulting in the median for q=0.5
and in the minimum for q=0. As an example, let us add two more “clouds” to the data set from
above:

cl3 <- cbind(rnorm(20, 0.50, 0.03), rnorm(20, 0.72, 0.03))

cl4 <- cbind(rnorm(25, 0.50, 0.03), rnorm(25, 0.42, 0.04))

x2 <- rbind(x1, cl3, cl4)

plot(x2, xlab="", ylab="", pch=19, cex=0.8)
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For the default setting, we obtain the following result:

apres2a <- apcluster(negDistMat(r=2), x2)

plot(apres2a, x2)



12 4 Adjusting Input Preferences

0.3 0.4 0.5 0.6 0.7

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

For the minimum of input similarities, we obtain the following result:

apres2b <- apcluster(negDistMat(r=2), x2, q=0)

plot(apres2b, x2)
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So we see that AP is quite robust against a reduction of input preferences in this example which
may be caused by the clear separation of the four clusters. If we increase input preferences,
however, we can force AP to split the four clusters into smaller sub-clusters:
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apres2c <- apcluster(negDistMat(r=2), x2, q=0.8)

plot(apres2c, x2)
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Note that the input preference used by AP can be recovered from the output object (no matter
which method to adjust input preferences has been used). On the one hand, the value is printed if
the object is displayed (by show or by entering the output object’s name). On the other hand, the
value can be accessed directly via the slot p:

apres2c@p

## [1] -0.009144609

As noted above already, we can produce a heatmap by calling heatmap() for an APResult

object:

heatmap(apres2c)
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The order in which the clusters are arranged in the heatmap is determined by means of joining the
cluster agglomeratively (see Section 5 below). Although the affinity propagation result contains
13 clusters, the heatmap indicates that there are actually four clusters which can be seen as very
brightly colored squares along the diagonal. We also see that there seem to be two pairs of adjacent
clusters, which can be seen from the fact that there are two relatively light-colored blocks along
the diagonal encompassing two of the four clusters in each case. If we look back at how the data
have been created (see also plots above), this is exactly what is to be expected.

The above example with q=0 demonstrates that setting input preferences to the minimum of
input similarities does not necessarily result in a very small number of clusters (like one or two).
This is due to the fact that input preferences need not necessarily be exactly in the range of the
similarities. To determine a meaningful range, an auxiliary function is available which, in line
with Frey’s and Dueck’s Matlab code,1 allows to compute a minimum value (for which one or at
most two clusters would be obtained) and a maximum value (for which as many clusters as data
samples would be obtained):

preferenceRange(apres2b@sim)

## [1] -5.136255e+00 -1.818538e-06

The function returns a two-element vector with the minimum value as first and the maximum
value as second entry. The computations are done approximately by default. If one is interested in
exact bounds, supply exact=TRUE (resulting in longer computation times).

Many clustering algorithms need to know a pre-defined number of clusters. This is often a
major nuisance, since the exact number of clusters is hard to know for non-trivial (in particular,
high-dimensional) data sets. AP avoids this problem. If, however, one still wants to require a fixed
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number of clusters, this has to be accomplished by a search algorithm that adjusts input prefer-
ences in order to produce the desired number of clusters in the end. For convenience, this search
algorithm is available as a function apclusterK() (analogous to Frey’s and Dueck’s Matlab im-
plementation1). We can use this function to force AP to produce only two clusters (merging the
two pairs of adjacent clouds into one cluster each). Analogously to apcluster(), apclusterK()
supports two variants — it can either be called for a similarity measure and data or on a similarity
matrix directly.

apres2d <- apclusterK(negDistMat(r=2), x2, K=2, verbose=TRUE)

## Trying p = -0.005138071

## Number of clusters: 16

## Trying p = -0.05136435

## Number of clusters: 4

## Trying p = -0.5136271

## Number of clusters: 4

## Trying p = -2.568128 (bisection step no. 1 )

## Number of clusters: 2

##

## Number of clusters: 2 for p = -2.568128

plot(apres2d, x2)
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Now let us quickly consider a simple data set with more than two features. The notorious
example is Fisher’s iris data set:
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data(iris)

apIris1 <- apcluster(negDistMat(r=2), iris)

apIris1

##

## APResult object

##

## Number of samples = 150

## Number of iterations = 162

## Input preference = -5.57

## Sum of similarities = -45.96

## Sum of preferences = -33.42

## Net similarity = -79.38

## Number of clusters = 6

##

## Exemplars:

## 8 55 70 106 113 139

## Clusters:

## Cluster 1, exemplar 8:

## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

## 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

## 48 49 50

## Cluster 2, exemplar 55:

## 51 52 53 55 59 66 69 73 74 75 76 77 78 87 88 98 134

## Cluster 3, exemplar 70:

## 54 58 60 61 63 65 68 70 72 80 81 82 83 89 90 91 93 94 95 96 97 99

## 100 107

## Cluster 4, exemplar 106:

## 106 108 110 118 119 123 131 132 136

## Cluster 5, exemplar 113:

## 101 103 104 105 109 111 112 113 116 117 121 125 126 129 130 133

## 137 138 140 141 142 144 145 146 148 149

## Cluster 6, exemplar 139:

## 56 57 62 64 67 71 79 84 85 86 92 102 114 115 120 122 124 127 128

## 135 139 143 147 150

AP has identified 6 clusters. Since Version 1.3.2, the package also allows for superimposing
clustering results in scatter plot matrices:

plot(apIris1, iris)
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The heatmap looks as follows:

heatmap(apIris1)
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Now let us try to obtain fewer clusters by using the minimum of off-diagonal similarities:

data(iris)

apIris2 <- apcluster(negDistMat(r=2), iris, q=0)

apIris2

##

## APResult object

##

## Number of samples = 150

## Number of iterations = 126

## Input preference = -50.2

## Sum of similarities = -84.44

## Sum of preferences = -150.6

## Net similarity = -235.04

## Number of clusters = 3

##

## Exemplars:

## 8 56 113

## Clusters:

## Cluster 1, exemplar 8:

## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

## 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

## 48 49 50

## Cluster 2, exemplar 56:

## 52 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
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## 75 76 79 80 81 82 83 84 85 86 88 89 90 91 92 93 94 95 96 97 98 99

## 100 102 107 114 120 122 124 127 128 134 139 143 150

## Cluster 3, exemplar 113:

## 51 53 77 78 87 101 103 104 105 106 108 109 110 111 112 113 115

## 116 117 118 119 121 123 125 126 129 130 131 132 133 135 136 137

## 138 140 141 142 144 145 146 147 148 149

AP has identified 3 clusters. If we again superimpose them in the scatter plot matrix, we obtain
the following:

plot(apIris2, iris)
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Finally, the heatmap looks as follows:

heatmap(apIris2)
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So, looking at the heatmap, the 3 clusters seem quite reasonable, at least in the light of the fact
that there are three species in the data set, Iris setosa, Iris versicolor, and Iris virginica, where Iris
setosa is very clearly separated from each other (first cluster in the heatmap) and the two others
are partly overlapping.

5 Exemplar-based Agglomerative Clustering

The function aggExCluster() realizes what can best be described as “exemplar-based agglom-
erative clustering”, i.e. agglomerative clustering whose merging objective is geared towards the
identification of meaningful exemplars. Analogously to apcluster(), aggExCluster() sup-
ports two variants — it can either be called for a similarity measure and data or on matrix of
pairwise similarities.

5.1 Getting started

Let us start with a simple example:

aggres1a <- aggExCluster(negDistMat(r=2), x1)

aggres1a
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##

## AggExResult object

##

## Number of samples = 60

## Maximum number of clusters = 60

The output object aggres1a contains the complete cluster hierarchy. As obvious from the
above example, the show() method only displays the most basic information. Calling plot() on
an object that was the result of aggExCluster() (an object of class AggExResult), a dendrogram
is plotted:

plot(aggres1a)

Cluster dendrogram
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The heights of the merges in the dendrogram correspond to the merging objective: the higher the
vertical bar of a merge, the less similar the two clusters have been. The dendrogram, therefore,
clearly indicates two clusters. Heatmaps can be produced analogously as for APResult objects
with the additional property that dendrograms are displayed on the top and on the left:

heatmap(aggres1a, s1)



22 5 Exemplar-based Agglomerative Clustering

50 55 45 52 57 47 42 32 34 35 37 33 43 49 51 56 40 41 48 31 38 46 59 58 44 54 36 39 53 60 10 29 11 23 28 13 20 6 12 7 18 17 30 2 8 14 15 16 22 21 25 24 4 1 3 27 9 26 5 19

19
5
26
9
27
3
1
4
24
25
21
22
16
15
14
8
2
30
17
18
7
12
6
20
13
28
23
11
29
10
60
53
39
36
54
44
58
59
46
38
31
48
41
40
56
51
49
43
33
37
35
34
32
42
47
57
52
45
55
50

Once we have confirmed the number of clusters, which is clearly 2 according to the dendro-
gram and the heatmap above, we can extract the level with two clusters from the cluster hierarchy.
In concordance with standard R terminology, the function for doing this is called cutree():

cl1a <- cutree(aggres1a, k=2)

cl1a

##

## ExClust object

##

## Number of samples = 60

## Number of clusters = 2

##

## Exemplars:

## 44 25

## Clusters:

## Cluster 1, exemplar 44:

## 50 55 45 52 57 47 42 32 34 35 37 33 43 49 51 56 40 41 48 31 38 46

## 59 58 44 54 36 39 53 60

## Cluster 2, exemplar 25:

## 10 29 11 23 28 13 20 6 12 7 18 17 30 2 8 14 15 16 22 21 25 24 4 1

## 3 27 9 26 5 19

plot(cl1a, x1)
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5.2 Merging clusters obtained from affinity propagation

The most important application of aggExCluster() (and the reason why it is part of the apcluster
package) is that it can be used for creating a hierarchy of clusters starting from a set of clusters
previously computed by affinity propagation. The examples in Section 4 indicate that it may some-
times be tricky to define the right input preference. Exemplar-based agglomerative clustering on
affinity propagation results provides an additional tool for finding the right number of clusters.

Let us revisit the four-cluster example from Section 4. We can apply aggExCluster() to
an affinity propagation result if we run it on the affinity propagation result supplied as second
argument x:

aggres2a <- aggExCluster(x=apres2c)

aggres2a

##

## AggExResult object

##

## Number of samples = 105

## Maximum number of clusters = 13

The result apres2c had 13 clusters. aggExCluster() successively joins these clusters until
only one cluster is left. The dendrogram of this cluster hierarchy is given as follows:

plot(aggres2a)
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If one wants to see the original samples in the dendrogram of the cluster hierarchy, the showSamples=TRUE
option can be used. In this case, it is recommended to reduce the font size of the labels via the
nodePar parameter (see ?plot.dendrogram and the examples therein):

plot(aggres2a, showSamples=TRUE, nodePar=list(pch=NA, lab.cex=0.4))
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The following heatmap coincides with the one shown in Section 4 above. This is not surpris-
ing, since the heatmap plot for an affinity propagation result uses aggExCluster() internally to
arrange the clusters:
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heatmap(aggres2a)
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Once we are more or less sure about the number of clusters, we extract the right clustering
level from the hierarchy. For demonstation purposes, we do this for k = 5, . . . , 2 in the following
plots:

par(mfrow=c(2,2))

for (k in 5:2)

plot(aggres2a, x2, k=k, main=paste(k, "clusters"))
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There is one obvious, but important, condition: applying aggExCluster() to an affinity prop-
agation result only makes sense if the number of clusters to start from is at least as large as the
number of true clusters in the data set. Clearly, if the number of clusters is already too small, then
merging will make the situation only worse.

5.3 Details on the merging objective

Like any other agglomerative clustering method (see, e.g., [7, 10, 13]), aggExCluster() merges
clusters until only one cluster containing all samples is obtained. In each step, two clusters
are merged into one, i.e. the number of clusters is reduced by one. The only aspect in which
aggExCluster() differs from other methods is the merging objective.

Suppose we consider two clusters for possible merging, each of which is given by an index
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set:
I = {i1, . . . , inI} and J = {j1, . . . , jnJ}

Then we first determine the potential joint exemplar ex(I, J) as the sample that maximizes the
average similarity to all samples in the joint cluster I ∪ J :

ex(I, J) = argmax
i∈I∪J

1

nI + nJ
·
∑

j∈I∪J
Sij

Recall that S denotes the similarity matrix and Sij corresponds to the similarity of the i-th and the
j-th sample. Then the merging objective is computed as

obj(I, J) =
1

2
·
( 1

nI
·
∑
j∈I

Sex(I,J)j +
1

nJ
·
∑
k∈J

Sex(I,J)k

)
,

which can be best described as “balanced average similarity to the joint exemplar”. In each step,
aggExCluster() considers all pairs of clusters in the current cluster set and joins that pair of
clusters whose merging objective is maximal. The rationale behind the merging objective is that
those two clusters should be joined that are best described by a joint exemplar.

6 Leveraged Affinity Propagation

Leveraged affinity propagation is based on the idea that, for large data sets with many samples, the
cluster structure is already visible on a subset of the samples. Instead of evaluating the similarity
matrix for all sample pairs, the similarities of all samples to a subset of samples are computed
— resulting in a non-square similarity matrix. Clustering is performed on this reduced similarity
matrix allowing for clustering large data sets more efficiently.

In this form of clustering, several rounds of affinity propagation are executed with different
sample subsets — iteratively improving the clustering result. The implementation is based on
the Matlab code of Frey and Dueck provided on the AP Web page1. Apart from dynamic im-
provements through reduced amount of distance calculations and faster clustering, the memory
consumption is also reduced not only in terms of the memory used for storing the similarity ma-
trix, but also in terms of memory used by the clustering algorithm internally.

The two main parameters controlling leveraged AP clustering are the fraction of data points
that should be selected for clustering (parameter frac) and the number of sweeps or repetitions
of individual clustering runs (parameter sweeps). Initially, a sample subset is selected randomly.
For the subsequent repetitions, the exemplars of the previous run are kept in the sample subset and
the other samples in the subset are chosen randomly again. The best result of all sweeps with the
highest net similarity is kept as final clustering result.

When called with a similarity measure and a dataset the function apclusterL() performs
both the calculation of similarities and leveraged affinity propagation. In the example below, we
use 10% of the samples and run 5 repetitions. The function implementing the similarity measure
can either be passed as a function or as a function name (which must of course be resolvable
in the current environment). Additional parameters for the distance calculation can be passed to
apclusterL() which passes them on to the function implementing the similarity measure via the
... argument list. In any case, this function must be implemented such that it expects the data in
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its first argument x (a subsettable data structure, such as, a vector, matrix, data frame, or list) and
that it takes the selection of “column objects” as a second argument sel which must be a set of
column indices. The functions negDistMat(), expSimMat(), linSimMat(), corSimMat(), and
linKernel() provided by the apcluster package also support the easy creation of parameter-
free similarity measures (in R terminology called “closures”). We recommend this variant, as it is
safer in terms of possible name conflicts between arguments of apclusterL() and arguments of
the similarity function.

Here is an example that makes use of a closure for defining the similarity measure:

cl5 <- cbind(rnorm(100, 0.3, 0.05), rnorm(100, 0.7, 0.04))

cl6 <- cbind(rnorm(100, 0.70, 0.04), rnorm(100, 0.4, 0.05))

x3 <- rbind(cl5, cl6)

apres3 <- apclusterL(s=negDistMat(r=2), x=x3, frac=0.1, sweeps=5, p=-0.2)

apres3

##

## APResult object

##

## Number of samples = 200

## Number of sel samples = 20 (10%)

## Number of sweeps = 5

## Number of iterations = 127

## Input preference = -0.2

## Sum of similarities = -0.7386853

## Sum of preferences = -0.4

## Net similarity = -1.138685

## Number of clusters = 2

##

## Exemplars:

## 24 197

## Clusters:

## Cluster 1, exemplar 24:

## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

## 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

## 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

## 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

## 92 93 94 95 96 97 98 99 100

## Cluster 2, exemplar 197:

## 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

## 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

## 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

## 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

## 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

## 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

## 197 198 199 200
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plot(apres3, x3)
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The function apclusterL() creates a result object of S4 class APResult that contains the
same information as for standard AP. Additionally, the selected sample subset, the associated
rectangular similarity matrix for the best sweep (provided that includeSim=TRUE) and the net
similarities of all sweeps are returned in this object.

dim(apres3@sim)

## [1] 200 20

apres3@sel

## 8 24 41 45 48 53 55 71 81 89 99 100 102 103 105 109 127 150

## 8 24 41 45 48 53 55 71 81 89 99 100 102 103 105 109 127 150

## 168 197

## 168 197

apres3@netsimLev

## [1] -1.247198 -1.145307 -1.141661 -1.141661 -1.138685

The result returned by leveraged affinity propagation can be used for further processing in the
same way as a result object returned from apcluster(), e.g., merging of clusters with agglomer-
ative clustering can be performed.



30 7 Sparse Affinity Propagation

For heatmap plotting either the parameter includeSim=TRUE must be set in apcluster() or
apclusterL() to make the similarity matrix available in the result object or the similarity matrix
must be passed as second parameter to heatmap() explicitly. The heatmap for leveraged AP looks
slightly different compared to the heatmap for affinity propagation because the number of samples
is different in both dimensions.

heatmap(apres3)
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Often selected samples will be chosen as exemplars because, only for them, the full similarity
information is available. This means that the fraction of samples should be selected in a way such
that a considerable number of samples is available for each expected cluster. Please also note that
a data set of the size used in this example can easily be clustered with regular affinity propagation.
The data set was kept small to keep the package build time short and the amount of data output in
the manual reasonable.

For users requiring a higher degree of flexibility, e.g., for a customized selection of the sam-
ple subset, apclusterL() called with a rectangular similiarity matrix performs affinity propa-
gation on a rectangular similarity matrix. See the source code of apclusterL() with signature
s=function and x=ANY for an example how to embed apclusterL() into a complete loop per-
forming leveraged AP. The package-provided functions for distance calculation support the gen-
eration of rectangular similarity matrices (see Chapter 9).

7 Sparse Affinity Propagation

Starting with Version 1.4.0 of the apcluster package, the functions apcluster(), apclusterK(),
and preferenceRange() can also handle similarity matrices as defined by the Matrix package.
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While all dense matrix formats are converted to standard R matrices, sparse matrices are con-
verted internally to dgTMatrix objects. For these sparse matrices, special implementations of
the apcluster(), apclusterK(), and preferenceRange() are available that fully exploit the
sparseness of the matrices and may require much less operations if the matrix is sufficiently sparse.

In order to demonstrate that, consider the following example:

dsim <- negDistMat(x2, r=2)

ssim <- as.SparseSimilarityMatrix(dsim, lower=-0.2)

str(ssim)

## Formal class 'dgTMatrix' [package "Matrix"] with 6 slots

## ..@ i : int [1:9244] 1 2 3 4 5 6 7 8 9 10 ...

## ..@ j : int [1:9244] 0 0 0 0 0 0 0 0 0 0 ...

## ..@ Dim : int [1:2] 105 105

## ..@ Dimnames:List of 2

## .. ..$ : NULL

## .. ..$ : NULL

## ..@ x : num [1:9244] -6.46e-03 -7.36e-05 -2.74e-04 -3.28e-03 -2.27e-02 ...

## ..@ factors : list()

The function as.SparseSimilarityMatrix() converts the dense similarity matrix dsim

into a sparse similarity matrix by removing all pairwise similarities that are -0.2 or lower. Note
that this is only for demonstration purposes. If the size of data permits that, it is advisable to use
the entire dense similarity matrix. Anyway, let us run sparse AP on this similarity matrix:

sapres <- apcluster(ssim, q=0)

plot(sapres, x2)
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The functions preferenceRange() and apclusterK() work in the same way as for dense
similarity matrices:

preferenceRange(ssim)

## [1] -3.186784e+00 -1.818538e-06

apclusterK(ssim, K=2)

## Trying p = -0.0031886

## Number of clusters: 23

## Trying p = -0.03186964

## Number of clusters: 5

## Trying p = -0.31868

## Number of clusters: 4

## Trying p = -1.593393 (bisection step no. 1 )

## Number of clusters: 2

##

## Number of clusters: 2 for p = -1.593393

##

## APResult object

##

## Number of samples = 105

## Number of iterations = 129

## Input preference = -1.593393

## Sum of similarities = -1.416411

## Sum of preferences = -3.186785

## Net similarity = -4.603197

## Number of clusters = 2

##

## Exemplars:

## 1 37

## Clusters:

## Cluster 1, exemplar 1:

## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

## 26 27 28 29 30 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

## 78 79 80

## Cluster 2, exemplar 37:

## 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

## 53 54 55 56 57 58 59 60 81 82 83 84 85 86 87 88 89 90 91 92 93 94

## 95 96 97 98 99 100 101 102 103 104 105

The functions aggExCluster() and heatmap() have been extended to be able to handle
sparse matrices. Note, however, that these functions are not yet exploiting sparsity properly. In-
stead, they convert all inputs to dense matrices before processing them, which may lead to memory
and/or performance issues for large data sets.
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heatmap(sapres, ssim)

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
0

10
1

10
2

10
3

10
4

10
5 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 10 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
10
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
9
8
7
6
5
4
3
2
1
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31

The above heatmap illustrates that values that are not stored in the sparse similarity matrix are
filled up with low values (see the red areas between some pairs of samples that belong to different
clusters). Actually, each missing value is replaced with

min(s)− (max(s)−min(s)) = 2 ·min(s)−max(s),

where min(s) and max(s) denote the smallest and the largest similarity value specified in the
sparse similarity matrix s, respectively. The same replacement takes place when aggExCluster()
converts sparse similarity matrices to dense ones.

8 Processing Biological Sequences

As noted in the introduction above, one of the goals of this package is to leverage affinity propa-
gation in bioinformatics applications. Previous versions of this document showed a toy example
of using affinity propagation on a set of biological sequences that computed a similarity matrix
using the simple spectrum kernel [8] as implemented in the kebabs package [11]. This example
has been removed in version 1.4.9 in order to avoid dependencies to a non-CRAN package. In-
stead, readers are now refered to the vignette of the kebabs package [11], which also includes an
example how to use affinity propagation clustering on a set of biological sequences.

9 Similarity Matrices

Apart from the obvious monotonicity “the higher the value, the more similar two samples”, affin-
ity propagation does not make any specific assumption about the similarity measure. Negative
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squared distances must be used if one wants to minimize squared errors [6]. Apart from that, the
choice and implementation of the similarity measure is left to the user.

Our package offers a few more methods to obtain similarity matrices. The choice of the right
one (and, consequently, the objective function the algorithm optimizes) still has to be made by the
user.

All functions described in this section assume the input data matrix to be organized such that
each row corresponds to one sample and each column corresponds to one feature (in line with the
standard function dist). If a vector is supplied instead of a matrix, each single entry is interpreted
as a (one-dimensional) sample.

9.1 The function negDistMat()

The function negDistMat(), in line with Frey and Dueck, allows for computing negative dis-
tances for a given set of real-valued data samples. If called with the first argument x, a similarity
matrix with pairwise negative distances is returned:

s <- negDistMat(x2)

The function negDistMat() provides the same set of distance measures and parameters as the
standard function dist() (except for method="binary" which makes little sense for real-valued
data). Presently, negDistMat() provides the following variants of computing the distance d(x,y)
of two data samples x = (x1, . . . , xn) and y = (y1, . . . , yn):

Euclidean:

d(x,y) =

√√√√ n∑
i=1

(xi − yi)2

use method="euclidean" or do not specify argument method (since this is the default);

Maximum:
d(x,y) =

n
max
i=1

|xi − yi|

use method="maximum";

Sum of absolute distances / Manhattan:

d(x,y) =

n∑
i=1

|xi − yi|

use method="manhattan";

Canberra:

d(x,y) =
n∑

i=1

|xi − yi|
|xi + yi|

summands with zero denominators are not taken into account; use method="canberra";
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Minkowski:

d(x,y) =

(
n∑

i=1

(xi − yi)
p

) 1
p

use method="minkowski" and specify p using the additional argument p (default is p=2,
resulting in the standard Euclidean distance);

Discrepancy:

d(x,y) = max
1≤α≤β≤n

∣∣∣∣∣
β∑

i=α

(yi − xi)

∣∣∣∣∣
use method="discrepancy" [14].

The function negDistMat() then takes the distances computed with one of the variants listed
above and returns −1 times the r-th power of it, i.e.,

s(x,y) = −d(x,y)r. (1)

The exponent r can be adjusted with the argument r. The default is r=1, hence, one has to supply
r=2 to obtain negative squared distances as in the examples in previous sections.

Here are some examples:

ex <- matrix(c(0, 0.5, 0.8, 1, 0, 0.2, 0.5, 0.7,

0.1, 0, 1, 0.3, 1, 0.8, 0.2), 5, 3, byrow=TRUE)

ex

## [,1] [,2] [,3]

## [1,] 0.0 0.5 0.8

## [2,] 1.0 0.0 0.2

## [3,] 0.5 0.7 0.1

## [4,] 0.0 1.0 0.3

## [5,] 1.0 0.8 0.2

Standard Euclidean distance:

negDistMat(ex)

## 1 2 3 4 5

## 1 0.0000000 -1.2688578 -0.8831761 -0.7071068 -1.2041595

## 2 -1.2688578 0.0000000 -0.8660254 -1.4177447 -0.8000000

## 3 -0.8831761 -0.8660254 0.0000000 -0.6164414 -0.5196152

## 4 -0.7071068 -1.4177447 -0.6164414 0.0000000 -1.0246951

## 5 -1.2041595 -0.8000000 -0.5196152 -1.0246951 0.0000000

Squared Euclidean distance:
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negDistMat(ex, r=2)

## 1 2 3 4 5

## 1 0.00 -1.61 -0.78 -0.50 -1.45

## 2 -1.61 0.00 -0.75 -2.01 -0.64

## 3 -0.78 -0.75 0.00 -0.38 -0.27

## 4 -0.50 -2.01 -0.38 0.00 -1.05

## 5 -1.45 -0.64 -0.27 -1.05 0.00

Maximum norm-based distance:

negDistMat(ex, method="maximum")

## 1 2 3 4 5

## 1 0.0 -1.0 -0.7 -0.5 -1.0

## 2 -1.0 0.0 -0.7 -1.0 -0.8

## 3 -0.7 -0.7 0.0 -0.5 -0.5

## 4 -0.5 -1.0 -0.5 0.0 -1.0

## 5 -1.0 -0.8 -0.5 -1.0 0.0

Sum of absolute distances (aka Manhattan distance):

negDistMat(ex, method="manhattan")

## 1 2 3 4 5

## 1 0.0 -2.1 -1.4 -1.0 -1.9

## 2 -2.1 0.0 -1.3 -2.1 -0.8

## 3 -1.4 -1.3 0.0 -1.0 -0.7

## 4 -1.0 -2.1 -1.0 0.0 -1.3

## 5 -1.9 -0.8 -0.7 -1.3 0.0

Canberra distance:

negDistMat(ex, method="canberra")

## 1 2 3 4 5

## 1 0.000000 -2.600000 -1.9444444 -1.181818 -1.8307692

## 2 -2.600000 0.000000 -1.6666667 -2.200000 -1.0000000

## 3 -1.944444 -1.666667 0.0000000 -1.676471 -0.7333333

## 4 -1.181818 -2.200000 -1.6764706 0.000000 -1.3111111

## 5 -1.830769 -1.000000 -0.7333333 -1.311111 0.0000000

Minkowski distance for p = 3 (3-norm):
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negDistMat(ex, method="minkowski", p=3)

## 1 2 3 4 5

## 1 0.0000000 -1.1027480 -0.7807925 -0.6299605 -1.0752028

## 2 -1.1027480 0.0000000 -0.7769462 -1.2601310 -0.8000000

## 3 -0.7807925 -0.7769462 0.0000000 -0.5428835 -0.5026526

## 4 -0.6299605 -1.2601310 -0.5428835 0.0000000 -1.0029910

## 5 -1.0752028 -0.8000000 -0.5026526 -1.0029910 0.0000000

If called without the data argument x, a function object is returned that can be supplied to
clustering functions — as in the majority of the above examples:

sim <- negDistMat(r=2)

is.function(sim)

## [1] TRUE

apcluster(sim, x1)

##

## APResult object

##

## Number of samples = 60

## Number of iterations = 131

## Input preference = -0.1416022

## Sum of similarities = -0.1955119

## Sum of preferences = -0.2832044

## Net similarity = -0.4787163

## Number of clusters = 2

##

## Exemplars:

## 25 44

## Clusters:

## Cluster 1, exemplar 25:

## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

## 26 27 28 29 30

## Cluster 2, exemplar 44:

## 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

## 53 54 55 56 57 58 59 60

Depending on the application, it might be advisable to center and/or scale the data in order
to equalize the influence of all features/columns. This makes sense for standard vector space
distances like the Euclidean distance and can easily be accomplished by the scale() method.
The discrepancy distance, in contrast, is strongly dependent on the order to feature/columns and
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is rather aimed at comparing signals. For this measure, therefore, row-wise centering can be
advisable [1]. This is easily done with the sweep() function:

ex2 <- matrix(c(0, 0, 1, 1, 1, 0, 0, 0,

0, 0, 0, 0, 0, 1, 1, 0,

0, 1, 0, 1, 0, 1, 0, 1), 3, 8, byrow=TRUE)

matplot(t(ex2), ylab="")

matlines(t(ex2), type="s")
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negDistMat(ex2, method="discrepancy")

## 1 2 3

## 1 0 -3 -2

## 2 -3 0 -1

## 3 -2 -1 0

ex2Scaled <- sweep(ex2, 1, rowMeans(ex2))

ex2Scaled

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

## [1,] -0.375 -0.375 0.625 0.625 0.625 -0.375 -0.375 -0.375

## [2,] -0.250 -0.250 -0.250 -0.250 -0.250 0.750 0.750 -0.250

## [3,] -0.500 0.500 -0.500 0.500 -0.500 0.500 -0.500 0.500

matplot(t(ex2Scaled), ylab="")

matlines(t(ex2Scaled), type="s")
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negDistMat(ex2Scaled, method="discrepancy")

## 1 2 3

## 1 0.000 -2.625 -2.375

## 2 -2.625 0.000 -1.750

## 3 -2.375 -1.750 0.000

9.2 Other similarity measures

The package apcluster offers four more functions for creating similarity matrices for real-valued
data:

Exponential transformation of distances: the function expSimMat() works in the same way as
the function negDistMat(). The difference is that, instead of the transformation (1), it uses
the following transformation:

s(x,y) = exp

(
−
(
d(x,y)

w

)r)
Here the default is r=2. It is clear that r=2 in conjunction with method="euclidean"

results in the well-known Gaussian kernel / RBF kernel [5, 9, 12], whereas r=1 in conjunc-
tion with method="euclidean" results in the similarity measure that is sometimes called
Laplace kernel [5, 9]. Both variants (for non-Euclidean distances as well) can also be inter-
preted as fuzzy equality/similarity relations [3].

Linear scaling of distances with truncation: the function linSimMat() uses the transforma-
tion

s(x,y) = max

(
1− d(x,y)

w
, 0

)
which is also often interpreted as a fuzzy equality/similarity relation [3].
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Correlation: the function corSimMat() interprets the rows of its argument x (matrix or data
frame) as multivariate observations and computes similarities as pairwise correlations. The
function corSimMat() is actually a wrapper around the standard function cor(). Con-
sequently, the method argument allows for selecting the type of correlation to compute
(Pearson, Spearman, or Kendall).

Linear kernel: scalar products can also be interpreted as similarity measures, a view that is often
adopted by kernel methods in machine learning. In order to provide the user with this option
as well, the function linKernel() is available. For two data samples x = (x1, . . . , xn) and
y = (y1, . . . , yn), it computes the similarity as

s(x,y) =

n∑
i=1

xi · yi.

The function has one additional argument, normalize (default: FALSE). If normalize is
set to TRUE, values are normalized to the range [−1,+1] in the following way:

s(x,y) =

∑n
i=1 xi · yi√(∑n

i=1 x
2
i

)
·
(∑n

i=1 y
2
i

)
Entries for which at least one of the two factors in the denominator is zero are set to zero
(however, the user should be aware that this should be avoided anyway).

For the same example data as above, we obtain the following for the RBF kernel:

expSimMat(ex)

## 1 2 3 4 5

## 1 1.0000000 0.1998876 0.4584060 0.6065307 0.2345703

## 2 0.1998876 1.0000000 0.4723666 0.1339887 0.5272924

## 3 0.4584060 0.4723666 1.0000000 0.6838614 0.7633795

## 4 0.6065307 0.1339887 0.6838614 1.0000000 0.3499377

## 5 0.2345703 0.5272924 0.7633795 0.3499377 1.0000000

Laplace kernel:

expSimMat(ex, r=1)

## 1 2 3 4 5

## 1 1.0000000 0.2811526 0.4134676 0.4930687 0.2999440

## 2 0.2811526 1.0000000 0.4206200 0.2422598 0.4493290

## 3 0.4134676 0.4206200 1.0000000 0.5398622 0.5947493

## 4 0.4930687 0.2422598 0.5398622 1.0000000 0.3589059

## 5 0.2999440 0.4493290 0.5947493 0.3589059 1.0000000

Pearson correlation coefficient:
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corSimMat(ex, method="pearson")

## 1 2 3 4 5

## 1 1.0000000 -8.416976e-01 -5.399492e-01 0.42592613 -0.91129318

## 2 -0.8416976 1.000000e+00 4.007290e-17 -0.84702436 0.54470478

## 3 -0.5399492 4.007290e-17 1.000000e+00 0.53155407 0.83862787

## 4 0.4259261 -8.470244e-01 5.315541e-01 1.00000000 -0.01560216

## 5 -0.9112932 5.447048e-01 8.386279e-01 -0.01560216 1.00000000

Spearman rank correlation coefficient:

corSimMat(ex, method="spearman")

## 1 2 3 4 5

## 1 1.0 -0.5 -0.5 0.5 -1.0

## 2 -0.5 1.0 -0.5 -1.0 0.5

## 3 -0.5 -0.5 1.0 0.5 0.5

## 4 0.5 -1.0 0.5 1.0 -0.5

## 5 -1.0 0.5 0.5 -0.5 1.0

Linear scaling of distances with truncation:

linSimMat(ex, w=1.2)

## 1 2 3 4 5

## 1 1.0000000 0.0000000 0.2640199 0.4107443 0.0000000

## 2 0.0000000 1.0000000 0.2783122 0.0000000 0.3333333

## 3 0.2640199 0.2783122 1.0000000 0.4862988 0.5669873

## 4 0.4107443 0.0000000 0.4862988 1.0000000 0.1460874

## 5 0.0000000 0.3333333 0.5669873 0.1460874 1.0000000

Linear kernel:

linKernel(ex[2:5,])

## 1 2 3 4

## 1 1.04 0.52 0.06 1.04

## 2 0.52 0.75 0.73 1.08

## 3 0.06 0.73 1.09 0.86

## 4 1.04 1.08 0.86 1.68

Normalized linear kernel:
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linKernel(ex[2:5,], normalize=TRUE)

## 1 2 3 4

## 1 1.00000000 0.5887841 0.05635356 0.7867958

## 2 0.58878406 1.0000000 0.80738184 0.9621405

## 3 0.05635356 0.8073818 1.00000000 0.6355220

## 4 0.78679579 0.9621405 0.63552196 1.0000000

All of these functions work in the same way as negDistMat(): if called with argument x, a
similarity matrix is returned, otherwise a function is returned.

9.3 Rectangular similarity matrices

With the introduction of leveraged affinity propagation, distance calculations are entirely per-
formed within the apcluster package. The code is based on a customized version of the dist()
function from the stats package. In the following example, a rectangular similarity matrix of all
samples against a subset of the samples is computed:

sel <- sort(sample(1:nrow(x1), ceiling(0.08 * nrow(x1))))

sel

## [1] 11 12 24 43 59

s1r <- negDistMat(x1, sel, r=2)

dim(s1r)

## [1] 60 5

s1r[1:7,]

## 11 12 24 43 59

## 1 -0.006982570 -0.0116441729 -0.0010272646 -0.1999332 -0.2205076

## 2 -0.011439132 -0.0025076066 -0.0032966100 -0.2479070 -0.2819561

## 3 -0.008483738 -0.0129106012 -0.0009003678 -0.1928484 -0.2137914

## 4 -0.009920010 -0.0130705475 -0.0005821650 -0.1892750 -0.2116157

## 5 -0.002005659 -0.0037264620 -0.0040861813 -0.2543323 -0.2770946

## 6 -0.013853342 -0.0019316461 -0.0198043331 -0.3454700 -0.3812374

## 7 -0.008096697 -0.0003397523 -0.0126183601 -0.3140531 -0.3458716

The rows correspond to all samples, the columns to the sample subset. The sel parameter
specifies the sample indices of the selected samples in increasing order. Rectangular similarity
calculation is provided in all distance functions of the package. If the parameter sel is not speci-
fied, the quadratic similarity matrix of all sample pairs is computed.
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9.4 Defining a custom similarity measure for leveraged affinity propagation

As mentioned in Section 6 above, leveraged affinity propagation requires the definition of a simi-
larity measure that is supplied as a function or function name to apclusterL(). For vectorial data,
the similarity measures supplied with the package (see above) may be sufficient. If other similarity
measures are necessary or if the data are not vectorial, the user must supply his/her own similar-
ity measure. The user can supply any function as argument s to apcluster(), apclusterK(),
or apclusterL(), but the following rules must be obeyed in order to avoid errors and to ensure
meaningful results:

1. The data must be supplied as first argument, which must be named x.

2. The second argument must be named sel and must be interpreted as a vector of indices that
select a subset of data items in x.

3. The function must return a numeric matrix with similarities. If sel=NA, the format of the
matrix must be length(x)×length(x). If sel is not NA, but contains indices selecting a
subset, the format of the returned similarity matrix must be length(x)×length(sel).

4. Although this is not a must, it is recommended to properly set row and column names in the
returned similarity matrix.

9.5 Defining a custom similarity measure that creates a sparse similarity matrix

Since Version 1.4.0, similarity matrices may also be sparse (cf. Section 7). Correspondingly, the
similarity measures passed to apcluster() and apclusterK() may also return sparse similarity
matrices:

sparseSim <- function(x)

{

as.SparseSimilarityMatrix(negDistMat(x, r=2), lower=-0.2)

}

sapres2 <- apcluster(sparseSim, x2, q=0)

sapres2

##

## APResult object

##

## Number of samples = 105

## Number of iterations = 132

## Input preference = -0.1999997

## Sum of similarities = -0.2791395

## Sum of preferences = -0.799999

## Net similarity = -1.079138

## Number of clusters = 4

##
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## Exemplars:

## 25 44 79 83

## Clusters:

## Cluster 1, exemplar 25:

## 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

## 27 28 29 30

## Cluster 2, exemplar 44:

## 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

## 53 54 55 56 57 58 59 60

## Cluster 3, exemplar 79:

## 10 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

## Cluster 4, exemplar 83:

## 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

## 102 103 104 105

str(similarity(sapres2))

## Formal class 'dgTMatrix' [package "Matrix"] with 6 slots

## ..@ i : int [1:9244] 1 2 3 4 5 6 7 8 9 10 ...

## ..@ j : int [1:9244] 0 0 0 0 0 0 0 0 0 0 ...

## ..@ Dim : int [1:2] 105 105

## ..@ Dimnames:List of 2

## .. ..$ : NULL

## .. ..$ : NULL

## ..@ x : num [1:9244] -6.46e-03 -7.36e-05 -2.74e-04 -3.28e-03 -2.27e-02 ...

## ..@ factors : list()

Note that similarity measures passed to apclusterL() may not return sparse matrices. In-
stead, they must accept a sel argument and return a rectangular dense matrix (see Subsection 9.4
above).

10 Miscellaneous

10.1 Convenience vs. efficiency

In most of the above examples, we called a clustering method by supplying it with a similarity
function and the data to be clustered. This is undoubtedly a convenient approach. Since the result-
ing output objects (unless the option includeSim=FALSE is supplied) even includes the similarity
matrix, we can plot heatmaps and produce a cluster hierarchy on the basis of the clustering result
without the need to supply the similarity matrix explicitly.

For large data sets, however, this convenient approach has some disadvantages:

If the clustering algorithm is run several times on the same data set (e.g., for different pa-
rameters), the similarity matrix is recomputed every time.
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Every clustering result (depending on the option includeSim) usually includes a copy of
the similarity matrix.

For these reasons, depending on the actual application scenario, users should consider computing
the similarity matrix beforehand. This strategy, however, requires some extra effort for subsequent
processing, i.e. the similarity must be supplied as an extra argument in subsequent processing.

10.2 Clustering named objects

The function apcluster() and all functions for computing distance matrices are implemented to
recognize names of data objects and to correctly pass them through computations. The mechanism
is best described with a simple example:

x3 <- c(1, 2, 3, 7, 8, 9)

names(x3) <- c("a", "b", "c", "d", "e", "f")

s3 <- negDistMat(x3, r=2)

So we see that the names attribute must be used if a vector of named one-dimensional samples
is to be clustered. If the data are not one-dimensional (a matrix or data frame), object names must
be stored in the row names of the data matrix.

All functions for computing similarity matrices recognize the object names. The resulting
similarity matrix has the list of names both as row and column names.

s3

## a b c d e f

## a 0 -1 -4 -36 -49 -64

## b -1 0 -1 -25 -36 -49

## c -4 -1 0 -16 -25 -36

## d -36 -25 -16 0 -1 -4

## e -49 -36 -25 -1 0 -1

## f -64 -49 -36 -4 -1 0

colnames(s3)

## [1] "a" "b" "c" "d" "e" "f"

The function apcluster() and all related functions use column names of similarity matrices
as object names. If object names are available, clustering results are by default shown by names.

apres3a <-apcluster(s3)

apres3a
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##

## APResult object

##

## Number of samples = 6

## Number of iterations = 124

## Input preference = -25

## Sum of similarities = -4

## Sum of preferences = -50

## Net similarity = -54

## Number of clusters = 2

##

## Exemplars:

## b e

## Clusters:

## Cluster 1, exemplar b:

## a b c

## Cluster 2, exemplar e:

## d e f

apres3a@exemplars

## b e

## 2 5

apres3a@clusters

## [[1]]

## a b c

## 1 2 3

##

## [[2]]

## d e f

## 4 5 6

10.3 Computing a label vector from a clustering result

For later classification or comparisons with other clustering methods, it may be useful to compute
a label vector from a clustering result. Our package provides an instance of the generic function
labels() for this task. As obvious from the following example, the argument type can be used
to determine how to compute the label vector.

apres3a@exemplars

## b e
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## 2 5

labels(apres3a, type="names")

## [1] "b" "b" "b" "e" "e" "e"

labels(apres3a, type="exemplars")

## [1] 2 2 2 5 5 5

labels(apres3a, type="enum")

## [1] 1 1 1 2 2 2

The first choice, "names" (default), uses names of exemplars as labels (if names are available,
otherwise an error message is displayed). The second choice, "exemplars", uses indices of
exemplars (enumerated as in the original data set). The third choice, "enum", uses indices of
clusters (consecutively numbered as stored in the slot clusters — analogous to the standard
implementation of cutree() or the clusters field of the list returned by the standard function
kmeans()).

10.4 Customizing heatmaps

With Version 1.3.1, the implementation of heatmap plotting has changed significantly. The method
now allows for many more customizations than before. Apart from changes in the argument list
(see ?heatmap), the behavior of the method has changed as follows:

Dendrograms are always plotted if possible. To switch off plotting of dendrograms, set Rowv
and Colv to FALSE or NA. If a dendrogram should only appear to the left of the heatmap, set
Colv to FALSE or NA. Analogously, set Rowv to FALSE or NA if a dendrogram should only be
plotted on top of the plot (not possible if the similarity matrix is non-quadratic).

Previously, rainbow() was used internally to determine how the bars illustrating the clus-
ters are colored. Now users can determine the coloring of the color bars using the sideColors
argument. For sideColors=NULL, a meaningful color coding is determined automatically
which still uses rainbow(), but ensures that no similar colors are placed next to each other
in the bar.

The default font sizes for displaying row/column labels have been changed to make sure that
they do not overlap. This can result in quite small labels if the number of samples is larger.
In any case, the user can override the sizes by making custom settings of the parameters
cexRow and cexCol. Row and column labels can even be switched off entirely by setting
cexRow and cexCol to 0, respectively.

Moreover, with Version 1.4.3, the possibility to add a color legend has been integrated.
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Here is an example with the vertical dendrogram switched off, an alternate color scheme,
custom margins, and a color legend:

heatmap(apres2c, sideColors=c("darkgreen", "yellowgreen"),

col=terrain.colors(12), Rowv=FALSE, dendScale=0.5,

margins=c(3, 3, 2), legend="col")

31 35 38 40 41 48 50 56 32 34 42 45 47 52 55 57 36 39 44 46 53 54 58 59 60 33 37 43 49 51 81 83 84 85 88 90 95 96 97 98 99 10
1

10
4 82 86 87 89 91 92 93 94 10
0

10
2

10
3

10
5 61 64 68 69 72 73 75 77 79 62 63 65 66 67 70 71 74 76 78 80 6 7 12 13 18 20 21 28 2 8 14 15 16 17 22 25 29 30 1 3 4 10 24 5 9 11 19 23 26 27

27
26
23
19
11
9
5
24
10
4
3
1
30
29
25
22
17
16
15
14
8
2
28
21
20
18
13
12
7
6
80
78
76
74
71
70
67
66
65
63
62
79
77
75
73
72
69
68
64
61
105
103
102
100
94
93
92
91
89
87
86
82
104
101
99
98
97
96
95
90
88
85
84
83
81
51
49
43
37
33
60
59
58
54
53
46
44
39
36
57
55
52
47
45
42
34
32
56
50
48
41
40
38
35
31

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

The following example reverts to the default behavior prior to Version 1.3.1: consecutive
rainbow colors, no dendrograms, and traditional sizing of row/column labels:

heatmap(apres2c, sideColors=rainbow(length(apres2c)), Rowv=FALSE, Colv=FALSE,

cexRow=(0.2 + 1 / log10(nrow(apres2c@sim))),

cexCol=(0.2 + 1 / log10(nrow(apres2c@sim))))
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10.5 Adding a legend to plots of clustering results

As shown above, plot() called for an APResult object as first and a matrix or data frame as
second argument plots the clustering result superimposed on a scatter plot (or a scatter plot matrix
if the number of columns in the second argument exceeds 2). The clusters are shown in different
colors, but it may not be clear which cluster is shown in which color. Therefore, it may be useful
to show a legend along with the plot. The current implementation of plot() does not show a
legend, since it is hard to determine where to actually place the legend such that no important
cluster information gets occluded by the legend. Therefore, the user has to add legends manually.
Actually, colors are always chosen according to a simple rule: plot() uses rainbow() to create
a vector of colors that is exactly as long as the number of clusters in the APResult object. The
following example shows how to plot a legend manually (with the clusters enumerated in the same
way as in the APResult object):

plot(apres2a, x2)

legend("bottomleft", legend=paste("Cluster", 1:length(apres2a)),

col=rainbow(length(apres2a)), pch=19)
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Note that this method is only meaningful for plotting clustering results superimposed on a 2D
data set. For scatter plot matrices, this does not work in a meaningful way. In such a case, the
user is rather recommended to create a legend separately (in a separate graphics device/file) and
to display it along with the scatter plot matrix. To create only the legend, code like the following
could be used:

plot.new()

par(oma=rep(0, 4), mar=rep(0, 4))

legend("center", legend=paste("Cluster", 1:length(apres2c)),

col=rainbow(length(apres2c)), pch=19)
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It still may be necessary to strip off white margins for further usage of the legend.

10.6 Implementation and performance issues

Prior to Version 1.2.0, apcluster() was implemented in R. Starting with version 1.2.0, the main
iteration loop of apcluster() has been implemented in C++ using the Rcpp package [4], which
has led to a speedup in the range of a factor or 9–10.
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Note that details=TRUE requires quite an amount of additional memory. If possible, avoid
this for larger data sets.

The asymptotic computational complexity of aggExCluster() is O(l3) (where l is the num-
ber of samples or clusters from which the clustering starts). This may result in excessively long
computation times if aggExCluster() is used for larger data sets without using affinity propaga-
tion first. For real-world data sets, in particular, if they are large, we recommend to use affinity
propagation first and then, if necessary, to use aggExCluster() to create a cluster hierarchy.

11 Special Notes for Users Upgrading from Previous Versions

11.1 Upgrading from a version older than 1.3.0

Version 1.3.0 has brought several fundamental changes to the architecture of the package. We tried
to ensure backward compatibility with previous versions where possible. However, there are still
some caveats the users should take into account:

The functions apcluster(), apclusterK(), and aggExCluster() have been re-imple-
mented as S4 generics, therefore, they do not have a fixed list of arguments anymore. For
this reason, users are recommended to name all optional parameters.

Heatmap plotting has been shifted to the function heatmap() which has now been defined
as an S4 generic method. Previous methods for plotting heatmaps using plot() have been
partly available in Versions 1.3.0 and 1.3.1. Since Version 1.3.2, they are no longer available.

11.2 Upgrading to Version 1.3.3 or newer

Users who upgrade to Version 1.3.3 (or newer) from an older version should be aware that the
package now requires a newer version of Rcpp. This issue can simply be solved by re-installing
Rcpp from CRAN using install.packages("Rcpp").

11.3 Upgrading to Version 1.4.0

The function sparseToFull() has been deprecated. A fully compatible function as.DenseSimilarityMatrix()
is available that replaces and extends sparseToFull().

11.4 Upgrading to Version 1.4.9

The function sparseToFull() that has been deprecated since version 1.4.0 has finally been re-
moved completely. From now on, you really must use the function as.DenseSimilarityMatrix()
that replaces and extends sparseToFull().

Since the dependency to the kebabs package has been removed, the example file inst/examples/ch22Promoters.fasta
has been removed, too.
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12 How to Cite This Package

If you use this package for research that is published later, you are kindly asked to cite it as follows:

U. Bodenhofer, A. Kothmeier, and S. Hochreiter (2011). APCluster: an R pack-
age for affinity propagation clustering. Bioinformatics 27(17):2463–2464. DOI:
10.1093/bioinformatics/btr406.

Moreover, we insist that, any time you cite the package, you also cite the original paper in which
affinity propagation has been introduced [6].

To obtain BibTEX entries of the two references, you can enter the following into your R ses-
sion:

toBibtex(citation("apcluster"))
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