
Package ‘anomalize’
October 31, 2023

Type Package

Title Tidy Anomaly Detection

Version 0.3.0

Description The 'anomalize' package enables a ``tidy'' workflow for detecting anomalies in data.
The main functions are time_decompose(), anomalize(), and time_recompose().
When combined, it's quite simple to decompose time series, detect anomalies,
and create bands separating the ``normal'' data from the anomalous data at scale (i.e. for multi-
ple time series).
Time series decomposition is used to remove trend and seasonal compo-
nents via the time_decompose() function
and methods include seasonal decomposition of time series by Loess (``stl'') and
seasonal decomposition by piecewise medians (``twitter''). The anomalize() function implements
two methods for anomaly detection of residuals including using an inner quartile range (``iqr'')
and generalized extreme studentized deviation (``gesd''). These methods are based on
those used in the 'forecast' package and the Twitter 'AnomalyDetection' package.
Refer to the associated functions for specific references for these methods.

URL https://github.com/business-science/anomalize

BugReports https://github.com/business-science/anomalize/issues

License GPL (>= 3)

Encoding UTF-8

LazyData true

Depends R (>= 3.0.0)

Imports dplyr, glue, timetk, sweep, tibbletime (>= 0.1.5), purrr,
rlang, tibble, tidyr (>= 1.0.0), ggplot2

RoxygenNote 7.2.3

Suggests tidyverse, tidyquant, stringr, testthat (>= 2.1.0), covr,
knitr, rmarkdown, devtools, roxygen2

VignetteBuilder knitr

NeedsCompilation no

Author Matt Dancho [aut, cre],
Davis Vaughan [aut]

1

https://github.com/business-science/anomalize
https://github.com/business-science/anomalize/issues

2 anomalize

Maintainer Matt Dancho <mdancho@business-science.io>

Repository CRAN

Date/Publication 2023-10-31 21:50:02 UTC

R topics documented:

anomalize . 2
anomalize_methods . 5
anomalize_package . 6
clean_anomalies . 6
decompose_methods . 7
plot_anomalies . 8
plot_anomaly_decomposition . 10
prep_tbl_time . 12
set_time_scale_template . 13
tidyverse_cran_downloads . 13
time_apply . 15
time_decompose . 16
time_frequency . 18
time_recompose . 20

Index 22

anomalize Detect anomalies using the tidyverse

Description

The anomalize() function is used to detect outliers in a distribution with no trend or seasonality
present. It takes the output of time_decompose(), which has be de-trended and applies anomaly
detection methods to identify outliers.

Usage

anomalize(
data,
target,
method = c("iqr", "gesd"),
alpha = 0.05,
max_anoms = 0.2,
verbose = FALSE

)

anomalize 3

Arguments

data A tibble or tbl_time object.

target A column to apply the function to

method The anomaly detection method. One of "iqr" or "gesd". The IQR method is
faster at the expense of possibly not being quite as accurate. The GESD method
has the best properties for outlier detection, but is loop-based and therefore a bit
slower.

alpha Controls the width of the "normal" range. Lower values are more conservative
while higher values are less prone to incorrectly classifying "normal" observa-
tions.

max_anoms The maximum percent of anomalies permitted to be identified.

verbose A boolean. If TRUE, will return a list containing useful information about the
anomalies. If FALSE, just returns the data expanded with the anomalies and the
lower (l1) and upper (l2) bounds.

Details

The return has three columns: "remainder_l1" (lower limit for anomalies), "remainder_l2" (upper
limit for anomalies), and "anomaly" (Yes/No).

Use time_decompose() to decompose a time series prior to performing anomaly detection with
anomalize(). Typically, anomalize() is performed on the "remainder" of the time series decom-
position.

For non-time series data (data without trend), the anomalize() function can be used without time
series decomposition.

The anomalize() function uses two methods for outlier detection each with benefits.

IQR:

The IQR Method uses an innerquartile range of 25% and 75% to establish a baseline distribution
around the median. With the default alpha = 0.05, the limits are established by expanding the
25/75 baseline by an IQR Factor of 3 (3X). The IQR Factor = 0.15 / alpha (hense 3X with alpha =
0.05). To increase the IQR Factor controling the limits, decrease the alpha, which makes it more
difficult to be an outlier. Increase alpha to make it easier to be an outlier.

The IQR method is used in forecast::tsoutliers().

GESD:

The GESD Method (Generlized Extreme Studentized Deviate Test) progressively eliminates out-
liers using a Student’s T-Test comparing the test statistic to a critical value. Each time an outlier is
removed, the test statistic is updated. Once test statistic drops below the critical value, all outliers
are considered removed. Because this method involves continuous updating via a loop, it is slower
than the IQR method. However, it tends to be the best performing method for outlier removal.

The GESD method is used in AnomalyDection::AnomalyDetectionTs().

Value

Returns a tibble / tbl_time object or list depending on the value of verbose.

https://github.com/robjhyndman/forecast
https://github.com/twitter/AnomalyDetection

4 anomalize

References

1. How to correct outliers once detected for time series data forecasting? Cross Validated,
https://stats.stackexchange.com

2. Cross Validated: Simple algorithm for online outlier detection of a generic time series. Cross
Validated, https://stats.stackexchange.com

3. Owen S. Vallis, Jordan Hochenbaum and Arun Kejariwal (2014). A Novel Technique for
Long-Term Anomaly Detection in the Cloud. Twitter Inc.

4. Owen S. Vallis, Jordan Hochenbaum and Arun Kejariwal (2014). AnomalyDetection: Anomaly
Detection Using Seasonal Hybrid Extreme Studentized Deviate Test. R package version 1.0.

5. Alex T.C. Lau (November/December 2015). GESD - A Robust and Effective Technique for
Dealing with Multiple Outliers. ASTM Standardization News. www.astm.org/sn

See Also

Anomaly Detection Methods (Powers anomalize)

• iqr()

• gesd()

Time Series Anomaly Detection Functions (anomaly detection workflow):

• time_decompose()

• time_recompose()

Examples

Not run:
library(dplyr)

Needed to pass CRAN check / This is loaded by default
set_time_scale_template(time_scale_template())

data(tidyverse_cran_downloads)

tidyverse_cran_downloads %>%
time_decompose(count, method = "stl") %>%
anomalize(remainder, method = "iqr")

End(Not run)

https://stats.stackexchange.com/questions/69874/how-to-correct-outliers-once-detected-for-time-series-data-forecasting
https://stats.stackexchange.com/questions/69874/how-to-correct-outliers-once-detected-for-time-series-data-forecasting
https://stats.stackexchange.com/questions/1142/simple-algorithm-for-online-outlier-detection-of-a-generic-time-series?
https://stats.stackexchange.com/questions/1142/simple-algorithm-for-online-outlier-detection-of-a-generic-time-series?
https://www.usenix.org/system/files/conference/hotcloud14/hotcloud14-vallis.pdf
https://www.usenix.org/system/files/conference/hotcloud14/hotcloud14-vallis.pdf
https://github.com/twitter/AnomalyDetection
https://github.com/twitter/AnomalyDetection

anomalize_methods 5

anomalize_methods Methods that power anomalize()

Description

Methods that power anomalize()

Usage

iqr(x, alpha = 0.05, max_anoms = 0.2, verbose = FALSE)

gesd(x, alpha = 0.05, max_anoms = 0.2, verbose = FALSE)

Arguments

x A vector of numeric data.

alpha Controls the width of the "normal" range. Lower values are more conservative
while higher values are less prone to incorrectly classifying "normal" observa-
tions.

max_anoms The maximum percent of anomalies permitted to be identified.

verbose A boolean. If TRUE, will return a list containing useful information about the
anomalies. If FALSE, just returns a vector of "Yes" / "No" values.

Value

Returns character vector or list depending on the value of verbose.

References

• The IQR method is used in forecast::tsoutliers()

• The GESD method is used in Twitter’s AnomalyDetection package and is also available as a
function in @raunakms’s GESD method

See Also

anomalize()

Examples

set.seed(100)
x <- rnorm(100)
idx_outliers <- sample(100, size = 5)
x[idx_outliers] <- x[idx_outliers] + 10

iqr(x, alpha = 0.05, max_anoms = 0.2)
iqr(x, alpha = 0.05, max_anoms = 0.2, verbose = TRUE)

https://github.com/robjhyndman/forecast/blob/master/R/clean.R
https://github.com/twitter/AnomalyDetection
https://github.com/raunakms/GESD/blob/master/runGESD.R

6 clean_anomalies

gesd(x, alpha = 0.05, max_anoms = 0.2)
gesd(x, alpha = 0.05, max_anoms = 0.2, verbose = TRUE)

anomalize_package anomalize: Tidy anomaly detection

Description

The ’anomalize’ package enables a "tidy" workflow for detecting anomalies in data. The main
functions are time_decompose(), anomalize(), and time_recompose(). When combined, it’s quite
simple to decompose time series, detect anomalies, and create bands separating the "normal" data
from the anomalous data at scale (i.e. for multiple time series). Time series decomposition is used
to remove trend and seasonal components via the time_decompose() function and methods include
seasonal decomposition of time series by Loess and seasonal decomposition by piecewise medians.
The anomalize() function implements two methods for anomaly detection of residuals including
using an inner quartile range and generalized extreme studentized deviation. These methods are
based on those used in the forecast package and the Twitter AnomalyDetection package. Refer
to the associated functions for specific references for these methods.

Details

To learn more about anomalize, start with the vignettes: browseVignettes(package = "anomalize")

clean_anomalies Clean anomalies from anomalized data

Description

Clean anomalies from anomalized data

Usage

clean_anomalies(data)

Arguments

data A tibble or tbl_time object.

Details

The clean_anomalies() function is used to replace outliers with the seasonal and trend compo-
nent. This is often desirable when forecasting with noisy time series data to improve trend detection.

To clean anomalies, the input data must be detrended with time_decompose() and anomalized with
anomalize(). The data can also be recomposed with time_recompose().

decompose_methods 7

Value

Returns a tibble / tbl_time object with a new column "observed_cleaned".

See Also

Time Series Anomaly Detection Functions (anomaly detection workflow):

• time_decompose()

• anomalize()

• time_recompose()

Examples

Not run:
library(dplyr)

Needed to pass CRAN check / This is loaded by default
set_time_scale_template(time_scale_template())

data(tidyverse_cran_downloads)

tidyverse_cran_downloads %>%
time_decompose(count, method = "stl") %>%
anomalize(remainder, method = "iqr") %>%
clean_anomalies()

End(Not run)

decompose_methods Methods that power time_decompose()

Description

Methods that power time_decompose()

Usage

decompose_twitter(
data,
target,
frequency = "auto",
trend = "auto",
message = TRUE

)

decompose_stl(data, target, frequency = "auto", trend = "auto", message = TRUE)

8 plot_anomalies

Arguments

data A tibble or tbl_time object.

target A column to apply the function to

frequency Controls the seasonal adjustment (removal of seasonality). Input can be either
"auto", a time-based definition (e.g. "1 week"), or a numeric number of obser-
vations per frequency (e.g. 10). Refer to time_frequency().

trend Controls the trend component For stl, the trend controls the sensitivity of the
lowess smoother, which is used to remove the remainder. For twitter, the trend
controls the period width of the median, which are used to remove the trend and
center the remainder.

message A boolean. If TRUE, will output information related to tbl_time conversions,
frequencies, and trend / median spans (if applicable).

Value

A tbl_time object containing the time series decomposition.

References

• The "twitter" method is used in Twitter’s AnomalyDetection package

See Also

time_decompose()

Examples

library(dplyr)

tidyverse_cran_downloads %>%
ungroup() %>%
filter(package == "tidyquant") %>%
decompose_stl(count)

plot_anomalies Visualize the anomalies in one or multiple time series

Description

Visualize the anomalies in one or multiple time series

https://github.com/twitter/AnomalyDetection

plot_anomalies 9

Usage

plot_anomalies(
data,
time_recomposed = FALSE,
ncol = 1,
color_no = "#2c3e50",
color_yes = "#e31a1c",
fill_ribbon = "grey70",
alpha_dots = 1,
alpha_circles = 1,
alpha_ribbon = 1,
size_dots = 1.5,
size_circles = 4

)

Arguments

data A tibble or tbl_time object.

time_recomposed

A boolean. If TRUE, will use the time_recompose() bands to place bands as
approximate limits around the "normal" data.

ncol Number of columns to display. Set to 1 for single column by default.

color_no Color for non-anomalous data.

color_yes Color for anomalous data.

fill_ribbon Fill color for the time_recomposed ribbon.

alpha_dots Controls the transparency of the dots. Reduce when too many dots on the screen.

alpha_circles Controls the transparency of the circles that identify anomalies.

alpha_ribbon Controls the transparency of the time_recomposed ribbon.

size_dots Controls the size of the dots.

size_circles Controls the size of the circles that identify anomalies.

Details

Plotting function for visualizing anomalies on one or more time series. Multiple time series must
be grouped using dplyr::group_by().

Value

Returns a ggplot object.

See Also

plot_anomaly_decomposition()

10 plot_anomaly_decomposition

Examples

Not run:
library(dplyr)
library(ggplot2)

data(tidyverse_cran_downloads)

SINGLE TIME SERIES
tidyverse_cran_downloads %>%

filter(package == "tidyquant") %>%
ungroup() %>%
time_decompose(count, method = "stl") %>%
anomalize(remainder, method = "iqr") %>%
time_recompose() %>%
plot_anomalies(time_recomposed = TRUE)

MULTIPLE TIME SERIES
tidyverse_cran_downloads %>%

time_decompose(count, method = "stl") %>%
anomalize(remainder, method = "iqr") %>%
time_recompose() %>%
plot_anomalies(time_recomposed = TRUE, ncol = 3)

End(Not run)

plot_anomaly_decomposition

Visualize the time series decomposition with anomalies shown

Description

Visualize the time series decomposition with anomalies shown

Usage

plot_anomaly_decomposition(
data,
ncol = 1,
color_no = "#2c3e50",
color_yes = "#e31a1c",
alpha_dots = 1,
alpha_circles = 1,
size_dots = 1.5,
size_circles = 4,
strip.position = "right"

)

plot_anomaly_decomposition 11

Arguments

data A tibble or tbl_time object.

ncol Number of columns to display. Set to 1 for single column by default.

color_no Color for non-anomalous data.

color_yes Color for anomalous data.

alpha_dots Controls the transparency of the dots. Reduce when too many dots on the screen.

alpha_circles Controls the transparency of the circles that identify anomalies.

size_dots Controls the size of the dots.

size_circles Controls the size of the circles that identify anomalies.

strip.position Controls the placement of the strip that identifies the time series decomposition
components.

Details

The first step in reviewing the anomaly detection process is to evaluate a single times series to
observe how the algorithm is selecting anomalies. The plot_anomaly_decomposition() function
is used to gain an understanding as to whether or not the method is detecting anomalies correctly
and whether or not parameters such as decomposition method, anomalize method, alpha, frequency,
and so on should be adjusted.

Value

Returns a ggplot object.

See Also

plot_anomalies()

Examples

library(dplyr)
library(ggplot2)

data(tidyverse_cran_downloads)

tidyverse_cran_downloads %>%
filter(package == "tidyquant") %>%
ungroup() %>%
time_decompose(count, method = "stl") %>%
anomalize(remainder, method = "iqr") %>%
plot_anomaly_decomposition()

12 prep_tbl_time

prep_tbl_time Automatically create tibbletime objects from tibbles

Description

Automatically create tibbletime objects from tibbles

Usage

prep_tbl_time(data, message = FALSE)

Arguments

data A tibble.

message A boolean. If TRUE, returns a message indicating any conversion details impor-
tant to know during the conversion to tbl_time class.

Details

Detects a date or datetime index column and automatically

Value

Returns a tibbletime object of class tbl_time.

Examples

library(dplyr)
library(tibbletime)

data_tbl <- tibble(
date = seq.Date(from = as.Date("2018-01-01"), by = "day", length.out = 10),
value = rnorm(10)
)

prep_tbl_time(data_tbl)

set_time_scale_template 13

set_time_scale_template

Get and modify time scale template

Description

Get and modify time scale template

Usage

set_time_scale_template(data)

get_time_scale_template()

time_scale_template()

Arguments

data A tibble with a "time_scale", "frequency", and "trend" columns.

Details

Used to get and set the time scale template, which is used by time_frequency() and time_trend()
when period = "auto".

See Also

time_frequency(), time_trend()

Examples

get_time_scale_template()

set_time_scale_template(time_scale_template())

tidyverse_cran_downloads

Downloads of various "tidyverse" packages from CRAN

14 tidyverse_cran_downloads

Description

A dataset containing the daily download counts from 2017-01-01 to 2018-03-01 for the following
tidyverse packages:

• tidyr

• lubridate

• dplyr

• broom

• tidyquant

• tidytext

• ggplot2

• purrr

• stringr

• forcats

• knitr

• readr

• tibble

• tidyverse

Usage

tidyverse_cran_downloads

Format

A grouped_tbl_time object with 6,375 rows and 3 variables:

date Date of the daily observation

count Number of downloads that day

package The package corresponding to the daily download number

Source

The package downloads come from CRAN by way of the cranlogs package.

time_apply 15

time_apply Apply a function to a time series by period

Description

Apply a function to a time series by period

Usage

time_apply(
data,
target,
period,
.fun,
...,
start_date = NULL,
side = "end",
clean = FALSE,
message = TRUE

)

Arguments

data A tibble with a date or datetime index.

target A column to apply the function to

period A time-based definition (e.g. "1 week"). or a numeric number of observations
per frequency (e.g. 10). See tibbletime::collapse_by() for period notation.

.fun A function to apply (e.g. median)

... Additional parameters passed to the function, .fun

start_date Optional argument used to specify the start date for the first group. The default
is to start at the closest period boundary below the minimum date in the supplied
index.

side Whether to return the date at the beginning or the end of the new period. By
default, the "end" of the period. Use "start" to change to the start of the period.

clean Whether or not to round the collapsed index up / down to the next period bound-
ary. The decision to round up / down is controlled by the side argument.

message A boolean. If message = TRUE, the frequency used is output along with the units
in the scale of the data.

Details

Uses a time-based period to apply functions to. This is useful in circumstances where you want
to compare the observation values to aggregated values such as mean() or median() during a set
time-based period. The returned output extends the length of the data frame so the differences can
easily be computed.

16 time_decompose

Value

Returns a tibbletime object of class tbl_time.

Examples

library(dplyr)

data(tidyverse_cran_downloads)

Basic Usage
tidyverse_cran_downloads %>%

time_apply(count, period = "1 week", .fun = mean, na.rm = TRUE)

time_decompose Decompose a time series in preparation for anomaly detection

Description

Decompose a time series in preparation for anomaly detection

Usage

time_decompose(
data,
target,
method = c("stl", "twitter"),
frequency = "auto",
trend = "auto",
...,
merge = FALSE,
message = TRUE

)

Arguments

data A tibble or tbl_time object.

target A column to apply the function to

method The time series decomposition method. One of "stl" or "twitter". The
STL method uses seasonal decomposition (see decompose_stl()). The Twitter
method uses trend to remove the trend (see decompose_twitter()).

frequency Controls the seasonal adjustment (removal of seasonality). Input can be either
"auto", a time-based definition (e.g. "1 week"), or a numeric number of obser-
vations per frequency (e.g. 10). Refer to time_frequency().

time_decompose 17

trend Controls the trend component For stl, the trend controls the sensitivity of the
lowess smoother, which is used to remove the remainder. For twitter, the trend
controls the period width of the median, which are used to remove the trend and
center the remainder.

... Additional parameters passed to the underlying method functions.

merge A boolean. FALSE by default. If TRUE, will append results to the original data.

message A boolean. If TRUE, will output information related to tbl_time conversions,
frequencies, and trend / median spans (if applicable).

Details

The time_decompose() function generates a time series decomposition on tbl_time objects. The
function is "tidy" in the sense that it works on data frames. It is designed to work with time-based
data, and as such must have a column that contains date or datetime information. The function also
works with grouped data. The function implements several methods of time series decomposition,
each with benefits.

STL:

The STL method (method = "stl") implements time series decomposition using the underlying
decompose_stl() function. If you are familiar with stats::stl(), the function is a "tidy" version
that is designed to work with tbl_time objects. The decomposition separates the "season" and
"trend" components from the "observed" values leaving the "remainder" for anomaly detection.
The user can control two parameters: frequency and trend. The frequency parameter adjusts the
"season" component that is removed from the "observed" values. The trend parameter adjusts the
trend window (t.window parameter from stl()) that is used. The user may supply both frequency
and trend as time-based durations (e.g. "90 days") or numeric values (e.g. 180) or "auto", which
predetermines the frequency and/or trend based on the scale of the time series.

Twitter:

The Twitter method (method = "twitter") implements time series decomposition using the method-
ology from the Twitter AnomalyDetection package. The decomposition separates the "seasonal"
component and then removes the median data, which is a different approach than the STL method
for removing the trend. This approach works very well for low-growth + high seasonality data.
STL may be a better approach when trend is a large factor. The user can control two parameters:
frequency and trend. The frequency parameter adjusts the "season" component that is removed
from the "observed" values. The trend parameter adjusts the period width of the median spans that
are used. The user may supply both frequency and trend as time-based durations (e.g. "90 days")
or numeric values (e.g. 180) or "auto", which predetermines the frequency and/or median spans
based on the scale of the time series.

Value

Returns a tbl_time object.

References

1. CLEVELAND, R. B., CLEVELAND, W. S., MCRAE, J. E., AND TERPENNING, I. STL: A
Seasonal-Trend Decomposition Procedure Based on Loess. Journal of Official Statistics, Vol.
6, No. 1 (1990), pp. 3-73.

https://github.com/twitter/AnomalyDetection

18 time_frequency

2. Owen S. Vallis, Jordan Hochenbaum and Arun Kejariwal (2014). A Novel Technique for
Long-Term Anomaly Detection in the Cloud. Twitter Inc.

3. Owen S. Vallis, Jordan Hochenbaum and Arun Kejariwal (2014). AnomalyDetection: Anomaly
Detection Using Seasonal Hybrid Extreme Studentized Deviate Test. R package version 1.0.

See Also

Decomposition Methods (Powers time_decompose)

• decompose_stl()

• decompose_twitter()

Time Series Anomaly Detection Functions (anomaly detection workflow):

• anomalize()

• time_recompose()

Examples

library(dplyr)

data(tidyverse_cran_downloads)

Basic Usage
tidyverse_cran_downloads %>%

time_decompose(count, method = "stl")

twitter
tidyverse_cran_downloads %>%

time_decompose(count,
method = "twitter",
frequency = "1 week",
trend = "2 months",
merge = TRUE,
message = FALSE)

time_frequency Generate a time series frequency from a periodicity

Description

Generate a time series frequency from a periodicity

Usage

time_frequency(data, period = "auto", message = TRUE)

time_trend(data, period = "auto", message = TRUE)

https://www.usenix.org/system/files/conference/hotcloud14/hotcloud14-vallis.pdf
https://www.usenix.org/system/files/conference/hotcloud14/hotcloud14-vallis.pdf
https://github.com/twitter/AnomalyDetection
https://github.com/twitter/AnomalyDetection

time_frequency 19

Arguments

data A tibble with a date or datetime index.

period Either "auto", a time-based definition (e.g. "14 days"), or a numeric number of
observations per frequency (e.g. 10). See tibbletime::collapse_by() for
period notation.

message A boolean. If message = TRUE, the frequency used is output along with the units
in the scale of the data.

Details

A frequency is loosely defined as the number of observations that comprise a cycle in a data set. The
trend is loosely defined as time span that can be aggregated across to visualize the central tendency
of the data. It’s often easiest to think of frequency and trend in terms of the time-based units that the
data is already in. This is what time_frequency() and time_trend() enable: using time-based
periods to define the frequency or trend.

Frequency:

As an example, a weekly cycle is often 5-days (for working days) or 7-days (for calendar days).
Rather than specify a frequency of 5 or 7, the user can specify period = "1 week", and time_frequency()‘
will detect the scale of the time series and return 5 or 7 based on the actual data.

The period argument has three basic options for returning a frequency. Options include:

• "auto": A target frequency is determined using a pre-defined template (see template below).

• time-based duration: (e.g. "1 week" or "2 quarters" per cycle)

• numeric number of observations: (e.g. 5 for 5 observations per cycle)

The template argument is only used when period = "auto". The template is a tibble of three fea-
tures: time_scale, frequency, and trend. The algorithm will inspect the scale of the time series
and select the best frequency that matches the scale and number of observations per target frequency.
A frequency is then chosen on be the best match. The predefined template is stored in a function
time_scale_template(). However, the user can come up with his or her own template changing
the values for frequency in the data frame and saving it to anomalize_options$time_scale_template.

Trend:

As an example, the trend of daily data is often best aggregated by evaluating the moving average
over a quarter or a month span. Rather than specify the number of days in a quarter or month,
the user can specify "1 quarter" or "1 month", and the time_trend() function will return the cor-
rect number of observations per trend cycle. In addition, there is an option, period = "auto", to
auto-detect an appropriate trend span depending on the data. The template is used to define the
appropriate trend span.

Value

Returns a scalar numeric value indicating the number of observations in the frequency or trend span.

20 time_recompose

Examples

library(dplyr)

data(tidyverse_cran_downloads)

FREQUENCY DETECTION

period = "auto"
tidyverse_cran_downloads %>%

filter(package == "tidyquant") %>%
ungroup() %>%
time_frequency(period = "auto")

time_scale_template()

period = "1 month"
tidyverse_cran_downloads %>%

filter(package == "tidyquant") %>%
ungroup() %>%
time_frequency(period = "1 month")

TREND DETECTION

tidyverse_cran_downloads %>%
filter(package == "tidyquant") %>%
ungroup() %>%
time_trend(period = "auto")

time_recompose Recompose bands separating anomalies from "normal" observations

Description

Recompose bands separating anomalies from "normal" observations

Usage

time_recompose(data)

Arguments

data A tibble or tbl_time object that has been processed with time_decompose()
and anomalize().

time_recompose 21

Details

The time_recompose() function is used to generate bands around the "normal" levels of ob-
served values. The function uses the remainder_l1 and remainder_l2 levels produced during the
anomalize() step and the season and trend/median_spans values from the time_decompose()
step to reconstruct bands around the normal values.

The following key names are required: observed:remainder from the time_decompose() step and
remainder_l1 and remainder_l2 from the anomalize() step.

Value

Returns a tbl_time object.

See Also

Time Series Anomaly Detection Functions (anomaly detection workflow):

• time_decompose()

• anomalize()

Examples

library(dplyr)

data(tidyverse_cran_downloads)

Basic Usage
tidyverse_cran_downloads %>%

time_decompose(count, method = "stl") %>%
anomalize(remainder, method = "iqr") %>%
time_recompose()

Index

∗ datasets
tidyverse_cran_downloads, 13

anomalize, 2
anomalize(), 5, 7, 18, 21
anomalize-package (anomalize_package), 6
anomalize_methods, 5
anomalize_package, 6

clean_anomalies, 6

decompose_methods, 7
decompose_stl (decompose_methods), 7
decompose_stl(), 16–18
decompose_twitter (decompose_methods), 7
decompose_twitter(), 16, 18

gesd (anomalize_methods), 5
gesd(), 4
get_time_scale_template

(set_time_scale_template), 13

iqr (anomalize_methods), 5
iqr(), 4

plot_anomalies, 8
plot_anomalies(), 11
plot_anomaly_decomposition, 10
plot_anomaly_decomposition(), 9
prep_tbl_time, 12

set_time_scale_template, 13
stats::stl(), 17

tibbletime::collapse_by(), 15, 19
tidyverse_cran_downloads, 13
time_apply, 15
time_decompose, 16
time_decompose(), 2–4, 7, 8, 21
time_frequency, 18
time_frequency(), 8, 13, 16

time_recompose, 20
time_recompose(), 4, 7, 18
time_scale_template

(set_time_scale_template), 13
time_trend (time_frequency), 18
time_trend(), 13

22

	anomalize
	anomalize_methods
	anomalize_package
	clean_anomalies
	decompose_methods
	plot_anomalies
	plot_anomaly_decomposition
	prep_tbl_time
	set_time_scale_template
	tidyverse_cran_downloads
	time_apply
	time_decompose
	time_frequency
	time_recompose
	Index

