Package ‘YaleToolkit’

January 20, 2025
Version 4.2.3
Date 2022-05-09
Title Data Exploration Tools from Yale University
Author John W. Emerson and Walton A. Green
Maintainer John W. Emerson <john.emerson@yale.edu>
Depends grid, utils
Imports foreach, iterators

Description This collection of data exploration tools was developed at
Yale University for the graphical exploration of complex
multivariate data; barcode and gpairs now have their own
packages. The big.read.table() function provided here may be
useful for large files when only a subset is needed (but please
see the note in the help page for this function).

License LGPL-3

Copyright (C) 2022 John W. Emerson and Walton Green
Encoding UTF-8

RoxygenNote 7.1.2

NeedsCompilation no

Repository CRAN

Date/Publication 2022-05-09 17:20:06 UTC

Contents
big.read.table L L e 2
GEINTOWS L ot e e e 3
NASA « o v e 3
sparklineo 4
sparklines e e e e e e 7
sparkmat e e e e e e 10
Whatis e e 13
YaleEnergy e 15
YaleToolkit o e 16

Index

big.read.table

18

big.read.table

Read in chunks from a large file with row/column filtering to obtain a

reasonable-sized data.frame.

Description

Read in chunks from a large file with row/column filtering to obtain a reasonable-sized data.frame.

Usage
big.read.table(
file,
nrows = le+05,
Sep = n R n ,
header = TRUE,
row.names = NULL,
cols = NULL,
rowfilter = NULL,
as.is = TRUE,
estimate = FALSE
)
Arguments
file the name of the file, obviously
nrows the chunk size; consider reducing this if there are lots of columns
sep by default we expect a CSV file
header is TRUE by default
row.names I really dislike row names
cols for filtering column by name or number (supporting negative indexing)
rowfilter a function that is assumed to take a chunk as a data frame and return a smaller
data frame (with fewer rows), separately from the column filtering.
as.is TRUE by default
estimate do a preliminary estimation of the work to be done, and then have a chance to
bail out if it looks like a bad idea
Note

This is very much ’in development’ and could be buggy. I put it here as I used some example in one
of my courses, but then I needed to update the package to keep CRAN happy. So here it is. Buyer

Beware. - Jay

getnrows 3

Examples

data(C02)

write.csv(C02, "C02.csv”, row.names=FALSE)
x <- big.read.table("C02.csv"”, nrows=10)
unlink("C02.csv")

head(x)

getnrows Get the number of rows of the file

Description

Use iterators to avoid the memory overhead of obtaining the number of rows of a file.

Usage
getnrows(file, n = 10000)

Arguments

file the name of a file (possible with a path)

n the size of the chunks used by the iterator

Value

an integer

Examples

data(C02)

write.csv(C02, "C02.csv”, row.names=FALSE)
getnrows("C02.csv")

unlink("C02.csv")

nasa Pressure and High Cloud Cover Spatially Distributed Time Series

Description
Six years of monthly pressure and high cloud cover measurements over a regular grid of the Amer-
icas, from NASA’s poster competition at the 2006 Joint Statistical Meeting (JSM).

Usage

data(nasa)

4 sparkline

Format

This NASA data set is stored as a list of 3 components: data (containing the pressure and high
cloud cover measurements), elev (the elevation data), and coast (the coastline data). To see the
structure, type str(nasa), and see Details and Source for more information, below.

Details

The data are a subset of some geographic and atmospheric measurements on a coarse 24 by 24 grid
covering Central America. The variables included are elevation, air pressure, and high cloud cover.
With the exception of elevation, the variables are monthly averages, with observations for Jan., 1995
to Dec., 2000. These data were obtained from the NASA Langley Research Center Atmospheric
Sciences Data Center.

Source

NASA Langley Research Center Atmospheric Sciences Data Center, with permission. The JSM
poster competition was announced at:

http://www.amstat-online.org/sections/graphics/dataexpo/2006.php

Examples

See sparkmat().

sparkline Draws a sparkline

Description

Draws a times series or ‘sparkline’ in a compact iconic fashion suitable for inclusion in more com-
plex graphics or text.

Usage

sparkline(s, times = NULL, ylim = NULL, buffer = unit(@, "lines”),
margins = NULL, IQR = NULL, yaxis = FALSE, xaxis = FALSE,
ptopts = list(points = NULL, labels = NULL, labels.ch = NULL,
gp = NULL, just = NULL, pch = NULL), margin.pars = NULL,
buffer.pars = NULL, frame.pars = NULL, line.pars = gpar(lwd = 1),
main = NULL, sub = NULL, xlab = NULL, ylab = NULL, new = TRUE)

Arguments
s a vector or time series (class "ts" or "zoo") giving the data to be plotted. If s
is a time series, the start, end, and frequency found in attributes(s)$tsp
are automatically converted into an argument to times.
times the times at which to plot the data; if NULL (the default), equal spacing is as-

sumed, equivalent to setting times = 1:1length(s).

sparkline

ylim

buffer

margins

IQR

yaxis

xaxis

ptopts

margin.pars

buffer.pars

frame.pars

line.pars

main
sub

x1lab
ylab

new

Details

the maximum and minimum value on the y-axis; if NULL, defaults to the actual
maximum and minimum of the data.

a buffer above the maximum and below the minimum values attained by the
sparkline. Defaults to unit(@, 'lines").

margins around the sparkline-plus-buffer area. NULL (the default) provides no
margins; the value passed must be a 4-vector of units giving the bottom, left, top
and right margins in that order.

a list of graphics parameters to shade or otherwise delineate the interquartile
range of the sparkline. NULL (the default), does not show the IQR. See Details
for more information.

draws a vertical axis if TRUE; defaults to FALSE in which case no axis is drawn.

"interior' draws a horizontal axis inside the plotting frame; 'exterior' out-
side the plotting frame (in the margins); defaults to FALSE, in which case no axis
is drawn.

a list of graphics parameters describing the points on the sparkline that are plot-
ted and labelled. In particular the first and last or minimum and maximum points
are labeled if ptopts$labels is 'first.last' or 'min.max'. In addition to
labels, other relevant parameters from gpar should be valid. See Details for
more information.

a list of graphics parameters describing the margin area. See Details for more
information.

a list of graphics parameters describing the buffer area. See Details for more
information.

a list of graphics parameters describing the exact area taken up by the plotted
sparkline. See Details for more information.

a list of graphics parameters describing the sparkline. See Details for more
information.

a main title, above the sparkline.

a subtitle, to the right of the sparkline.
a string to label the x-axis.

a string to label the y-axis.

defaults to TRUE, which creates a new, empty page; otherwise adds the sparkline
to an existing plot.

In all the cases where a list of graphics parameters is needed, the valid parameter names are the
same as would be valid when passed to gpar in the appropriate call. That is, passing 1ist(fill =
'blue’, col = 'red') tomargin gives a margin that is blue with a red border; but adding fontface
= 'bold" will have no effect, just as it would have no effect in a call to grid.rect(). In particular,
note that ptopts takes the following non-standard parameters: labels, a vector indexing the points
to label or the string 'min.max' or 'first.last'; labels.ch, a vector of strings giving the labels;
and points, a vector indexing the points at which points should be plotted. Passing 'min.max' or
"first.last' to ptopts$labels overrides any values of ptopts$labels.ch.

6 sparkline

Note

This is primarily intended to be called by other functions (sparklines() and sparkmat()), but it
can also be used as an alternative to ts.plot(). Thanks to Gabor Grothendieck for suggesting the
generalization that provides support of "zoo" objects.

Author(s)

John W. Emerson, Walton Green

References

Tufte, E. R. (2006) /it Beautiful Evidence Cheshire, Connecticut: Graphics Press.

See Also

ts.plot, sparklines, sparkmat

Examples

sparkline examples
data(nhtemp)

The default behaviour of sparkline
sparkline(nhtemp)
Creating stand-alone plots

sparkline(rnorm(10),
buffer = unit(1, "lines"),
ptopts = 'first.last',
margins = unit(c(1,1,1,1), 'inches'),
yaxis = TRUE, xaxis=TRUE,
IQR = gpar(fill = 'grey', col = 'grey'),
main = "Ten Random Standard Normal Numbers”,
sub = '...plotted here')

data(YaleEnergy)

y <- YaleEnergy[YaleEnergy$name==YaleEnergy$name[2],]

sparkline(y$ELSQFT, times=y$year+y$month/12,
xaxis=TRUE, yaxis=TRUE, main="Branford College Electrical Consumption”,
buffer=unit(1, "lines"), margins = unit(c(1, 1, 1, 1), 'inches'))

sparkline(Nile,
buffer = unit(1, "lines"),
ptopts = list(labels = 'min.max"'),
margin.pars = gpar(fill = 'lightblue'),
buffer.pars = gpar(fill = 'lightgreen'),
frame.pars = gpar(fill = 'lightyellow'),
yaxis = TRUE, xaxis=TRUE,
IQR = gpar(fill = 'grey', col = 'grey'),
main="Nile Discharge between 1871 and 1970",

sparklines

sub="In what units?')
Adding a sparkline to an existing plot

grid.newpage()
pushViewport(viewport(w = 0.8, h = 0.8))
sparkline(rnorm(10),
buffer = unit(1, "lines"),
margins = unit(c(4,4,4,4), 'points'),
ptopts = list(labels = 'min.max'),
margin.pars = gpar(fill = 'lightblue'),
buffer.pars = gpar(fill = 'lightgreen'),
frame.pars = gpar(fill = 'lightyellow'),
yaxis = TRUE, xaxis=TRUE,
IQR = gpar(fill = 'grey', col = 'grey'),
main="Title (plotted OUTSIDE the viewport)"”, new = FALSE)
popViewport ()

sparklines Draws a panel of vertically stacked sparklines

Description

Draws a panel of vertically stacked, aligned sparklines, or time series.

Usage

sparklines(ss, times = NULL, overlap = FALSE, yscale = NULL,

buffer = unit(@, "lines"), buffer.pars = NULL, IQR = NULL,

ptopts = NULL, yaxis = TRUE, xaxis = "exterior”,
labeled.points = NULL, point.labels = NULL,

label. just = c(1.2, 0.5), frame.pars = NULL,
line.pars = gpar(lwd = 1),

outer.margin = unit(c(5, 4, 4, 2), "lines"),
outer.margin.pars = NULL, main = NULL, sub = NULL,

xlab = NULL, ylab = NULL, lcol = NULL, new = TRUE)
Arguments
SsS a data frame whose columns give the time series to be plotted
overlap FALSE for stacked sparklines; TRUE for all plotted on the same y-axis.
times the times at which to plot the data; if NULL (the default), equal spacing is as-

sumed. All the sparklines must share the same times argument. If unaligned
time series must be plotted, multiple calls to sparklines() are required.

yscale

buffer

buffer.pars

IQR

ptopts

yaxis

xaxis

labeled.points
point.labels
label. just

frame.pars

line.pars

outer.margin

sparklines

either a vector of length 2 giving the y-limits for all sparklines, or a list having
the same length as the number of columns in ss (each component of which is a
2-vector giving the associated sparkline scales). Defaults to NULL, in which case
the scales for each sparkline are set to the sparkline’s minimum and maximum
values.

a buffer above the maximum and below the minimum values attained by the
sparkline. Defaults to unit(@, 'lines").

a list of graphics parameters describing the buffer area. See Details for more
information.

a list of graphics parameters to shade or otherwise delineate the interquartile
range of the sparkline. Defaults to NULL, in which case the IQR is not shown.
See Details for more information.

a list of graphics parameters describing the points on the sparkline that are plot-
ted and labelled. In particular the first and last or minimum and maximum points
are labeled if ptopts\$labelsis 'first.last' or 'min.max"'.

draws a vertical axis if TRUE; defaults to FALSE, in which case no axis is drawn.

"interior' draws horizontal axes inside the plotting frame (for each sparkline);
'exterior' draws the common axis for all the sparklines outside the plotting
frame; defaults to FALSE (no axis).

not implemented. See ptopts.
not implemented. See ptopts.
not implemented. See ptopts.

a list of graphics parameters describing the exact area taken up by the plotted
sparkline. See Details for more information.

a list of graphics parameters describing the sparkline. See Details for more
information.

a vector of 4 units (bottom, left, top, right) giving the outer margin sizes in
order (around the entire panel of sparklines). Defaults to unit(c(0,9,0,0),
'lines").

outer.margin.pars

main

sub

x1lab

ylab

lcol

a list of graphics parameters describing the outer margin. See Details for more
information.

a main title, above the stack of sparklines.

a character vector the length of length(ss) providing titles for the individual
sparklines, printed to the right of the sparklines.

a string providing the label for the common x-axis or (probably a useless fea-
ture) a character vector the length of length(ss) providing x-axis labels for the
individual sparklines.

a character vector the length of length(ss) providing y-axis labels for the in-
dividual sparklines.

a vector of colors the same length as the number of columns in ss to color the
line. As in base graphics, can be either a vector of strings giving the color names,
a numeric vector referring to the current pallette, or the output of functions like
hsv or rgb

sparklines

new

Details

In all the cases where a list of graphics parameters is needed, the valid parameter names are the
same as would be valid when passed to gpar in the appropriate call. That is, passing 1ist(fill =
'blue’, col = 'red') tomargin gives a margin that is blue with a red border; but adding fontface
= 'bold' will have no effect, just as it would have no effect in a call to grid.rect.

Note

We do not support non-aligned time series plots such as ts.plot(airmiles, Nile, nhtemp).

Author(s)

defaults to TRUE, which creates a new, empty page; otherwise adds the sparkline

to the existing plot.

John W. Emerson, Walton Green

References

Tufte, E. R. (2006) Beautiful Evidence Cheshire, Connecticut: Graphics Press.

See Also

ts.plot, sparkline, sparkmat

Examples

sparkline examples
data(beaver1)

The default behaviour of sparklines
sparklines(beaverl)

sparklines(beavert,

outer.margin = unit(c(2,4,4,5), 'lines'),
outer.margin.pars = gpar(fill = 'lightblue'),
buffer = unit(1, "lines"),

frame.pars = gpar(fill = 'lightyellow'),
buffer.pars = gpar(fill = 'lightgreen'),
yaxis = TRUE, xaxis=FALSE,

IQR = gpar(fill = 'grey', col = 'grey'),

main = 'Beaver 1')

data(YaleEnergy)
y <- YaleEnergy[YaleEnergy$name==YaleEnergy$name[2],]
sparklines(y[,c("ELSQFT", "STEAM")]1, times=y$year+y$month/12,

main="Branford Electric and Steam Consumption")

Adding a pair of sparklines to an existing plot

grid.newpage()

10

pushViewport(viewport(w
sparklines(data.frame(x

popViewport ()

grid.newpage()

sparkmat

0.8, h =0.8))
rnorm(10), y = rnorm(10, mean=5)), new = FALSE)

pushViewport(viewport(w = 0.8, h = 0.8))
sparklines(data.frame(x = rnorm(10), y = rnorm(10, mean=2)),

popViewport ()

buffer = unit(1, "lines"),

frame.pars = gpar(fill = 'lightyellow'),

yaxis = TRUE, xaxis=FALSE,

IQR = gpar(fill = 'grey', col = 'grey'), new = FALSE)

sparkmat

Draws a sparkmat

Description

Draws multiple time series (or sparklines) at given locations.

Usage

sparkmat(x, locs = NULL, w = NULL, h = NULL, lcol = NULL,
yscales = NULL, tile.shading = NULL,
tile.margin = unit(c(0, @, @, @), "points"),
tile.pars = NULL, just = c("right"”, "top"),

new

Arguments

X

locs

w
h
lcol

yscales

tile.shading

tile.margin

TRUE, ...)

a list of data frames, all with the same dimensions, one for each panel of verti-
cally aligned sparklines.

a data frame with x-coordinates in the first variable and y-coordinates in the
second variable, giving locations of each of the length(x) sparkline panels.

vector of unit widths (or native widths if not specified as units).
vector of unit heights (or native heights if not specified as units).
vector of ncol (x[[1]]) line colors, one for each sparkline in each panel.

either a vector of length 2 giving the y-limits for all sparklines, or a list having
the same length as the number of columns in ss (each component of which is a
2-vector giving scales for the individual sparklines). Defaults to NULL, in which
case the scales for each sparkline are set to its minimum and maximum value
within the panel.

vector of background shadings for the panels.

an outer margin around each tile (panel of sparklines). A 4-vector of units
giving the bottom, left, top and right margins; defaults to unit(c(0,9,90,0),
'points').

sparkmat 11

tile.pars a list of graphics parameters describing the buffer area. See Details for more
information.
just default is c("right"”, "top"); controls the justification of the sparklines rela-

tive to the provided location coordinates.

new defaults to TRUE, which creates a new, empty page; otherwise adds the sparkline
to the existing plot.

for arguments to be passed through to sparklines().

Details

In all the cases where a list of graphics parameters is needed, the valid parameter names are the
same as would be valid when passed to gpar in the appropriate call. That is, passing 1ist(fill =
'blue’, col = 'red') tomargin gives a margin that is blue with a red border; but adding fontface
= 'bold" will have no effect, just as it would have no effect in a call to grid.rect().

Author(s)

John W. Emerson, Walton Green

References

Tufte, E. R. (2006) Beautiful Evidence Cheshire, Connecticut: Graphics Press.

See Also

ts.plot, sparkline, sparklines

Examples

An example with a time series of energy consumption at Yale colleges.
data(YaleEnergy)
y <- YaleEnergy

Need list of 12 data frames, each with one time series.

z <- list(data.frame(y[y$name==y$name[1],"ELSQFT"]),
data.frame(y[y$name==y$name[2],"ELSQFT"]),
data.frame(y[Ly$name==y$name[3], "ELSQFT"]),
data.frame(yLy$name==y$name[4], "ELSQFT"]),
data.frame(y[y$name==y$name[5], "ELSQFT"]),
data.frame(yLy$name==y$name[6], "ELSQFT"]),
data.frame(yLy$name==y$name[7],"ELSQFT"]),
data.frame(yLy$name==y$name[8], "ELSQFT"]),
data.frame(yLy$name==y$name[9], "ELSQFT"]),
data.frame(yLy$name==y$name[10], "ELSQFT"]),
data.frame(yLy$name==y$name[11], "ELSQFT"]),
data.frame(yLy$name==y$name[12], "ELSQFT"1))

sparkmat(z, locs=data.frame(ylon, ylat), new=TRUE,
w=0.002, h=0.0002, just=c("left”, "top"))

12

sparkmat

grid.text(y[1:12,1], unit(y$lon[1:12]+0.001, "native"),

unit(y$lat[1:12]+0.00003, "native"),

just=c("center"”, "bottom"), gp=gpar(cex=0.7))
grid.text("Degrees Longitude”, 0.5, unit(-2.5, "lines"))
grid.text("Degrees Latitude”, unit(-4.5, "lines"), 0.5, rot=90)
grid.text("Monthly Electrical Consumption (KwH/SqFt)",

0.5, 0.82, gp=gpar(cex=1, font=2))
grid.text("of Yale Residential Colleges”,

0.5, 0.77, gp=gpar(cex=1, font=2))
grid.text("July 1999 - July 2006",

0.5, 0.72, gp=gpar(cex=1, font=2))

An example with pressure and high cloud cover over a regular grid of the
Americas, provided by NASA ().

runexample <- FALSE
if (runexample) {

data(nasa)

grid.newpage()
pushViewport(viewport(w = unit(1, "npc”)-unit(2, "inches"),
h = unit(1, "npc"”)-unit(2, "inches")))
v <- viewport(xscale = c(-115, -55),
yscale = c(-22.5, 37.5))
pushViewport(v)

y <- vector(mode="list", length=24%24)
locs <- as.data.frame(matrix(Q, 24*x24, 2))
tile.shading <- rep(0, 24%24)
for(i in 1:24) { # Latitudes
for(j in 1:24) { # Longitudes
y[[(i-1)*24+j]] <- as.data.frame(t(nasa$datal,,i,jl))
locs[(i-1)*24+j,] <- c(as.numeric(dimnames(nasa$data)$lon[j]),
as.numeric(dimnames(nasa$data)$lat[il))
tile.shading[(i-1)*24+j] <- gray(1-.5%(nasa$elev[i, jl/max(nasa$elev)))
}
3

yscales <- list(quantile(nasa$datal"pressure”,,,], c(0.01, ©.99), na.rm=TRUE),
quantile(nasa$datal”cloudhigh”,,,], c(@.01, ©.99), na.rm=TRUE))

sparkmat(y, locs=locs, just='center', w=2.5, h=2.5,
tile.shading=tile.shading, lcol=c(6,3), yscales=yscales,
tile.margin = unit(c(2,2,2,2), 'points'), new=FALSE)

grid.xaxis(gp=gpar(fontface=2, fontsize=14))
grid.yaxis(gp=gpar(fontface=2, fontsize=14))
grid.rect()

grid.text("Degrees Latitude”, x=unit(-0.75, "inches"”), y=0.5, rot=90,
gp=gpar(fontface=2, fontsize=14))
grid.text("Degrees Longitude”, x=0.5, y=unit(-0.75, "inches"), rot=0,

whatis 13

gp=gpar (fontface=2, fontsize=14))

grid. text("Grayscale shading reflects”,
x=unit(1, "npc”)+unit(@.6, "inches"), y=0.5, rot=270,
gp=gpar (fontface=2, fontsize=14))

grid.text("average elevation above sea level”,
x=unit(1, "npc”)+unit(@.3, "inches"), y=0.5, rot=270,
gp=gpar(fontface=2, fontsize=14))

grid.lines(nasa$coast[,1], nasa$coast[,2], default.units = 'native',
gp = gpar(col = 'black', lwd = 1))

grid.text("Pressure”,
x=0.25, y=unit(1, "npc”)+unit(1.25, "lines"),
gp=gpar(fontface=2, fontsize=14))
grid.rect(x=0.25, y=unit(1, "npc”) + unit(@0.5, "lines"),
width=0.4, height=unit(@.05, "inches"), gp=gpar(col=6, fill=6))
grid.text("High Cloud”,
x=0.75, y=unit(1, "npc")+unit(1.25, "lines"),
gp=gpar (fontface=2, fontsize=14))
grid.rect(x=0.75, y=unit(1, "npc") + unit(@0.5, "lines"),
width=0.4, height=unit(@.05, "inches"), gp=gpar(col=3, fill=3))

whatis Data frame summary

Description

Summarize the characteristics of variables (columns) in a data frame.

Usage

whatis(x, var.name.truncate = 20, type.truncate = 14)

Arguments

X a data frame

var.name.truncate
maximum length (in characters) for truncation of variable names. The default is
20; anything less than 12 is less than the column label in the resulting data frame
and is a waste of information.

type.truncate maximum length (in characters) for truncation of variable type; 14 is the full
width, but 4 works well if space is at a premium.
Details

The function whatis () provides a basic examination of some characteristics of each variable (col-
umn) in a data frame.

14 whatis

Value

A list of characteristics describing the variables in the data frame, x. Each component of the list has
length(x) values, one for each variable in the data frame x.

variable.name from the names(x) attribute, possibly truncated to var.name. truncate characters
in length.

non non n on

type the possibilities include "pure factor”, "mixed factor”, "ordered factor”, "character”,
and "numeric”; whatis() considers the possibility that a factor or a vector could contain
character and/or numeric values. If both character and numeric values are present, and if the
variable is a factor, then it is called a mixed factor. If the levels of a factor are purely character
or numeric (but not both), it is a pure factor. Non-factors must then be either character or
numeric.

missing the number of NAs in the variable.

distinct.values the number of distinct values in the variable, equal to length(table(variable)).
precision the number of decimal places of precision.

min the minumum value (if numeric) or first value (alphabetically) as appropriate.

max the maximum value (if numeric) or the last value (alphabetically) as appropriate.

Author(s)

John W. Emerson, Walton Green

References

Special thanks to John Hartigan and the students of ’Statistical Case Studies’ of 2004 for their help
troubleshooting and developing the function whatis().

See Also

See also str.

Examples

mydf <- data.frame(a=rnorm(100),
b=sample(c("Cat"”, "Dog"), 100, replace=TRUE),
c=sample(c("Apple”, "Orange”, "8"), 100, replace=TRUE),
d=sample(c("Blue”, "Red"), 100, replace=TRUE))

mydf$d <- as.character(mydf$d)

whatis(mydf)

data(iris)
whatis(iris)

YaleEnergy 15

YaleEnergy Monthly energy consumption of Yale residential colleges.

Description

The data set contains monthly energy time series for Yale residential college, from July 1999
through July 2006

Usage

data(YaleEnergy)

Format

A data frame with 1020 observations on the following 18 variables.
name a factor with levels BERKELEY BRANFORD CALHOUN DAVENPORT EZRA STILES JONATHAN EDWARDS
MORSE PIERSON SAYBROOK SILLIMAN TIMOTHY DWIGHT TRUMBULL

address a factor with levels 189 ELM ST. 205 ELM ST. 241 ELM ST. 242 ELM ST. 248 YORK ST.
261 PARK ST. 302 YORK ST. 345 TEMPLE ST. 505 COLLEGE ST. 70 HIGH ST. 74 HIGH ST.

gsf gross square footage of the college

EL electrical consumption in kilowatt hours
ELSQFT electrical consumption per square foot
CHW chilled water consumption in tons
SQFTCHW square feet per ton of chilled water
STEAM steam consumption in pounds
STEAMSQFT steam per square foot

MBTU million British Thermal Units (BTU) from chilled water and steam
MBTUSQFT million BTUs per square foot

year year of the record

month month of the record

lon degrees longitude of the college

lat degrees latitude

Source

John W. Emerson, Yale University

16 YaleToolkit

Examples

data(YaleEnergy)
whatis(YaleEnergy)

y <- YaleEnergy # This is just for convenience.

esqft <- list(data.frame(yly$name==y$namel[1],"ELSQFT"]),
data.frame(yLy$name==y$name[2],"ELSQFT"]),
data.frame(yLy$name==y$name[3],"ELSQFT"]),
data. frame(y[y$name==y$name[4], "ELSQFT"]),
data.frame(yLy$name==y$name[5], "ELSQFT"]),
data.frame(yLy$name==y$name[6],"ELSQFT"]),
data. frame(y[y$name==y$name[7], "ELSQFT"]),
data.frame(yLy$name==y$name[8],"ELSQFT"]),
data.frame(yLy$name==y$name[9], "ELSQFT"]),
data. frame(y[y$name==y$name[10], "ELSQFT"1),
data.frame(y[y$name==y$name[11],"ELSQFT"]),
data.frame(yLy$name==y$name[12], "ELSQFT"1))

The sparkmat() command does most of the work:
sparkmat(esqft, locs=data.frame(ylon, ylat), new=TRUE,
w=0.002, h=0.0002, just=c("left"”, "top"))

We'll add some text for a nice finished product:
grid.text(y[1:12,1], unit(y$lon[1:12]+0.001, "native"),
unit(y$lat[1:12]+0.00003, "native"),
just=c("center"”, "bottom"), gp=gpar(cex=0.7))
grid.text("Degrees Longitude”, 0.5, unit(-2.5, "lines"))
grid.text("Degrees Latitude”, unit(-4.5, "lines"), 0.5, rot=90)
grid.text("Monthly Electrical Consumption (KwH/SgFt) of Yale Colleges”,
0.5, 0.8, gp=gpar(cex=1, font=2))
grid.text("July 1999 - July 2006",
0.5, 0.74, gp=gpar(cex=1, font=2))

YaleToolkit Data exploration tools from the Department of Statistics at Yale Uni-
versity

Description

This collection of data exploration tools was developed at Yale University for the graphical ex-
ploration of complex multivariate data. The main functions provided are barcode(), gpairs(),
whatis(), and sparkmat (), although barcode() and gpairs() are now provided by packages of
the same names, respectively.

Details

The package also includes several data sets. For more information, please see the help files for nasa
and YaleEnergy. Please get in touch with us if you note any problems.

YaleToolkit 17

Author(s)

John W. Emerson, Walton Green

References

* Chambers, J.M., Cleveland, W.S., Kleiner, B., and Tukey, P.A. (1983), Graphical Methods for
Data Analysis, Belmont, CA: Wadsworth.

* Friendly, M. (2002) ’Corrgrams: Exploratory displays for correlation matrices’ American
Statistician 56(4), 316-324.

 Tufte, Edward R. (2006) Beautiful Evidence The Graphics Press, Cheshire, Connecticut. See
https://www.edwardtufte.com for this and other references.

https://www.edwardtufte.com

Index

+ datasets
nasa, 3
YaleEnergy, 15
* ts
sparkline, 4
sparklines, 7
sparkmat, 10

big.read.table, 2

getnrows, 3
gpar, 5,9, 11
grid.rect, 9

hsv, 8

nasa, 3

rgb, 8
sparkline, 4,9, 11
sparklines, 6,7, 11
sparkmat, 6, 9, 10
str, 14
ts.plot, 6,9, 11

whatis, 13

YaleEnergy, 15
YaleToolkit, 16

18

	big.read.table
	getnrows
	nasa
	sparkline
	sparklines
	sparkmat
	whatis
	YaleEnergy
	YaleToolkit
	Index

