Package ‘WpProj’

July 21, 2025
Type Package

Title Linear p-Wasserstein Projections
Version 0.2.3
Date 2025-02-03

Description Performs Wasserstein projections from the predictive distribu-
tions of any model into the space of predictive distributions of linear models. We utilize L1 penal-
ties to also reduce the complexity of the model space. This package employs the methods as de-
scribed in Dunipace, Eric and Lorenzo Trippa (2020) <doi:10.48550/arXiv.2012.09999>.

License GPL (== 3.0)
Depends R (>=4.0)

Imports approxOT (>= 1.2), glmnet, oem, Rcpp, rlang, ROI,
ROL.plugin.ecos, ROIplugin.lpsolve, Matrix, rqPen, quantreg,
doParallel, foreach, doRNG, dplyr, stats, magrittr, methods,
slam, lifecycle

LinkingTo approxOT (>= 1.2), BH, Repp (>= 1.0.0), ReppCGAL, RcppEigen,
RcppProgress, RSpectra

Suggests ggplot2, ggsci, ggridges, testthat (>= 2.1.0), transport,
Rmosek, spelling, ECOSolveR

RoxygenNote 7.3.2
URL https://github.com/ericdunipace/WpProj

BugReports https://github.com/ericdunipace/WpProj/issues
SystemRequirements C++17

Encoding UTF-8

Language en-US

NeedsCompilation yes

Author Eric Dunipace [aut, cre] (ORCID:
<https://orcid.org/0000-0001-8909-213X>),
Clemens Schmid [ctb] (ORCID: <https://orcid.org/0000-0003-3448-5715>,
ETA progres bar is adapted from their code),
Espen Bernton [ctb] ('Hilbert Sort' adapted from their code),

1

https://doi.org/10.48550/arXiv.2012.09999
https://github.com/ericdunipace/WpProj
https://github.com/ericdunipace/WpProj/issues
https://orcid.org/0000-0001-8909-213X
https://orcid.org/0000-0003-3448-5715

2 binary_program_method_options

Mathieu Gerber [ctb] ('Hilbert Sort' adapted from their code),

Pierre Jacob [ctb] (‘Hilbert Sort' adapted from their code),

Bin Dai [ctb] (W2 projections adapted from their 'OEM' code),

Jared Huling [ctb] (ORCID: <https://orcid.org/0000-0003-0670-4845>, W2
projections adapted from their 'OEM' code),

Yixuan Qiu [ctb] (W2 projections adapted from their 'OEM' code),

Dominic Schuhmacher [ctb] (‘Shortsimplex 'optimal transport method
adapted from their code),

Nicolas Bonneel [ctb] (‘Network Simplex' algorithm adapted from their
code)

Maintainer Eric Dunipace <edunipace@mail.harvard.edu>
Repository CRAN
Date/Publication 2025-02-05 18:20:02 UTC

Contents

binary_program_method_options oo
combine. WPR2 L
distCompare e

LO_method_options
Ll_method_options
Ll_penalty_options o
plot, WPR2-method
ridgePlot e

simulated_annealing_method_options L.
stepwise_method_options Lo e
WDpProj e
WPR2 . . e
WPVI e

Index

binary_program_method_options
Options For Use With the Binary Program Method

Description

Options For Use With the Binary Program Method

https://orcid.org/0000-0003-0670-4845

binary_program_method_options 3

Usage

binary_program_method_options(
maxit = 500L,
infimum.maxit = 100L,
transport.method = transport_options(),
epsilon = 0.05,
OTmaxit = 100L,
model.size = NULL,
nvars = NULL,
tol = 1e-07,
display.progress = FALSE,
parallel = NULL,
solver.options = NULL

Arguments

maxit The maximum iterations for the optimizer. Default is 500.

infimum.maxit Maximum iterations to alternate binary program and Wasserstein distance cal-
culations

transport.method
Method for Wasserstein distance calculation. Should be one the outputs of
transport_options()

epsilon A value > 0 for the penalty parameter of if using the Sinkhorn method
OTmaxit The number of iterations to run the Wasserstein distance solvers.
model.size What is the maximum number of coefficients to have in the final model. Default

is NULL. If NULL, will find models from the minimum size, 0, to the number
of columns in X.

nvars The number of variables to explore. Should be an integer vector of model sizes.
Default is NULL which will explore all models from 1 to model.size.

tol The tolerance for convergence

display.progress
Logical. Should intermediate progress be displayed? TRUE or FALSE. Default
is FALSE.

parallel A cluster backend to be used by foreach: : foreach(). See foreach: : foreach()
for details about how to set them up. The WpProj functions will register the clus-
ter with the doParallel: :registerDoParallel() function internally.

solver.options Options to be passed on to the solver. See details

Details

This function will setup the default arguments used by the binary program method. Of note, for
the argument solver.options, If using the "lasso" solver, you should provide arguments such as
"penalty”, "nlambda", "lambda.min.ratio", "gamma", and "lambda" in a list. A simple way to do
this is to feed the output of the L1_method_options() function to the argument solver.options.

This will tell the approximate solver, which uses a lasso method that then will project the parameters

4 combine. WPR2

back to the {0, 1} space. For the other solvers, you can see the options in the ECOS solver package,
ECOSolveR: :ecos.control(), and the options for the mosek solver, Rmosek: :mosek().

Value

A list with names corresponding to each argument above.

See Also
WpProj()

Examples

binary_program_method_options()
is using the lasso solver for the binary program method to give an approximate solution
binary_program_method_options(solver.options = L1_method_options(nlambda = 50L))

combine.WPR2 A Function to Combine W _pR"2 Objects

Description

[Experimental] Will combine W, R? objects into a single object.

Usage
combine.WPR2(...)

Arguments

List of W, R? objects

Value

A vector of W, R? objects

See Also
WPR2()

Examples

if (rlang::is_installed("stats")) {

n <- 128

p <- 10

s <- 99

x <- matrix(stats::rnorm(p * n), nrow = n, ncol = p)
beta <- (1:10)/10

y <- X %*% beta + stats::rnorm(n)

distCompare

post_beta <- matrix(beta, nrow=p, ncol=s) + stats::rnorm(p*s, 0, 0.1)
post_mu <- x %*% post_beta

fitl <- WpProj(X=x, eta=post_mu, theta = post_beta,
power = 2.0, method = "binary program”)
fit2 <- WpProj(X=x, eta=post_mu, power = 2.0,
options = list(penalty = "lasso")
)
outl <- WPR2(predictions = post_mu, projected_model = fit1)
out2 <- WPR2(predictions = post_mu, projected_model = fit2)
combine <- combine.WPR2(out1, out2)
3
distCompare Compares Optimal Transport Distances Between WpProj and Origi-
nal Models
Description

[Experimental] Will compare the Wasserstein distance between the original model and the WpProj

model.
Usage
distCompare(
models,
target = list(parameters = NULL, predictions = NULL),
power = 2,
method = "exact”,
quantity = c("parameters”, "predictions"),
parallel = NULL,
transform = function(x) {
return(x)
1
)
Arguments
models A list of models from WpProj methods
target The target to compare the methods to. Should be a list with slots "parameters"
to compare the parameters and "predictions" to compare predictions
power The power parameter of the Wasserstein distance.

6 distCompare

method Which approximation to the Wasserstein distance to use. Should be one of the
outputs of transport_options().
quantity Should the function target the "parameters" or the "predictions". Can choose
both.
parallel Parallel backend to use for the foreach package. See foreach: :registerDoParallel(

for more details.
transform Transformation function for the predictions.

other options passed to the wasserstein() distance function

Details

For the data frames, dist is the Wasserstein distance, nactive is the number of active variables
in the model, groups is the name distinguishing the model, and method is the method used to
calculate the distance (i.e., exact, sinkhorn, etc.). If the list in models is named, these will be used
as the group names otherwise the group names will be created based on the call from the WpProj
method.

Value

an object of class distcompare with slots parameters, predictions, and p. The slots parameters
and predictions are data frames. See the details for more info. The slot p is the power parameter
of the Wasserstein distance used in the distance calculation.

Examples

if(rlang::is_installed("stats")) {

n <- 32
p <- 10
s <- 21

x <= matrix(stats::rnorm(p * n), nrow = n, ncol = p)

beta <- (1:10)/10

y <= X %*% beta + stats::rnorm(n)

post_beta <- matrix(beta, nrow=p, ncol=s) + stats::rnorm(p*s, 0, 0.1)
post_mu <- x %*% post_beta

fitl <- WpProj(X=x, eta=post_mu, power = 2.0,
options = list(penalty = "lasso")

)
fit2 <- WpProj(X=x, eta=post_mu, theta = post_beta, power = 2.0,
method = "binary program”, solver = "lasso”,
options = list(solver.options = list(penalty = "mcp"))
)
dc <- distCompare(models = list("L1" = fit1, "BP" = fit2),

target = list(parameters = post_beta, predictions = post_mu))
if(rlang::is_installed(c("ggplot2"”,"ggsci"))) {
plot(dc)
3
3

HC 7

HC Run the Hahn-Carvalho Method

Description

[Experimental] Runs the Hahn-Carvalho method but adapted to return full distributions.

Usage

HC(
X,
Y = NULL,
theta,
family = "gaussian”,
penalty = c("elastic.net”, "selection.lasso”, "lasso”, "ols"”, "mcp”, "scad”, "mcp.net"”,
"scad.net”, "grp.lasso”, "grp.lasso.net”, "grp.mcp”, "grp.scad”, "grp.mcp.net”,
"grp.scad.net”, "sparse.grp.lasso”),
method = c("selection.variable”, "projection”),
lambda = numeric(@),
nlambda = 100L,
lambda.min.ratio = NULL,

alpha = 1,
gamma = 1,
tau = 0.5,

groups = numeric(Q),
penalty.factor = NULL,
group.weights = NULL,
maxit = 500L,

tol = 1e-07,
irls.maxit = 100L,
irls.tol = 0.001

)
Arguments
X Covariates
Y Predictions
theta Parameters
family Family for method. See oem.
penalty Penalty function. See oem.
method Should we run a selection variable methodology or projection?
lambda lambda for lasso. See oem for this and all options below
nlambda Number of lambda values.

lambda.min.ratio
Minimum lambda ratio for self selected lambda

8 LO_method_options

alpha elastic net mixing.

gamma tuning parameters for SCAD and MCP
tau mixing parameter for sparse group lasso
groups A vector of grouping values

penalty.factor Penalty factor for OEM.
group.weights Weights for groupped lasso

maxit Max iteration for OEM

tol Tolerance for OEM

irls.maxit IRLS max iterations for OEM

irls.tol IRLS tolerance for OEM
Value

aWpProj object with selected covariates and their values

References

Hahn, P. Richard and Carlos M. Carvalho. (2014) "Decoupling Shrinkage and Selection in Bayesian
Linear Models: A Posterior Summary Perspective." https://arxiv.org/pdf/1408.0464

Examples
n <- 32
p <- 10
s <- 99

x <= matrix(1, nrow = n, ncol = p)

beta <- (1:10)/10

y <= X %*% beta

post_beta <- matrix(beta, nrow=p, ncol=s)
post_mu <- x %*% post_beta

fit <- HC(X=x, Y=post_mu, theta = post_beta,

penalty = "lasso”,
method = "projection”
)
Lo_method_options Options For Use With the LO Method
Description

Options For Use With the LO Method

https://arxiv.org/pdf/1408.0464

L1_method_options 9

Usage

L@_method_options(
method = c("binary program”, "projection”),
transport.method = transport_options(),
epsilon = 0.05,
OTmaxit = 0,
parallel = NULL,

Arguments

method Should covariates be selected as an approximate "binary program" or should a
projection method be used. Default is the approximate binary program.
transport.method
Method for Wasserstein distance calculation. Should be one the outputs of
transport_options().

epsilon A value > 0 for the penalty parameter if using the Sinkhorn method for optimal
transport
OTmaxit The number of iterations to run the Wasserstein distance solvers.
parallel A cluster backend to be used by foreach: : foreach() if parallelization is de-
sired.
Not used
Value

a named list corresponding to the above arguments

Examples

L@_method_options()

L1_method_options Options For Use With the L1 Method

Description

Options For Use With the L1 Method

Usage

L1_method_options(
penalty = L1_penalty_options(),
lambda = numeric(@),
nlambda = 500L,
lambda.min.ratio = 1e-04,

10 L1_method_options

gamma = 1,

alpha = 1,

maxit = 500L,

model.size = NULL,

tol = 1e-07,
display.progress = FALSE,
solver.options = NULL

)
Arguments
penalty The penalty to use. See L1_penalty_options() for more details.
lambda The penalty parameter to use if method is "L1".
nlambda The number of lambdas to explore for the "L 1" method if 1ambda is not provided

lambda.min.ratio
The minimum ratio of max to min lambda for "L1" method. Default 1e-4.

gamma Tuning parameter for SCAD and MCP penalties if method = "L1". >=1

alpha Tuning parameter for elastic net penalties alpha should be in [0, 1].

maxit The maximum iterations for optimization. Default is 500.

model.size What is the maximum number of coefficients to have in the final model. Default

is NULL. If NULL, will find models from the minimum size, 0, to the number
of columns in X.

tol The tolerance for convergence

display.progress
Logical. Should intermediate progress be displayed? TRUE or FALSE. Default
is FALSE.

solver.options Options to be passed on to the solver. Only used for "ecos" and "mosek" solvers.

Value

A list with names corresponding to each argument above.

See Also

WpProj()

Examples

L1_method_options()

L1_penalty_options

11

L1_penalty_options Recognized L1 Penalties

Description

Recognized L1 Penalties

Usage

L1_penalty_options()

Value

A character vector with the possible penalties for L1 methods

Examples

L1_penalty_options()

[1] "lasso” "ols" "mcp” "elastic.net” "scad”
[6] "mcp.net” "scad.net” "grp.lasso” "grp.lasso.net” "grp.mcp”
[11] "grp.scad” "grp.mcp.net” "grp.scad.net” "sparse.grp.lasso”
plot,WPR2-method Plot Function for W_pR"2 Objects
Description

Plot Function for W, R? Objects

Usage
S4 method for signature 'WPR2'
plot(
X ’
xlim = NULL,
ylim = NULL,

linesize = 0.5,
pointsize = 1

.5,
facet.group = NULL,

12 ridgePlot

Arguments
X A W, R? object
x1lim x-axis limits
ylim y-axis limits
linesize Linesize for geom_line
pointsize Point size for geom_point

facet.group Group to do facet_grid by

Currently not used

Value

aggplot2::ggplot() object

Examples
n <- 128
p <- 10
s <- 99

x <- matrix(stats::rnorm(p *x n), nrow = n, ncol = p)

beta <- (1:10)/10

y <- X %*% beta + stats::rnorm(n)

post_beta <- matrix(beta, nrow=p, ncol=s) + stats::rnorm(p*s, 0, 0.1)
post_mu <- x %*% post_beta

fit <- WpProj(X=x, eta=post_mu, power = 2.0,
options = list(penalty = "lasso")
)
obj <- WPR2(predictions = post_mu, projected_model = fit)
if (rlang::is_installed("ggplot2"”)) {
p <- plot(obj)
3

ridgePlot Ridge Plots for a Range of Coefficients

Description

[Experimental] This function will plot the distribution of predictions for a range of active coeffi-
cients

Usage

ridgePlot(
fit,
index

:'I’
minCoef =

1,

ridgePlot

maxCoef = 10,

scale = 1,

alpha = 0.5,

full = NULL,

transform = function(x) {

X
3,

xlab = "Predictions”,

bandwidth = NULL
)

Arguments
fit A WpProj object or list of WpProj objects
index The observation number to select. Can be a vector
minCoef The minimum number of coefficients to use
maxCoef The maximum number of coefficients to use
scale How the densities should be scale
alpha Alpha term from ggplot2 object
full "True" prediction to compare to
transform transform for predictions
xlab x-axis label
bandwidth Bandwidth for kernel
Value

aggplot2::ggplot() plot

Examples

if(rlang::is_installed("stats")) {

n <- 128
p <- 10
s <- 99

x <- matrix(stats::rnorm(n*p), nrow = n, ncol = p)

beta <- (1:10)/10

y <- X %*% beta + stats::rnorm(n)

post_beta <- matrix(beta, nrow=p, ncol=s) + matrix(stats::rnorm(p*s, @, 0.1), p, s)
post_mu <- x %*% post_beta

fit <- WpProj(X=x, eta=post_mu,

power = 2
)
if(rlang::is_installed(c("ggplot2","ggsci"”,"ggridges"”))) {
ridgePlot(fit)
3

3

14

simulated_annealing_method_options

simulated_annealing_method_options

Options For Use With the Simulated Annealing Selection Method

Description

Options For Use With the Simulated Annealing Selection Method

Usage

simulated_annealing_method_options(

force

method = c("binary program”, "projection”),
transport.method = transport_options(),
OTmaxit =

epsilon = 0.05,

maxit = 1L,

temps 1000L,

max.time = 3600,

proposal.method = c("covariance”, "uniform"),
energy.distribution = c("boltzman”, "bose-einstein”),
cooling.schedule = c("”"Geman-Geman"”, "exponential”),

model.size = NULL,

nvars

display.progress = FALSE,
parallel = NULL,

calc.theta

Arguments

force

method

TRUE,

Any covariates to force into the model? Should be by column number or NULL
if no variables to force into the model.

Should covariates be selected as an approximate "binary program" or should a
projection method be used. Default is the approximate binary program.

transport.method

OTmaxit

epsilon

maxit
temps

max.time

Method for Wasserstein distance calculation. Should be one the outputs of
transport_options()

The number of iterations to run the Wasserstein distance solvers.

A value > 0 for the penalty parameter of if using the Sinkhorn method for opti-
mal transport

Maximum number of iterations per temperature
Number of temperatures to try

Maximum time in seconds to run the algorithm

stepwise_method_options 15

proposal.method
The method to propose the next covariate to add. One of "covariance" or "ran-
dom". "covariance" will randomly select from covariates with probability pro-
portional to the absolute value of the covariance. "uniform" will select covariates
uniformly at random.

energy.distribution

The energy distribution to use for evaluating proposals. One of "boltzman" or
"bose-einstein". Default is "boltzman".

cooling.schedule

The schedule to use for cooling temperatures. One of "Geman-Geman" or "ex-
ponential". Default is "Geman-Geman".

model.size How many coefficients should the maximum final model have? Ignored if nvars
set.
nvars ‘What model sizes should one check? Should be a numeric vector with maximum

less than number of variables or NULL . Default is NULL. Overrides model . size
if is not NULL

display.progress
Logical. Should intermediate progress be displayed? TRUE or FALSE. Default
is FALSE.

parallel A cluster backend to be used by foreach: : foreach(). See foreach: : foreach()
for details about how to set them up. The WpProj functions will register the clus-
ter with the doParallel: :registerDoParallel() function internally.

calc.theta Return the linear coefficients? Default is TRUE.

Not used.

Value

A named list with the above arguments

Examples

simulated_annealing_method_options()

stepwise_method_options
Options For Use With the Stepwise Selection Method

Description

Options For Use With the Stepwise Selection Method

16

Usage

stepwise_method_options

stepwise_method_options(
force = NULL,
direction = c("backward”, "forward"),
method = c("binary program”, "projection”),
transport.method = transport_options(),
OTmaxit = 0,

epsilon = 0.05,
model.size = NULL,
display.progress = FALSE,
parallel = NULL,
calc.theta = TRUE,

)
Arguments
force Any covariates to force into the model? Should be by column number or NULL
if no variables to force into the model.
direction "forward" or "backward" selection? Default is "backward"
method Should covariates be selected as an approximate "binary program" or should a

projection method be used. Default is the approximate binary program.

transport.method

Method for Wasserstein distance calculation. Should be one the outputs of
transport_options()

OTmaxit The number of iterations to run the Wasserstein distance solvers.

epsilon A value > 0 for the penalty parameter of if using the Sinkhorn method for opti-

mal transport

model.size How many coefficients should the maximum final model have?
display.progress

Logical. Should intermediate progress be displayed? TRUE or FALSE. Default
is FALSE.

parallel A cluster backend to be used by foreach: : foreach(). See foreach: : foreach()

for details about how to set them up. The WpProj functions will register the clus-
ter with the doParallel: :registerDoParallel() function internally.

calc.theta Return the linear coefficients? Default is TRUE.

Value

Not used

A named list with the above arguments

Examples

stepwise_method_options()

WpProj 17

WpProj p-Wasserstein Linear Projections

Description

[Experimental] This function will calculate linear projections from a set of predictions into the
space of the covariates in terms of the p-Wasserstein distance.

Usage
WpProj(
X,
eta = NULL,
theta = NULL,
power = 2,
method = c("L1", "binary program”, "stepwise”, "simulated annealing”, "L0"),
solver = c("lasso”, "ecos”, "lpsolve”, "mosek"),
options = NULL
)
Arguments
X An n X p matrix of covariates
eta Ann x s matrix of predictions from a model
theta An optional An p x s parameter matrix for selection methods. Only makes sense
if the original model is a linear model.
power The power of the Wasserstein distance to use. Must be >= 1.0. Will default to
2.0.
method The algorithm to calculate the Wasserstein projections. One of "L1", "binary
program", "IP", "stepwise","simulated annealing", or "L0". Will default to "L1"
if not provided. See details for more information.
solver Which solver to use? One of "lasso", "ecos", "Ipsolve", or "mosek". See details
for more information
options Options passed to the particular method and desired solver. See details for more
information.
Details
Methods:

The WpProj function is a wrapper for the various Wasserstein projection methods. It is designed
to be a one-stop shop for all Wasserstein projection methods. It will automatically choose the
correct method and solver based on the arguments provided. It will also return a standardized
output for all methods. Each method has its own set of options that can be passed to it. See the
documentation for each method for more information.

18

Value

WpProj

For the L1 methods, see L1_method_options() for more information. For the binary pro-
gram methods, see binary_program_method_options() for more information. For the stepwise
methods, see stepwise_method_options() for more information. For the simulated annealing
methods, see simulated_annealing_method_options() for more information.

In most cases, we recommend using the L1 methods or binary program methods. The L1 methods
are the fastest and applicable to Wasserstein powers of any value greater than 1 and function
as direct linear projections into the space of the covariates. The binary program methods instead
preserve the coefficients of the original model if this is of interest, such as when the original model
was already a linear model. The binary program will instead function as a way of turning on and
off certain coefficients in a way that minimizes the Wasserstein distance between reduced and
original models. Of note, we also have available an approximate binary program method using a
lasso solver. This method is faster than the exact binary program method but is not guaranteed to
find the optimal solution. It is recommended to use the exact binary program method if possible.
See binary_program_method_options() for more information on how to set up the approximate
method as some arguments for the lasso solver should be specified. For more information on how
this works, please also see the referenced paper.

The stepwise, simulated annealing, and LO methods also select covariates like the binary program
methods but they can be slower. They are presented merely for comparison purposes given they
were used in the original paper.

Wasserstein distances and powers:
The Wasserstein distance is a measure of distance between two probability distributions. It is
defined as:
1/p
W)= (Lt [e ylrantea)
m€ell(p,v) Jrd xRd
where TI(u, v) is the set of all joint distributions with marginals o and v. The Wasserstein distance
is a generalization of the Euclidean distance, which is the case when p = 2. In our function we
have argument power that corresponds to the p of the equation above. The default power is 2.0
but any value greater than or equal to 1.0 is allowed. For more information, see the references.
The particular implementation of the Wasserstein distance is as follows. If p is the original pre-
diction from the original model, then we seek to find a new prediction v that minimizes the
Wasserstein distance between the two: argmin, W, (1, /).

object of class WpProj, which is a list with the following slots:

* call: The call to the function

* theta: A list of the final parameter matrices for each returned model
e fitted.values: A list of the fitted values for each returned model

* power: The power of the Wasserstein distance used

* method: The method used to calculate the Wasserstein projections

* solver: The solver used to calculate the Wasserstein projections

* niter: The number of iterations used to calculate the Wasserstein projections. Not all meth-
ods return a number of iterations so this may be NULL

¢ nzero: The number of non zero coefficients in the final models

WpProj 19

References

Dunipace, Eric and Lorenzo Trippa (2020) https://arxiv.org/abs/2012.09999.

Examples

if(rlang::is_installed("stats")) {
note we don't generate believable data with real posteriors

these examples are just to show how to use the function
n <- 32
p <- 10
s <- 21

covariates and coefficients
x <- matrix(stats::rnorm(p *x n), nrow = n, ncol = p)
beta <- (1:10)/10

#outcome
y <= x %*% beta + stats::rnorm(n)

fake posterior
post_beta <- matrix(beta, nrow=p, ncol=s) + stats::rnorm(p*s, 0, 0.1)

post_mu <- x %*% post_beta #posterior predictive distributions

fit models

L1 model

fit.p2 <- WpProj(X=x, eta=post_mu, power = 2.0,
method = "L1", #default
solver = "lasso” #default

)

approximate binary program
fit.p2.bp <- WpProj(X=x, eta=post_mu, theta = post_beta, power = 2.0,
method = "binary program”,
solver = "lasso” #default because approximate algorithm is faster

)

compare performance by measuring distance from full model

dc <- distCompare(models = list("L1" = fit.p2, "BP" = fit.p2.bp))
if(rlang::is_installed(c("ggplot2”,"ggsci"))) {

plot(dc)

3

compare performance by measuring the relative distance between a null model

and the predictions of interest as a pseudo R*2

r2.expect <- WPR2(predictions = post_mu, projected_model = dc) # can have negative values
r2.null <- WPR2(projected_model = dc) # should be between @ and 1
if(rlang::is_installed(c("ggplot2","ggsci"))) {

plot(r2.null)

3

we can also examine how predictions change in the models for individual observations

snoon

if(rlang::is_installed(c("ggplot2"”,"ggsci”, "ggridges"))) {

https://arxiv.org/abs/2012.09999

20 WPR2

ridgePlot(fit.p2, index = 21, minCoef = @, maxCoef = 10)
3
3

WPR2 W _pR"2 Function to Evaluate Performance

Description

[Experimental] This function will calculate p-Wasserstein distances between the predictions of
interest and the projected model.

Usage

WPR2(
predictions = NULL,
projected_model,

p =2,
method = "exact",
base = NULL,

)

S4 method for signature 'ANY,matrix'
WPR2(

predictions = NULL,

projected_model,

p =2,
method = "exact”,
base = NULL,

)

S4 method for signature 'ANY,distcompare'’
WPR2(

predictions = NULL,

projected_model,

p =2,
method = "exact”,
base = NULL,

)

S4 method for signature 'ANY,list'
WPR2 (
predictions = NULL,
projected_model,

WPR2 21

p =2,
method = "exact",
base = NULL,

S4 method for signature 'ANY,WpProj'
WPR2 (

predictions = NULL,

projected_model,

p =2,
method = "exact”,
base = NULL,
)
Arguments
predictions Predictions of interest, likely from the original model

projected_model
A matrix of competing predictions, possibly from a WpProj fit, a WpProj fit
itself, or a list of WpProj objects

p Power of the Wasserstein distance to use in distance calculations
method Method for calculating Wasserstein distance
base The baseline result to compare to. If not provided, defaults to the model with no

covariates and only an intercept.

Arguments passed to Wasserstein distance calculation. See wasserstein

Value

VVPR2 values

Examples

if (rlang::is_installed("stats")) {

this example is not a true posterior estimation, but is used for illustration
n <- 32

p <- 10

s <- 21

x <- matrix(stats::rnorm(n*p), nrow = n, ncol = p)

beta <- (1:10)/10

y <= x %*% beta + stats::rnorm(n)

post_beta <- matrix(beta, nrow=p, ncol=s) +
matrix(rnorm(p*s), p, s) # not a true posterior

post_mu <- x %*% post_beta

fit <- WpProj(X=x, eta=post_mu, power = 2.0)

out <- WPR2(predictions = post_mu, projected_model = fit,

22 WPVI

base = rowMeans(post_mu) # same as intercept only projection
)
3

WPVI p-Wasserstein Variable Importance

Description

[Experimental] This function will measure how much removing each covariate harms prediction
accuracy.

Usage

WPVI(
X,
eta,
theta,
pred.fun = NULL,
p=2,
ground_p = 2,
transport.method = transport_options(),
epsilon = 0.05,
OTmaxit = 0,
display.progress = FALSE,
parallel = NULL

)
Arguments
X Covariates
eta Predictions from the estimated model
theta Parameters from the estimated model.
pred.fun A prediction function. must take variables x, theta as arguments: pred. fun(x, theta)
p Power of Wasserstein distance
ground_p Power of distance metric

transport.method
Transport methods. See transport_options() for more details.

epsilon Hyperparameter for Sinkhorn iterations

OTmaxit Maximum number of iterations for the Wasserstein method
display.progress
Display intermediate progress

parallel a foreach backend if already created

WPVI

Value

Returns an integer vector ranking covariate importance from most to least important.

Examples
n <- 128
p <- 10
s <- 99

X <- matrix(1, nrow = n, ncol = p)

beta <- (1:10)/10

y <- X %*% beta

post_beta <- matrix(beta, nrow=p, ncol=s)
post_mu <- x %*% post_beta

fit <- WpProj(X=x, eta=post_mu, power = 2.0)
WPVI(X = x, eta = post_mu, theta = post_beta, transport.method = "hilbert")

23

Index

binary_program_method_options, 2
binary_program_method_options(), I8

combine.WPR2, 4

distCompare, 5
doParallel::registerDoParallel(), 3, 15,
16

ECOSolveR: :ecos.control(), 4
foreach: :foreach(), 3, 9, 15, 16

geom_line, 12
geom_point, /2
ggplot2::ggplot(), 12, 13

HC, 7

LO_method_options, 8
L1_method_options, 9
L1_method_options(), 3, I8
L1_penalty_options, 11
L1_penalty_options(), 10

oem, 7
plot,WPR2-method, 11

ridgePlot, 12
Rmosek: :mosek (), 4

simulated_annealing_method_options, 14

simulated_annealing_method_options(),
18

stepwise_method_options, 15

stepwise_method_options(), I8

transport_options(), 3,6, 9, 14, 16, 22

wasserstein, 2/
wasserstein(), 6

24

WpProj, 17

WpProj(), 4, 10

WPR2, 20

WPR2(), 4

WPR2,ANY, distcompare-method (WPR2), 20
WPR2,ANY, list-method (WPR2), 20
WPR2,ANY,matrix-method (WPR2), 20
WPR2, ANY ,WpProj-method (WPR2), 20
WPVI, 22

	binary_program_method_options
	combine.WPR2
	distCompare
	HC
	L0_method_options
	L1_method_options
	L1_penalty_options
	plot,WPR2-method
	ridgePlot
	simulated_annealing_method_options
	stepwise_method_options
	WpProj
	WPR2
	WPVI
	Index

