Package 'VirtualPop'

July 21, 2025

```
Type Package
Title Simulation of Populations by Sampling Waiting-Time Distributions
Version 2.1.0
Imports msm,HMDHFDplus
Suggests knitr, kableExtra, ggplot2, foreign, lubridate, xml2, eha,
      survival, survminer, rmarkdown
BuildResaveData best
VignetteBuilder knitr
LazyData true
Date 2025-04-11
Maintainer Frans Willekens <willekens@nidi.nl>
Description Constructs a virtual population from fertility and mortality rates for any country,
      calendar year and birth cohort in the Human Mortality Database <a href="https:">https:</a>
      //www.mortality.org> and the Human Fertility Database <a href="https://www.humanfertility">https://www.humanfertility</a>.
      org>. Fertility histories are simulated for every individual and their offspring, producing a multi-
      generation virtual population.
License GPL-2
NeedsCompilation no
Depends R (>= 4.3.0),
Encoding UTF-8
BugReports https://github.com/willekens/VirtualPop/issues
RoxygenNote 7.3.2
Author Frans Willekens [aut, cre] (ORCID:
       <https://orcid.org/0000-0001-6125-0212>),
      Tim Riffe [ctb] (ORCID: <a href="https://orcid.org/0000-0002-2673-4622">https://orcid.org/0000-0002-2673-4622</a>)
Repository CRAN
Date/Publication 2025-04-11 22:00:15 UTC
```

2 BuildViP

Contents

	BuildViP
	Children
	dLH
	e0
	GetData
	GetGenerations
	GetRates
	GetRatesC
	H_pw 10
	Lifespan
	PartnerSearch
	pw_root
	r.pw_exp
	rates
	ratesC
	Sim_bio
Index	17

BuildViP

Builds a Virtual Population in a Single Step

Description

Builds a virtual population from mortality and fertility rates retrieved from the Human Mortality Database (HMD) and the Human Fertility Database (HFD) in a single step.

Usage

```
BuildViP(
   user = NULL,
   pw_HMD = NULL,
   pw_HFD = NULL,
   countrycode,
   cohort = NULL,
   refyear = NULL,
   ncohort,
   ngen,
   mort = TRUE
)
```

Arguments

```
user User name (e-mail address)

pw_HMD Password Human Mortality Database

pw_HFD Password Human Fertility Database
```

Children 3

countrycode Code of country selected

cohort Birth cohort (for virtual population based on cohort data)
refyear Reference year (for virtual population based on period data)

ncohort Size of initial cohort ngen Number of generations

mort Presence or absence of mortality (optional). Default: mortality is present (mort=TRUE).

If mortality is absent, mort=FALSE.

Value

dLH Dataframe with virtual population (one row per individual) (See description of dLH object).

Examples

```
## Registration is required to be able to download data from the HMD and HFD
## HMD: https://www.mortality.org
## HFD: https://www.humanfertility.org
## Not run:
# Period data
dLH <- BuildViP(user,pw_HMD,pw_HFD,</pre>
                     countrycode="USA",
                     refyear=2021,
                     ncohort=1000,
                     ngen=4)
# Cohort data
dLHc <- BuildViP(user,pw_HMD,pw_HFD,</pre>
                     countrycode="USA",
                     cohort=1964,
                     ncohort=1000,
                     ngen=4)
## End(Not run)
```

Children

Generates Individual Fertility Histories

Description

Builds individual fertility histories from conditional fertility rates. Children() uses the function Sim_bio().

Usage

```
Children(dat0, rates, mort = NULL)
```

4 dLH

Arguments

dat0 Data frame with data on individual members of the virtual population (dLH

format)

rates Mortality and fertility rates. The object 'rates' is produced by the function Ge-

trates().

mort Presence or absence of mortality (optional). Default: mortality is present (mort=TRUE).

If mortality is absent, set mort=FALSE.

Value

List object with two components:

data Data frame with updated information on members of the virtual population

dch Data frame with information on children

Examples

```
# The example generates data on children of the first 10 female members of
# the first generation of the virtual population.
utils::data(dLH,package="VirtualPop")
utils::data(rates,package="VirtualPop")
dat0 <- dLH[dLH$sex=="Female" & dLH$gen==1,][1:10,]
out <- VirtualPop::Children(dat0=dat0,rates=rates)</pre>
```

dLH

Individual fertility histories based on period data and in the presence of mortality (USA 2021)

Description

Fertility histories based on period data and in the presence of mortality. The histories are simulated from age-specific death rates and conditional fertility rates of USA 2021.

Usage

```
data(dLH,package="VirtualPop")
```

Format

A data frame with data about 7,000 individuals (2000 in initial cohort).

ID Identification number

gen Generation

cohort Birth cohort (year of birth)

sex Sex. A factor with levels Males and Females

e0 5

bdated Date of birth (decimal date)

ddated Date of death (decimal date)

x D Age at death (decimal number)

IDmother ID of mother

IDfather ID of father

jch Child's line number in the nuclear family (household)

IDpartner ID of partner

udated Date of union formation

nch Number of children ever born to the individual

The object has four attributes:

- Country
- type: Type of data used to produce the histories (period data or cohort data)
- refyear: Calendar year for which period data are used. If cohort data are used, refyear is missing (NA)
- cohort: Year of birth of cohort for which the data are used. If period data are used, cohort is missing (NA)

Source

The virtual population is produced from period mortality rates by age and period fertility rates by age and parity from the United States 2021. The data are from the Human Mortality Database (HMD) and the Human Fertility Database (HFD).

e0

Mean Ages at Death and Probabilities of Surviving to Selected Ages, by Sex

Description

Computes (a) Life expectancy at birth, (b) Probability of surviving at age 65, and (c) Probability of surviving at age 85

Usage

e0(d)

Arguments

d

The name of the database. If missing, dLH is used if it exists.

6 GetData

Value

e0 Mean ages at death

Prob65 Probability of surviving at age 65
Prob85 Probability of surviving at age 85

Examples

```
utils::data(dLH,package="VirtualPop")
e0(d=dLH)
```

GetData

Reads Data from the HMD and HFD into R

Description

Reads data from the HMD and HFD into R. The function uses the readHMDweb() and the read-HFDweb() functions of the HMDHFDplus package.

Usage

```
GetData(country, user, pw_HMD, pw_HFD)
```

Arguments

country Code of the selected country. The code must be one of the country codes of

HMD and HFD.

user email address of the user, used at registration with the HMD and HFD. It is

assumed that the same email address is used for both HMD and HFD.

pw_HMD Password to access HMD, provided at registration.pw_HFD Password to access HFD, provided at registration

Value

data_raw A list object with four elements:

country Country

LTf Life table for female population for all years available in the HMD

LTm Life table for male population for all years available in the HMD

fert_rates Conditional fertility rates for all years available in the HFD

GetGenerations 7

Examples

```
## Not run:
data_raw <- GetData(country="USA",user,pw_HMD,pw_HFD)
## End(Not run)</pre>
```

GetGenerations

Builds a Multi-Generation Virtual Population from demographic parameters

Description

Builds a virtual population from mortality rates by age and sex, and fertility rates by age of mother and parity.

Usage

```
GetGenerations(rates, ncohort = NULL, ngen = NULL, mort = NULL)
```

Arguments

rates List object with death rates (ASDR) and birth rates (ASFR). Produced by func-

tion VirtualPop::GetRates(). Rates of USA 2021 are distributed with the Virtu-

alPop package.

ncohort Size of hypothetical birth cohort (first generation)

ngen Number of generations to be simulated. No upper limit.

mort Presence or absence of mortality. This parameter is optional. Default is TRUE.

If mortality is absent, mort=FALSE.

Value

dataAllgen The database of simulated individual lifespans and fertility histories (all gener-

ations).

The object dataAllgen has four attributes:

country The country

type The type of data (period data or cohort data).

refyear The calendar year for which the period data are used (reference year).

cohort The birth cohort (if applicable).

8 GetRates

Examples

```
utils::data(rates,package = "VirtualPop")
dLH <- VirtualPop::GetGenerations (rates=rates,ncohort=1000,ngen=4)</pre>
```

GetRates Retrieves Period Mortality and Fertility Rates from HMD and HFD

for a Selected Country and Selected Year

Description

The rates are retrieved from the life tables and fertility tables included in the raw data downloaded from the HMD and HFD.

Usage

```
GetRates(data, refyear)
```

Arguments

data (the object data_raw, produced by the GetData() function.)

refyear Reference year, which is the year of period data

Value

A list object with three elements:

ASDR Age-specific death rates, by sex for reference year

ASFR Age-specific birth rates by birth order for reference year

ratesM Matrix of transition rates in format required for mulitstate modelling

The object returned by the function has three attributes:

country Country

type Type of data (period data or cohort data)

year Calendar year for which period death rates are used to complete cohort experi-

ence in case of incomplete mortality experience (reference year).

```
## Not run:
# Not run because passwords needed
# Input data: data_raw produced by GetData().
rates <- GetRates(data=data_raw,refyear=2021)
## End(Not run)</pre>
```

GetRatesC 9

Rates	GetRatesC	Retrieves Cohort Data from the HMD and HFD and Obtains Cohort Rates
-------	-----------	--

Description

Retrieves cohort data from the HMD and HFD and produces cohort rates (death rates by age and sex and conditional fertility rates by age and parity). The function combines the steps of (a) data retrieval and (b) extraction of mortality and fertility rates.

Usage

```
GetRatesC(country, user, pw_HMD, pw_HFD, refcohort)
```

Arguments

country	Code of the country selected. The code must be one of the country codes of HMD and HFD.
user	Name of the user, used at registration with the HMD and HFD. It is assumed that the same name is used for both HMD and HFD.
pw_HMD	Password to access HMD, provided at registration.
pw_HFD	Password to access HFD, provided at registration
refcohort	Year of birth of cohort for which the data are used for the simulation.

Value

A list object with three elements:

ASDR Age-specific death rates by sex for selected birth cohort

ASFR Age-specific fertility rates by parity for selected birth cohort

ratesM Matrix of transition rates in format required for mulitstate modelling

The object returned by the function has five attributes:

country	Country
type	Type of data (period data or cohort data)
cohort	Birth cohort (year of birth
refyear	Calendar year for which period death rates are used to complete cohort experience in case of incomplete mortality experience (reference year).
start_pASDR	Lowest age for which cohort data are missing. The mortality rates of that age and higher ages are borrowed from period data collected in the reference year.

10 H_pw

Examples

```
## Not run:
ratesC <- GetRatesC(country="USA",user,pw_HMD,pw_HFD,refcohort)
## End(Not run)</pre>
```

H_pw

Computes Cumulative Hazard at Duration t under a Piecewise Exponential Model

Description

Computes cumulative hazard at duration t from piecewise-constant rates.

Usage

```
H_pw(t, breakpoints, rates)
```

Arguments

t Duration at which cumulative hazard is required. It may be a vector of durations.

breakpoints Breakpoints: values of time at which piecewise-constant rates change.

rates Piecewise-constant rates

Value

Cumulative hazard at duration t

See Also

functions $pw_root()$ and $r_pw_exp()$: Function $H_pw()$ is called by $pw_root()$, which is called by $r_pw_exp()$.

```
# Example 1
breakpoints <- c(0, 10, 20, 30, 60)
rates <- c(0.01,0.02,0.04,0.15)
z <- VirtualPop::H_pw(t=0:40, breakpoints=breakpoints, rates=rates)
# Example 2
utils::data(rates,package="VirtualPop")
ages <- as.numeric(rownames(rates$ASDR))
breakpoints <- c(ages,120)
zz <- VirtualPop::H_pw(t=ages, breakpoints=breakpoints, rates=rates$ASDR[,1])</pre>
```

Lifespan 11

Lifespan	Generates Individual Lifespan(s)	

Description

Uses age-specific death rates to simulate length of life. The function generates age(s) at death and date(s) of death. The function uses the function rpexp() of the msm package and uniroot() of base R

Usage

```
Lifespan(data, ASDR, mort = NULL)
```

Arguments

data	Data frame with individual data. If the object "data" includes date of birth (bdated; decimal date), then the date of death is computed.
ASDR	Age-specific death rates
mort	Presence or absence of mortality. This parameter is optional. Default is TRUE. If mortality is (should be) absent, mort=FALSE.

Value

LS Data frame with age(s) at death and date(s) of death

Examples

```
utils::data(dLH,package="VirtualPop")
utils::data(rates,package="VirtualPop")
d <- VirtualPop::Lifespan (dLH[1:5,1:5],ASDR=rates$ASDR)</pre>
```

PartnerSearch	Simple Partner Search Simulation

Description

In this updated partner search model, a partner is an individual of a different sex selected at random among members of the same generation. The function is called by GetGenerations().

Usage

```
PartnerSearch(idego, d)
```

12 pw_root

Arguments

idego IDs of egos in search for partner

d Database (eg dLH)

Value

d Updated version of database (d), which includes, for each individual without a

partner and able to find a partner, the ID of the partner.

dp Data related to partner search (dataframe)

Examples

```
utils::data(dLH,package="VirtualPop")
dp <- VirtualPop::PartnerSearch(idego=dLH$ID,d=dLH)</pre>
```

pw_root

The Function for which the Root is Sought.

Description

The function $pw_root()$ specifies the mathematical function g(t). The equation to be solved is g(t)=0, with g(t) the cumulative hazard function of the piecewise exponential distribution $+ \log(u)$ with u a random draw from standard uniform distribution (see vignette "Piecewise_exponential", Section 2.2.4).

Usage

```
pw_root(t, breakpoints, rates, uu)
```

Arguments

t Vector of durations for which the equation g(t)=0 should be solved.

breakpoints Breakpoints

rates Piecewise-constant rates

uu Random draw from standard uniform distribution.

Details

pw_root is an argument of the function uniroot() of base R (argument "f"). It is required by uniroot(). The function uniroot() is called by r.pw_exp(). See also Functions H_pw() and r.pw_exp().

Value

Vector of differences between cumulative hazard and -log(uu) for different values of t.

r.pw_exp 13

Examples

```
breakpoints <- c(0, 10, 20, 30, 60)
rates <- c(0.01, 0.02, 0.04, 0.15)
z <- VirtualPop::pw_root (t= <math>c(10, 18.3, 23.6, 54.7), breakpoints, rates, uu=0.43)
```

r.pw_exp

Draws Waiting Times from a Piecewise-Exponential Distribution.

Description

The function produces n realizations of a piecewise-exponentially distributed random waiting time.

Usage

```
r.pw_exp(n, breakpoints, rates)
```

Arguments

n Number of random draws

breakpoints Breakpoints in piecewise-exponential distribution

rates Piecewise-constant rates

Value

Vector of waiting times, drawn randomly from a piecewise-exponential survival function.

```
breakpoints <- c(0, 10, 20, 30, 60)
rates <- c(0.01,0.02,0.04,0.15)
pw_sample <- VirtualPop::r.pw_exp (n=10, breakpoints, rates=rates)</pre>
```

14 ratesC

rates

Period rates

Description

Data consisting of period rates of mortality by age and sex and fertility by age and parity, USA 2021

Usage

```
data(rates,package="VirtualPop")
```

Format

A list of three objects.

ASDR Mortality rates

ASFR Fertility rates

ratesM Multistate transition rates

The dataset has three attributes:

- Country
- Type of rates: period rates or cohort rates
- Calendar year for which period death rates are used to complete cohort experience in case of incomplete mortality experience (reference year).

Source

The data are downloaded from the Human Mortality Database (HMD) and the Human Fertility Database (HFD). Country: USA. Year: 2021

ratesC

Cohort rates

Description

Cohort rates of mortality by age and sex and fertility by age and parity, USA birth cohort 1964

Usage

```
data(ratesC,package="VirtualPop")
```

Sim_bio 15

Format

A list of three objects.

ASDR Mortality rates

ASFR Fertility rates

ratesM Multistate transition rates

The object returned by the function has five attributes:

- Country
- type: Type of data (period data or cohort data)
- cohort: Birth cohort (year of birth)
- year: Calendar year for which period death rates are used to complete cohort experience in case of incomplete mortality experience (reference year).
- start_pASDR: Lowest age for which cohort data are missing. The mortality rates of that age and higher ages are borrowed from period data collected in the reference year.

Source

The data are downloaded from the Human Mortality Database (HMD) and the Human Fertility Database (HFD). Country: USA. Cohort: 1964

Sim_bio

Generic Function to Generate Single Life History

Description

The function generates a single life history from age-specific transition rates (rates\$ratesM) and an initial state. RatesM is an object with the rates in the proper format for multistate modelling. The user supplies the starting age and ending age of the simulation.

Usage

Sim_bio(datsim, ratesM)

Arguments

datsim Dataframe with, for each individual, ID, date of birth, starting and ending times

(ages) of the simulation, and the state occupied at the start of the simulation (see

vignette "Tutorial").

ratesM Multistate transition rates in standard (multistate) format

Details

The function is called from the function VirtualPop::Children(). It uses the rpexp() function of the msm package.

Sim_bio

Value

age_startSim Age at start of simulation age_endSim Age at end of simulation

nstates Number of states

path path: sequence of states occupied

ages_trans Ages at transition

```
# Fertily history is simulated from starting age to ending age
# Individual starts in state "par0"
utils::data(rates,package="VirtualPop")
popsim <- data.frame(ID=1,born=2000.450,start=0,end=80,st_start="par0")
ch <- VirtualPop::Sim_bio (datsim=popsim,ratesM=rates$ratesM)</pre>
```

Index

```
BuildViP, 2
Children, 3
dLH, 4
e0, 5
GetData, 6
{\tt GetGenerations}, {\tt 7}
GetRates, 8
GetRatesC, 9
H_pw, 10
Lifespan, 11
PartnerSearch, 11
pw_root, 12
r.pw_exp, 13
rates, 14
ratesC, 14
Sim_bio, 15
```