Type: | Package |
Title: | Monitoring Systemic Risk |
Version: | 0.1.0 |
Description: | The past decade has demonstrated an increased need to better understand risks leading to systemic crises. This framework offers scholars, practitioners and policymakers a useful toolbox to explore such risks in financial systems. Specifically, this framework provides popular econometric and network measures to monitor systemic risk and to measure the consequences of regulatory decisions. These systemic risk measures are based on the frameworks of Adrian and Brunnermeier (2016) <doi:10.1257/aer.20120555> and Billio, Getmansky, Lo and Pelizzon (2012) <doi:10.1016/j.jfineco.2011.12.010>. |
Depends: | R (≥ 2.10) |
License: | GPL-3 |
Encoding: | UTF-8 |
LazyData: | true |
Imports: | igraph, Matrix, quantreg, xts |
NeedsCompilation: | no |
Packaged: | 2020-05-05 13:54:53 UTC; jb-ha |
Author: | Jean-Baptiste Hasse [aut, cre] |
Maintainer: | Jean-Baptiste Hasse <jb-hasse@hotmail.fr> |
Repository: | CRAN |
Date/Publication: | 2020-05-08 09:20:02 UTC |
State variables
Description
This dataset includes state variables data extracted from the FRED. Specifically, it includes data on credit spread, liquidity spread, yield spread, 3M Treasury bill and VIX.
Usage
data("data_state_variables")
Format
A data frame with 5030 observations on the following 7 variables.
Date
a date vector
CRESPR
a numeric vector
LIQSPR
a numeric vector
YIESPR
a numeric vector
TBR3M
a numeric vector
RESI
a numeric vector
VIX
a numeric vector
Source
Federal Reserve Economic Data (FRED) St. Louis Fed
References
Hasse, Jean-Baptiste. "Systemic Risk: a Network Approach". AMSE Working Paper (2020) Hasse, Jean-Baptiste, and Quentin Lajaunie. "Does the Yield Curve Signal Recessions? New Evidence from an International Panel Data Analysis." AMSE Working Paper (2020).
Examples
data("data_state_variables")
head(data_state_variables)
Financial institutions (banks, insurers and asset managers) stock returns
Description
This dataset includes state variables data extracted from the FRED and Yahoo Finance. Specifically, it includes dates, MSCI STOXX Europe 600 Index returns and banks, insurers and asset managers stock returns.
Usage
data("data_stock_returns")
Format
A data frame with 5030 observations on the following 74 variables.
ACKB.BB.Equity
a numeric vector
AGN.NA.Equity
a numeric vector
AGS.BB.Equity
a numeric vector
AIBG.ID.Equity
a numeric vector
ALV.GY.Equity
a numeric vector
AV..LN.Equity
a numeric vector
BALN.SE.Equity
a numeric vector
BARC.LN.Equity
a numeric vector
BBVA.SQ.Equity
a numeric vector
BIRG.ID.Equity
a numeric vector
BKT.SQ.Equity
a numeric vector
BNP.FP.Equity
a numeric vector
BPE.IM.Equity
a numeric vector
CBG.LN.Equity
a numeric vector
CBK.GY.Equity
a numeric vector
CNP.FP.Equity
a numeric vector
CS.FP.Equity
a numeric vector
CSGN.SE.Equity
a numeric vector
DANSKE.DC.Equity
a numeric vector
DBK.GY.Equity
a numeric vector
DNB.NO.Equity
a numeric vector
Date
a date vector
EBS.AV.Equity
a numeric vector
EMG.LN.Equity
a numeric vector
G.IM.Equity
a numeric vector
GBLB.BB.Equity
a numeric vector
GLE.FP.Equity
a numeric vector
HELN.SE.Equity
a numeric vector
HNR1.GY.Equity
a numeric vector
HSBA.LN.Equity
a numeric vector
HSX.LN.Equity
a numeric vector
ICP.LN.Equity
a numeric vector
III.LN.Equity
a numeric vector
INDUA.SS.Equity
a numeric vector
INGA.NA.Equity
a numeric vector
INVEB.SS.Equity
a numeric vector
ISP.IM.Equity
a numeric vector
JYSK.DC.Equity
a numeric vector
KBC.BB.Equity
a numeric vector
KINVB.SS.Equity
a numeric vector
KN.FP.Equity
a numeric vector
KOMB.CK.Equity
a numeric vector
LGEN.LN.Equity
a numeric vector
LLOY.LN.Equity
a numeric vector
LUNDB.SS.Equity
a numeric vector
MAP.SQ.Equity
a numeric vector
MB.IM.Equity
a numeric vector
MF.FP.Equity
a numeric vector
MUV2.GY.Equity
a numeric vector
NDA.SS.Equity
a numeric vector
NXG.LN.Equity
a numeric vector
OML.LN.Equity
a numeric vector
PARG.SE.Equity
a numeric vector
PRU.LN.Equity
a numeric vector
RBS.LN.Equity
a numeric vector
RF.FP.Equity
a numeric vector
RSA.LN.Equity
a numeric vector
SAMPO.FH.Equity
a numeric vector
SAN.SQ.Equity
a numeric vector
SCR.FP.Equity
a numeric vector
SDR.LN.Equity
a numeric vector
SEBA.SS.Equity
a numeric vector
SHBA.SS.Equity
a numeric vector
SLHN.SE.Equity
a numeric vector
SREN.SE.Equity
a numeric vector
STAN.LN.Equity
a numeric vector
STB.NO.Equity
a numeric vector
STJ.LN.Equity
a numeric vector
SWEDA.SS.Equity
a numeric vector
SXXP.Index
a numeric vector
SYDB.DC.Equity
a numeric vector
UBSG.SE.Equity
a numeric vector
UCG.IM.Equity
a numeric vector
ZURN.SE.Equity
a numeric vector
Source
Federal Reserve Economic Data (FRED) St. Louis Fed and Yahoo Finance
References
Hasse, Jean-Baptiste. "Systemic Risk: a Network Approach". AMSE Working Paper (2020)
Examples
data("data_stock_returns")
head(data_stock_returns)
Computing static CoVaR and Delta CoVaR
Description
This function computes the CoVaR and the Delta CoVaR of a given financial institution i for a given quantile q.
Usage
f_CoVaR_Delta_CoVaR_i_q(df_data_returns)
Arguments
df_data_returns |
A dataframe including data: dates and stock returns |
Value
CoVaR_i_q |
A numeric matrix |
Delta_CoVaR_i_q |
A numeric vector |
Author(s)
Jean-Baptiste Hasse
References
Adrian, Tobias, and Markus K. Brunnermeier. "CoVaR". American Economic Review 106.7 (2016): , 106, 7, 1705-1741.
Examples
# Scale the entries of a vector to the interval [0,1]
# NOT RUN {
# Load data
data("data_stock_returns")
# Compute CoVaR_i_q and Delta_CoVaR_i_q
f_CoVaR_Delta_CoVaR_i_q(data_stock_returns)
# }
Computing dynamic CoVaR and Delta CoVaR
Description
This function computes the dynamic CoVaR and the Delta CoVaR of a given financial institution i for a given quantile q at time t. The dynamic and aggregate Delta CoVaR is also computed.
Usage
f_CoVaR_Delta_CoVaR_i_q_t(df_data_returns, df_data_state_variables)
Arguments
df_data_returns |
A dataframe including data: dates and stock returns |
df_data_state_variables |
A dataframe including data: dates and macroeconomic variables |
Value
CoVaR_i_q_t |
A xts matrix |
Delta_CoVaR_i_q_t |
A xts matrix |
Delta_CoVaR_t |
A xts vector |
Author(s)
Jean-Baptiste Hasse
References
Adrian, Tobias, and Markus K. Brunnermeier. "CoVaR". American Economic Review 106.7 (2016): , 106, 7, 1705-1741.
Examples
# Scale the entries of a vector to the interval [0,1]
# NOT RUN {
# Load data
data("data_stock_returns")
data("data_state_variables")
# Compute CoVaR_i_q_t , Delta_CoVaR_i_q_t and Delta_CoVaR_t
l_result <- f_CoVaR_Delta_CoVaR_i_q_t(data_stock_returns, data_state_variables)
# Plot Delta_CoVaR_t
f_plot(l_result$Delta_CoVaR_t)
# }
Dynamic systemic risk measures from correlation-based networks.
Description
This function provides methods to compute dynamic systemic risk measures from correlation-based networks.
Usage
f_correlation_network_measures(df_data_returns)
Arguments
df_data_returns |
A dataframe including dates and stock returns |
Value
Degree |
xts vector |
Closeness_Centrality |
xts vector |
Eigenvector_Centrality |
xts vector |
SR |
xts vector |
Volatility |
xts vector |
Author(s)
Jean-Baptiste Hasse
References
Hasse, Jean-Baptiste. "Systemic Risk: a Network Approach". AMSE Working Paper (2020)
Examples
# Scale the entries of a vector to the interval [0,1]
# NOT RUN {
# Load data
data("data_stock_returns")
# Compute topological risk measures from correlation-based financial networks
l_result <- f_correlation_network_measures(data_stock_returns)
# Plot SR_t
f_plot(l_result$SR)
# }
Plot dynamic risk measures
Description
This function provides a framework to plot xts time series.
Usage
f_plot(xts_index_returns)
Arguments
xts_index_returns |
A xts vector |
Value
No return value, called for side effects
Author(s)
Jean-Baptiste Hasse
Examples
# Plot a xts vector
# NOT RUN {
# Generate data returns
v_returns <- numeric(10)
v_returns <- rnorm(10, 0, 0.01)
v_date <- seq(from = as.Date("2019-01-01"), to = as.Date("2019-10-01"), by = "month")
xts_returns <- xts(v_returns, order.by = v_date)
# Plot the xts vector of simulated returns
f_plot(xts_returns)
# }
Rescale
Description
This function normalizes data to 0-1 range. Specifically, this function computes linearly rescaled values from a vector of numeric values.
Usage
f_scale(v_time_series)
Arguments
v_time_series |
Vector of numeric values |
Value
A vector of numeric normalized values
Author(s)
Jean-Baptiste Hasse
References
Hasse, Jean-Baptiste. "Systemic Risk: a Network Approach". AMSE Working Paper (2020)
Examples
# Scale the entries of a vector to the interval [0,1]
# NOT RUN {
# Generate data
v_data <- numeric(10)
v_data <- c(1, 5, 3, 2, 15, 12, 9, 11, 7, 13)
# Rescale data
v_rescaled_data <- numeric(10)
v_rescaled_data <- f_scale(v_data)
# print rescaled data
print(v_rescaled_data)
# }