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Abstract

SimVitD provides simulation based tools to investigate supplementation schemes in
vitamin D trials and estimate trial power in comparisons of supplementation arms. These
tools aim to account for and characterize key sources of variability and heterogeneity in
vitamin D benefit. Seasonal variation in solar radiation is pronounced, which gives a
natural sinusoidal variation in vitamin D status; consequently, the relative contribution
of a vitamin D supplementation to the overall vitamin D status, and it’s impact, will vary
seasonally.
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1. Introduction

A large number of observational studies have linked vitamin D deficiency with cancer, cogni-
tion, cardio-vascular, metabolic, autoimmune, infectious diseases, mortality, and many other
illnesses (Theodoratou et al. 2014); most recently vitamin D has been implicated in COVID-19
infection and severity (Grant et al. 2020; Entrenas Castillo et al. 2020). Vitamin D deficiency
is very common world-wide: it is estimated that over 1 billion people are vitamin D defi-
cient (Holick 2007). If disease associations are real, tackling the deficiency could have an
enormous impact on public health globally. Therefore it is not surprising that there has been
a considerable interest in vitamin D in the last two decades. However, randomized controlled
trials (RCT) often fail to show benefit of vitamin D supplementation.

The package SimVitD provides simulation based tools to aid planning the comparison of sup-
plementation arms in vitamin D trials. These tools aim to account for a set of perceived
sources of variability and heterogeneity in vitamin D benefit. As seasonal variation in solar
radiation is pronounced, there will be a natural, sinusoidal variation in vitamin D status;
consequently, the relative contribution of vitamin D supplementation to the overall vitamin
D status, and it’s impact, will vary seasonally: while vitamin D supplementation may con-
tribute the majority of the vitamin D in Winter, the same dose may be relatively insignificant
in the Summer. Some of the SimVitD schemes are shown in Figures 1a and 1b.

Calculating the study power of a randomised control trial or the sample size required for a
given power is non-trivial under such circumstances. SimVitD uses simulation of exposures
and infections at an individual level to investigate the effects of various vitamin D interven-
tions on disease rates within a study group. Individual vitamin D status curves are simulated
throughout the year for two or more groups, exposures and incidences of infections are simu-
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lated based on disease risk at the time of the exposure. The power of the study (or the sample
size needed to obtain a given power) can be approximated via simulation. These tools can be
utilized in the planning of vitamin D studies.

The remainder of this vignette is organized as follows. Section 2 outlines our proposed models
for vitamin D status profiles and supplementation schemes. Section 3 describes simulation of
a body’s response to vitamin D using exposures to a common infection as example. Section 4
describes the scheme for approximation of the power when comparing two supplementation
schemes for vitamin D. Section 5 contains an example on usage of the package.
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Concentration−controlled supplementation

 

25
 H

yd
ro

xy
 V

ita
m

in
 D

0
20

40
60

80
10

0

Mar May Jul Sep Nov Jan Mar May Jul Sep Nov Jan Mar

(b) Dynamic dose supplementation with thresh-
old at 50 nmol/l equivalent.

2. Modelling individual vitamin D status

The tools in SimVitD simulate many instances of a study. Within each study, individuals’
vitamin D status trajectories and potential exposures and protections from infections are
simulated separately. The core steps of the simulation approach being proposed are:

(i) simulation of individual vitamin D status curves

(ii) simulation of an individual’s exposures to infectious agents

(iii) determination of the probability of developing infection at each exposure time, condi-
tional on vitamin D status at exposure

(iv) simulation of contracting an infection at conditional on step (iii).

The package contains options to approximate power to compare supplementation arms in a
randomized control trial. This can be used as an aid for planning the experimental approach
and determining the required sample sizes for a desired power. Power approximations are
simulation based, compiled by aggregating many independent replications of the chosen trial
design.
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2.1. Generative model for individual status

As most of an individual’s vitamin D is derived from synthesis in skin following UVB expo-
sure (Webb and Holick 1988; O’Sullivan et al. 2019), vitamin D status will naturally vary
throughout the year. 25OHD concentration (marker of vitamin D status) tends to peak late
in the summer, following the period with the strongest UVB radiation; the status trough will
follow the period of lowest exposure (Kelly et al. 2016; O’Sullivan et al. 2017). It is useful to
note that the peak and trough in an individual’s status will depend on geo-location; there will
be variability within, say, the northern hemisphere (O’Sullivan et al. 2017). This paper works
on the assumption of a northern hemisphere seasonal schedule with summer months being
June to August. Cyclic status profiles follow the assumed yearly periodic curve with a trough
in February or March and peak in August or September (Kelly et al. 2016; O’Sullivan et al.
2017). The peak 25OHD occurs with 1-2 month time lag following the peak UVB radiation
(here we assume 2 months); this reflects the period of pronounced vitamin D accumulation
arising from abundant production of the nutrient in the skin.

Consider a group of trial participants, indexed by i. A phase shifted cosine curve with a lower
threshold is used to model a participant’s vitamin D status. This borrows from Degerud et al.
(2016) who used cosinor models to describe longitudinal vitamin D readings in a cohort of
individuals. This is a natural model to capture the variation affected by UVB, which is by
far the most dominant source of vitamin D, as food sources are scarce. The curve used is

V pl

i (t) = max {µi +Hi +Ai cos(2πt− π) , τ} , t ≥ 0. (1)

Here, µi is a mean level that could be described by participant specific characteristics i.e.
µi = xT

i β with xi a vector of covariates. The lower threshold of τ nmol/l of circulating
25OHD is a detectability threshold. In (1) t is time measured in years i.e. the interval [0, 1]
corresponds to one year. The parameter Hi gives a perturbation of the mean around µi similar
to a random effect, and Ai ≥ 0 controls the change in status between periods with and with-
out significant UVB exposure. The phase adjustment ν accounts for a lag effect from UVB
exposure to expressed circulating vitamin D level. This can be used to make adjustments
for geo-location effects e.g. northern/southern hemisphere. Here, ν = π is assumed, meaning
that the study starts at the beginning of March (t = 0), and at that point vitamin D is lowest.

Variation in individual 25OHD concentration is accounted for by generating the amplitude
and a height perturbation in (1) via

Ai ∼ Gamma (αA, βA) Hi ∼ N
(
0, σ2µ

)
,

independently drawn for each individual. The shape and rate parameters αA, βA are chosen to
have a specified expected value and standard deviation µA, σA. The height perturbation stan-
dard deviation is σµ (note µ) simulates a random effect for overall height. These specifications
should be made to sufficiently represent typical population variation in trial participants.
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2.2. Intervention schemes

A number of possible approaches may be under consideration when planning a prospective
trial. The curve in (1) corresponds to no supplementation and is referred to as placebo (option
type="placebo" in function vitd.curves()). Two further supplementation/intervention
schemes are available in SimVitD. The schemes are flexible and can be used to characterize
many potential assumptions.

Fixed-dose scheme

A fixed-dose scheme (type="fixed-dose") corresponds to an individual taking a daily sup-
plement of a fixed amount, and this is the prevailing approach in RCTs. Supplementation
will provide more of a boost when vitamin D levels are low. To mimic this, the no supplement
curve is modified by adding a flexible function Fi(t)

V fix
i (t) = V pl

i (t) + Fi(t).

where

Fi(t) = δi

[
ωi +

1

2
(1− ωi) (1 + sin (2πt− 3π/2))

]
ωi ∈ [0, 1].

The parameter ωi gives the proportion of the fixed-dose which is always utilized. As sup-
plementation will have more impact in periods of deficiency, we allow the uptake from the
remaining 1 − ωi proportion of the fixed dose to vary according to a complementary cosine
function. The package simulates ωi from a Beta distribution where the mean and standard
deviation (µω, σω) are specified. For example, passing µω = 1, σω = 0 will result in Fi(t) = δi.

The parameter δi represents an individual’s overall derived benefit from that dosage, account-
ing for variation in overall assimilation. This can be simulated at an individual level using a
truncated distribution capped at the administered equivalent dose level. If an equivalent of δ
nmol/l is administered, δi is sampled from the density

f(t) =
γ e−γ(δ−t)

1− e−γδ
I(0 < t < δ).

Simulation can be carried out straightforwardly by inversion. As γ → ∞, sampled values
concentrate on an atom at δ, corresponding to the same overall equivalent dose for every
participant.

Concentration-controlled scheme

A concentration-controlled scheme allows an individual to be monitored regularly and their
status kept above a 25(OH)D threshold ρi, for example in a randomized concentration-
controlled trial (RCCT) design Kraiczi et al. (2003). That is

V dyn

i (t) = max
{
ρi, V

pl

i (t)
}
.

A comparison of the placebo, fixed-dose equivalent supplementation and concentration-controlled
schemes is shown in Figure 1b. The individual target level is simulated via ρi ∼ Gamma (αρ, βρ) .
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with αρ, βρ determined to give a specified expectation µρ and standard deviation σρ. This is
option type="dynamic-dose" in vitd.curve().

Fluctuations and seasonal schedule

The default of the package is to work on the assumption of a northern hemisphere seasonal
schedule with Summer months being June to August. Cyclic vitamin D profiles follow the
assumed yearly periodic curve with troughs in March and peaks in September (Kelly et al.
2016; O’Sullivan et al. 2017). This is the northern hemisphere option.

Glossary of parameters for vitd.curve()

Table 1 gives a summary of the parameters used to generate individual vitamin D curves and
the corresponding argument names in vitd.curve().

Parameter Argument name

µ mu

µA amplitude

µρ dyn.dose.thresh

σµ sd.mu

σA sd.amplitude

σρ sd.dyn.dose.thresh

δ supp.dose

γ supp.dose.rate

µω weight

σω sd.weight

τ min.thresh

North north.hemi

Table 1: Summary of parameters and corresponding argument names in SimVitD.

3. Benefit of vitamin D supplementation

The SimVitD models benefits of vitamin D supplementation through modelling of random
exposures to a specific event, and occurrences of that event upon exposure. We use infection,
but this can be thought of in more abstract terms. One could, for example, be examining
protection against allergic reaction following exposure to allergens, asthma attack, or relapse
of autoimmune disease, or many others. Vitamin D protects against this unnamed infection
such that higher levels of vitamin D imply a lower probability of contracting infection upon
exposure.

Exposures to infection

An individual’s exposures over the period of a trial are simulated from a non-homogeneous
Poisson process (Lewis and Shedler 1979). In the case of seasonally concentrated infections
(e.g. flu, see Figure 2 (a)), rate function λ(t), t ≥ 0 reflects different rates of exposure at
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different times. Simulations from an NHPP can be carried out conveniently in R using the
poisson (Brock and Slade 2015) package. The rate function can also, of course, represent a
constant rate of exposure. Instituting this function is an opportunity to incorporate domain
expertise into the planning stage of the trial. The expected number of exposures over a time
window (0, τ ] is given by

∫ τ
0 λ(t) dt. The function λ(t) is defined by rescaling an overall rate

λ0 which gives the rate of exposures when most intense

λ(t) = λ0 υ(t), 0 ≤ υ(t) ≤ 1, t ≥ 0.

The function υ(t) may be passed by the user. A convenience function intensity.function()

gives a step function for simple Summer/Winter rates.

Likelihood of infection

The likelihood an individual gets infection after an exposure depends on their vitamin D
status at exposure. This is modulated by a baseline (healthy) prevalence p0 and a relative
risk curve. The probability p0 gives the probability of a completely sufficient vitamin D
individual contracting an infection after exposure. The relative risk curve is a member of
generalized logistic family

g(x) = `+
u− `

1 + ea+b x
,

where x is the vitamin D status. The parameters `, u give the lowest and highest relative risk
values. The value of u states how much more likely one is to get infection when completely
depleted in vitamin D compared with when one is fully replete. Figure 2 shows examples.
The values of a and b are determined by providing points of inflection of the relative risk
curve. These points default to 10 and 70 nmol/L in the package; there is much debate around
the reference values chosen and this is another opportunity to explicitly represent domain
experience in trial planning. See Figures 5a and 5b for examples.

Summary of simulation steps

We give an overall summary of the generative model of exposures and infections. Consider
individual i and let T1, . . . , TM denote the times at which they are exposed. Exposure times
only within the time frame of the trial are used: τstart < Tk ≤ τend, k = 1, . . . ,M .

T1, . . . , TM ∼ NHPP(λ(t)) simulate individual’s exposure times

Lk = Vi(Tk) find their status k = 1, . . . ,M

Pk = p0 g(Lk) get the probability of infection after exposure k = 1, . . . ,M

Ik ∼ Bernoulli(Pk) simulate whether infection is developed from exposure k = 1, . . . ,M.

In the case of infections (Ik = 1), one may also wish to impose a non-susceptible period or
“holding time”. For example, an exponentially distributed amount of time where the infected
individual is not susceptible to a new infection. This is available through the holding.time

argument in infection.count().
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Figure 2: Example of intensity function and risk scaling curves.

4. Study power

SimVitD approximates the power of study comparing two supplementation trial arms. Deter-
mining whether there is a benefit of supplementation will most ordinarily be carried out by
investigation of the number of events (e.g. infections) that occurred in participants assigned
to each arm over the trial duration, or some function thereof.

Types of comparisons

There are two tests based on counts of infections available in SimVitD. Define

θs = Pr{individual gets ≥ 1 infection in arm s}
µs = expected number of infections for individual in arm s

The power of the tests

H0 : θpl ≤ θsupp HA : θpl > θsupp (2)

H0 : µpl ≤ µsupp HA : µpl > µsupp (3)

will be of interest. It can be shown that for a trial where one arm does receive a supplement,
then the generative model introduced above will generate data underHA. Thus this generative
model can serve as a proxy in a meaningful way.

Approximating the power

The power of a test is
Power = Pr{reject H0 |HA}.

The rejection decision depends on a significance level α, giving the probability of a Type I
error,

α = Pr{reject H0 |H0 is true}.
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SimVitD approximates the power for n participants in a placebo arm and rn, r ∈ N partici-
pants in an intervention arm with r = 1 corresponding to the same number in each arm. The
trial is simulated N times and a bootstrap (Efron and Tibshirani 1993) test of the hypothesis
[i.e. (2) or (3)] is carried out in each of these. The proportion of the N trials which are re-
jected gives an empirical estimate of the power to detect differences between trial arms. The
scheme is outlined in Figure 3. The tests of (2) and (3) are carried out using a non-parametric
bootstrap two sample tests from the package wBoot (Weiss 2016).

Carry out a test
of H0 for each
study

Simulate many
instances of the
study

Combine all decisions
to approximate power

Specify settings for
simulation of indivuals
in schemes A and B

Give n and settings for
simulation of vitamin D
profiles under schemes
A and B, exposures rate
function λ(t), p0, g(x), hy-
potheses to test H0, HA

and α.

Approximate the power
via

̂Power =
# H0 rejected

N

Study 1

Study 2

Study N

...

...

H0 decision 1

H0 decision 2

H0 decision N

...

...

Figure 3: Flowchart showing the simulation process for estimating the power of a study.

The sample estimate of the power is

P̂ower =
# H0 rejected

N
,

the proportion of times H0 was rejected when HA was the ground truth. The law of large
numbers gives

P̂ower→ Power

as N →∞ and we also have

error
{

P̂ower
}
∝ 1√

N
.

Functionality for approximation of the power in SimVitD is through the power.calc() func-
tion. Investigation of the Monte Carlo in approximation of the power is also possible through
the mc.error argument. There is an option to parallelize these calculations through the
arguments parallel and num.cores.

5. Using the package

This section walks thorough an example using the package. We examine a two-armed trial
with a population having baseline 25OHD concentrations of 35 nmol/L with minimum de-
tectable levels of 10 nmol/L. This translates to µ = 35. The researchers aim expect scatter
around the expected maximum and minimum levels to be reflected through µA = 15 σH = 5,
σA = 5. The primary endpoint is the number of infections contracted over the trial duration.
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This is a one year study, indicated by the arguments start and end.

Participants will receive either a placebo or a fixed-dose vitamin D supplement equivalent to
20 nmol/L increase in 25OHD daily, with little variability in the derived uptake (i.e. γ =∞
and µω = 1, σω = 0).

Simulating and plotting vitamin D status profiles

Example curves for ten individuals from each arm are generated and plotted.

> # placebo example

> pl <- vitd.curve( n=10, type = "placebo", start = 0, end = 1, mu=35, sd.mu = 5,

... amplitude = 15, sd.amplitude = 5 )

> plot(pl, ylim=c(0,85))

> # supplement

> tr <- vitd.curve( n=10, type = "fixed-dose", start = 0, end = 1, mu=35, sd.mu = 5,

... amplitude = 15, sd.amplitude = 5, supp.dose=20,

... supp.dose.rate = Inf, weight = 1, sd.weight = 0 )

> plot(tr, ylim=c(0,85))
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(b) Fixed-dose equivalent arm

Figure 4: Vitamin D individual curves along with exposures (blue) and infections (red) for
the placebo and fixed-dose arms.

Exposures to infection and resulting cases

Next exposure times are simulated. The same intensity function is used for both groups, with
a mean of 1.2 exposures per week and with no exposures occurring outside of flu season. It
is assumed there is an exponentially distributed post-infection period with mean two weeks
where infection cannot reoccur.

> # intensity of infections

> v <- intensity.function( summer.rate = 0, winter.rate = 1, flu = TRUE )
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Figure 5: Output from rr.curve.plot().

> # simulate exposures from NHPP and infections conditional on exposures

> expo.pl <- exposure.levels( pl, rate=1.2, v, end = 1)

> inf.pl <- infection.count( expo.pl, baseline = 0.03, RR = 3, holding.time = 2 )

> expo.tr <- exposure.levels( tr, rate=1.2, v, end = 1)

> inf.tr <- infection.count( expo.tr, baseline = 0.03, RR = 3, holding.time = 2 )

The exposures and infections may be plotted over the vitamin D status curves.

> plot(pl)

> plot(expo.pl)

> infection.count.plot(expo.pl, inf.pl)

> plot(tr)

> plot(expo.tr)

> infection.count.plot(expo.tr, inf.tr)

Exploring seasonal variation in risk

rr.curve.plot() visualizes where exposures occur on the relative risk curve. Figures 5a
and 5b show the output of

> rr.curve.plot(expo.pl, inf.pl)

> rr.curve.plot(expo.tr, inf.tr)

elucidating the discrepancy between the placebo and dynamic dosing schemes by indicating
what the risk level is for infection in each group.

The rr.profile.plot() function gives a visualization tool to explore the seasonal variation
in risk for an individual. It indicates where exposures occurred in the vitamin D status profile
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Figure 6: Profiles and relative risk for single participants with exposures in red and infections
in blue. Output from rr.profile.plot().

and the corresponding relative risk side-by-side. The exposures resulting in infection are also
indicated. An example is shown in Figures 6a and 6b which are obtained from

> rr.profile.plot( pl, expo.pl, inf.pl )

> rr.profile.plot( tr, expo.tr, inf.tr )
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Approximating power of detecting difference between trial arms

To function power.calc returns the Monte Carlo based power estimate with Monte Carlo
error if requested. If Monte Carlo error is requested, it is possible to parallelize runs of the
trial. The function takes the size of each group along with the type of test "proportion"

or "count" [i.e. (2) or (3)]. A range of u − ` values can be passed. In the code below,
three (2, 3, 4) are passed through the RR (relative risk) argument. The function is passed the
example curves to define the populations in each arm of the trial.

> # get the Monte Carlo power estimates

> pow <- power.calc( n = c(20,40,60), ratio=1, N = 500,

... test.type = "count", sig.level = 0.05,

... vitdcurves.placebo = pl, vitdcurves.treatment = tr,

... baseline = 0.03, RR = c(2,3,4), rate = 1, intensity.func = v, holding.time = 2,

... verbose = TRUE )

> # plot the power curves

> plot( pow, x.legend = 20, y.legend = 1,

... main.legend = "Relative Risk", legend.size = 0.8 )

> # plot of effect sizes

> plot( pow, x.legend = 20, y.legend = 1,

... main.legend = "Relative Risk", legend.size = 0.8, which=2 )

A large value of N should be used. A value of at least 500 is recommended. Figure 7 shows
the output of plotting the object returned by pow.calc().

Exploring the Monte Carlo error in power approximation

Monte Carlo error in the power approximation may be explored by using the mc.error argu-
ment to pow.calc().

> # quantify the Monte Carlo error in the power- split computations over 2 cores

> pow.mcerr <- power.calc( n = c(20,40,60), ratio=1, N = 500,

... test.type = "count", sig.level = 0.05,

... vitdcurves.placebo = pl, vitdcurves.treatment = tr,

... baseline = 0.03, RR = c(2,3,4), rate = 1, intensity.func = v, holding.time = 2,

... mc.error = 5, parallel = TRUE, num.cores = 2 )

> plot(pow.mcerr)
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Figure 7: Output from plot(pow) showing estimate of the power at each relative risk level
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