Package ‘SimNPH’

April 8, 2025
Type Package
Title Simulate Non-Proportional Hazards
Version 0.5.7
License BSL-1.0

Description A toolkit for simulation studies concerning time-to-event endpoints
with non-proportional hazards. 'SimNPH' encompasses functions for simulating
time-to-event data in various scenarios, simulating different trial designs
like fixed-followup, event-driven, and group sequential designs. The package
provides functions to calculate the true values of common summary statistics
for the implemented scenarios and offers common analysis methods for
time-to-event data. Helper functions for running simulations with the
'SimDesign' package and for aggregating and presenting the results are also
included. Results of the conducted simulation study are available in the
paper: ~ ~ A Comparison of Statistical Methods for Time-To-Event Analyses in
Randomized Controlled Trials Under Non-Proportional Hazards",
Klinglmiiller et al. (2025) <doi:10.1002/sim.70019>.

Encoding UTF-8

LazyData true

Depends SimDesign, survival, R (>=4.1.0)

Suggests knitr, rmarkdown, testthat (>= 3.0.0), covr, withr, ldbounds,
ggplot2, patchwork

Imports miniPCH (>= 0.3.0), purrr (>= 1.0.0), rlang, tibble, nph,
nphRCT, car, dplyr, stringr, methods, tidyr

Config/testthat/edition 3
VignetteBuilder knitr
RoxygenNote 7.3.2

URL https://simnph.github.io/SimNPH/,
https://github.com/SimNPH/SimNPH/

BugReports https://github.com/SimNPH/SimNPH/issues/

NeedsCompilation no

https://doi.org/10.1002/sim.70019
https://simnph.github.io/SimNPH/
https://github.com/SimNPH/SimNPH/
https://github.com/SimNPH/SimNPH/issues/

2 Contents
Author Tobias Fellinger [aut, cre] (<https://orcid.org/0000-0001-9474-2731>),
Florian Klinglmueller [aut] (<https://orcid.org/0000-0002-7346-3669>)

Maintainer Tobias Fellinger <tobias.fellinger@ages.at>

Repository CRAN

Date/Publication 2025-04-08 10:30:02 UTC

Contents
analyse_aft 3
analyse_ahr 4
analyse_CoXph. e 5
analyse_describe 6
analyse_diff_median_survival oL o 7
analyse_gehan_wilcoxon 9
analyse_group_sequentiall 9
analyse_logrank 11
analyse_logrank_fh_weights o 12
analyse_maxcombo e 13
analyse_milestone_survival 13
analyse_modelstly_weighted L 0oL 15
analyse_piecewise_exponential 16
analyse_rmst_diff L 17
analyse_weibull oL L 18
asSUMPLONS_Progression v v v vt e e e e e 19
combination_tests_delayed 22
create_summarise_function L L L 23
design_fixed_followup 24
design_group_sequential L 25
generate_crossing_hazards L 25
generate_delayed_effect L oL 28
generate_SubgroUup e e e e e e e e e e e e 31
labs_from labels e 34
mixture_haz_fun e e 35
progression_cdf fun 0L L 38
T2 . o o e e e e e e e e e e e 40
random_Censoring_€XP . « « « v v v« e e e e e e e e e e e e e e e e e 41
recruitment_uniform L L L 42
rename_results column L L L e e 44
results_pivot_longer. L 46
shhr_gg e 49
summarise_estimator e e e e e 50
SUMMATISE_TEST v v e e e e e e e e e e e e e e e 52
UPSETE_METEE . . v v v v o v e e e e e e e e e e e e e e e e e e e 53
wrap_all_in_trycatch 55

Index 57

https://orcid.org/0000-0001-9474-2731
https://orcid.org/0000-0002-7346-3669

analyse_aft 3

analyse_aft Analyse Dataset with accelarated failure time models

Description

Analyse Dataset with accelarated failure time models

Usage

analyse_aft(level = 0.95, dist = "weibull”, alternative = "two.sided")

Arguments

level confidence level for CI computation

dist passed to survival::survreg

alternative alternative hypothesis for the tests "two.sided" or "one.sieded"
Details

alternative canbe "two.sided" for a two sided test of equality of the summary statistic or "one.sided"
for a one sided test testing HO: treatment has equal or shorter survival than control vs. H1 treatment
has longer survival than control.

Value
an analyse function that returns a list with the elements

* p p value of the score test (two.sided) or the Wald test (one.sided)

e alternative the alternative used

* coef coefficient for trt

* lower lower 95% confidence intervall boundary for the coefficient
* upperlower 95% confidence intervall boundary for the coefficient
e CI_level the CI level used

* N_pat number of patients

¢ N_evt number of events

Examples

condition <- merge(
assumptions_delayed_effect(),
design_fixed_followup(),

by = NULL
) 1>
head(1)

dat <- generate_delayed_effect(condition)
analyse_aft() (condition, dat)
analyse_aft(dist="lognormal") (condition, dat)

analyse_ahr

analyse_ahr Analyse the dataset using extimators for the the average hazard ratio

Description

Analyse the dataset using extimators for the the average hazard ratio

Usage

analyse_ahr(
max_time = NA,

type = "AHR",
level = 0.95,
alternative = "two.sided”
)
Arguments
max_time time for which the AHR is calculated
type "AHR" for average hazard ratio "gAHR" for geometric average hazard ratio
level confidence level for CI computation
alternative alternative hypothesis for the tests "two.sided" or "one.sieded"
Details

The implementation from the nph package is used, see the documentation there for details.

alternative canbe "two.sided" for a two sided test of equality of the summary statistic or "one.sided"
for a one sided test testing HO: treatment has equal or shorter survival than control vs. H1 treatment
has longer survival than control.

The data.frame returned by the created function includes the follwing columns:

Value

p p value of the test, see Details
alternative the alternative used
AHR/gAHR estimated (geometric) average hazard ratio

AHR_lower/gAHR_lower unadjusted lower bound of the confidence interval for the (geometric)
average hazard ratio

AHR_upper/gAHR_upper unadjusted upper bound of the confidence interval for the (geometric)
average hazard ratio

CI_level the CI level used
N_pat number of patients

N_evt number of events

Returns an analysis function, that can be used in runSimulations

analyse_coxph 5

See Also

nph::nphparams

Examples

condition <- merge(
assumptions_delayed_effect(),
design_fixed_followup(),

by = NULL
) 1>
head(1)

dat <- generate_delayed_effect(condition)

analyse_ahr() (condition, dat)

analyse_ahr(type = "gAHR") (condition, dat)
analyse_ahr(max_time = 50, type = "AHR")(condition, dat)
analyse_ahr(max_time = 50, type = "gAHR")(condition, dat)

analyse_coxph Analyse Dataset with the Cox Protportional Hazards Model

Description

Analyse Dataset with the Cox Protportional Hazards Model

Usage

analyse_coxph(level = 0.95, alternative = "two.sided")
Arguments

level confidence level for CI computation

alternative alternative hypothesis for the tests "two.sided" or "one.sieded"
Details

alternative canbe "two.sided" for a two sided test of equality of the summary statistic or "one.sided"
for a one sided test testing HO: treatment has equal or shorter survival than control vs. H1 treatment
has longer survival than control.

Value
an analyse function that returns a list with the elements

* p p value of the score test (two.sided) or the Wald test (one.sided)
e alternative the alternative used
» coef coefficient for trt

e hr hazard ratio for trt

6 analyse_describe

* hr_lower lower 95% confidence intervall boundary for the hazard ratio for trt
* hr_upperlower 95% confidence intervall boundary for the hazard ratio for trt
* CI_level the CI level used

* N_pat number of patients

¢ N_evt number of events

Examples

condition <- merge(
assumptions_delayed_effect(),
design_fixed_followup(),

by = NULL
) 1>
head(1)

dat <- generate_delayed_effect(condition)
analyse_coxph() (condition, dat)

analyse_describe Create a Function for Descriptive Statistics of a Dataset

Description

Create a Function for Descriptive Statistics of a Dataset

Usage

analyse_describe()

summarise_describe(name = NULL)

Arguments
name name for the summarise function, appended to the name of the analysis method
in the final results
Value

an analyse function that returns a list with the elements

» followup follow up time

* events table of events vs. treatment

* ice if column ice is present, table of intercurrent events, events, treatment

* subgroup if column subgroup is present, table of subgroup, events, treatment

A function that can be used in Summarise that returns a data frame with columns with means and
standard deviations for every variable in the description.

analyse_diff_median_survival

Functions

e summarise_describe(): Summarise Descriptive Statistics

Examples

condition <- merge(

assumptions_delayed_effect(),
design_fixed_followup(),

by=NULL
) 1>
head(1)
dat <- generate_delayed
analyse_describe() (cond
condition <- merge(

_effect(condition)

ition, dat)

assumptions_delayed_effect(),

design_fixed_followup
by=NULL

) 1>

tail(4) |>

head(1)

summarise_all <- create

()?

_summarise_function(

describe=summarise_describe()

)

runs simulations

sim_results <- runSimulation(

design=condition,
replications=100,

generate=generate_delayed_effect,

analyse=list(

describe=analyse_describe()

),

summarise = summarise_all

)

study time is missing
sim_results[, 9:16]

, since there was no admin. censoring

analyse_diff_median_survival

Analyse the dataset using differnce in median survival

Description

Analyse the dataset using differnce in median survival

8 analyse_diff_median_survival

Usage
analyse_diff_median_survival(
quant = 0.5,
level = 0.95,
alternative = "two.sided”
)
Arguments
quant quantile for which the difference should be calculated, defaults to the median
level confidence level for CI computation
alternative alternative hypothesis for the tests "two.sided" or "one.sieded"
Details

The implementation from the nph package is used, see the documentation there for details.

The data.frame returned by the created function includes the follwing columns:

* p p value of the test, see Details
* alternative the alternative used
» diff_Q estimated differnce in quantile of the suvivla functions

» diff_Q_lower unadjusted lower bound of the confidence interval for the differnce in quantile
of the suvivla functions

e diff_Q_upper unadjusted upper bound of the confidence interval for the differnce in quantile
of the suvivla functions

* CI_level the CI level used

* guantile quantile used for extimation
* N_pat number of patients

* N_evt number of events

Value

Returns an analysis function, that can be used in runSimulations

See Also

nph::nphparams

Examples

condition <- merge(
assumptions_delayed_effect(),
design_fixed_followup(),

by = NULL
) 1>
head(1)

dat <- generate_delayed_effect(condition)
analyse_diff_median_survival() (condition, dat)

analyse_gehan_wilcoxon 9

analyse_gehan_wilcoxon
Create Analyse function for Gehan Wilcoxon test

Description

Create Analyse function for Gehan Wilcoxon test

Usage

analyse_gehan_wilcoxon(alternative = "two.sided")
Arguments

alternative alternative hypothesis for the tests "two.sided" or "one.sieded"
Details

alternative canbe "two.sided" for a two sided test of equality of the summary statistic or "one.sided"
for a one sided test testing HO: treatment has equal or shorter survival than control vs. H1 treatment
has longer survival than control.

Value

an analyse function that can be used in runSimulation

Examples

condition <- merge(
assumptions_delayed_effect(),
design_fixed_followup(),

by = NULL
) 1>
head(1)

dat <- generate_delayed_effect(condition)
analyse_gehan_wilcoxon() (condition, dat)

analyse_group_sequential
Create Analyse Functions for Group Sequential Design

Description

Create Analyse Functions for Group Sequential Design

Summarise Output from Analyse Functions for Group Sequential Design

10 analyse_group_sequential

Usage

analyse_group_sequential (followup, followup_type, alpha, analyse_functions)

summarise_group_sequential (name = NULL)

Arguments

followup followup events or time
followup_type "events" or "time"

alpha nominal alpha at each stage

analyse_functions
analyse function or list of analyse functions

name name attribute of the returned closure

Details

followup, followup_type and alpha are evaluated for every simulated dataset, i.e. the argu-
ments to the Analyse function are available, expressions like followup=c(condition$interim,
condition$max_followup) are valid arguments.

analyse_functions should take arguments condition, dataset and fixed_objects and return a list cona-
tining p-value, number of patients and number of event in the columsn p, N_pat and N_evt.

Value

an analyse function that can be used in runSimulation

Returns a function with the arguments:

e condition
e results

* fixed objects

that can be passed to create_summarise_function or to SimDesign::runSimulation and that returns
adata.frame.

Functions

e summarise_group_sequential(): Summarise Output from Analyse Functions for Group
Sequential Design

Examples

create a function to analyse after interim_events and maximum followup time
given in the condition row of the design data.frame with given
nominal alpha
analyse_maxcombo_sequential <- analyse_group_sequential(
followup = c(condition$interim_events, condition$followup),
followup_type = c("event”, "time"),
alpha = c(0.025, 0.05),

analyse_logrank 11

analyse_functions = analyse_maxcombo()
)
Summarise <- create_summarise_function(
maxcombo_seq = summarise_group_sequential(),
logrank_seq = summarise_group_sequential (name="1logrank")

)

analyse_logrank Analyse Dataset with the Logrank Test

Description

Analyse Dataset with the Logrank Test

Usage

analyse_logrank(alternative = "two.sided")
Arguments

alternative alternative hypothesis for the tests "two.sided" or "one.sieded"
Details

alternative canbe "two.sided" for a two sided test of equality of the summary statistic or "one.sided"
for a one sided test testing HO: treatment has equal or shorter survival than control vs. H1 treatment
has longer survival than control.

Value
an analysis function that returns a data.frame with the columns
* p p-value of the logrank test

e alternative the alternative used

* N_pat number of patients

N_evt number of events

Examples

condition <- merge(
assumptions_delayed_effect(),
design_fixed_followup(),

by = NULL
) 1>
head(1)

dat <- generate_delayed_effect(condition)
analyse_logrank() (condition, dat)

12 analyse_logrank_fh_weights

analyse_logrank_fh_weights
Analyse Dataset with the Fleming Harrington weighted Logrank Test

Description

Analyse Dataset with the Fleming Harrington weighted Logrank Test

Usage

analyse_logrank_fh_weights(rho, gamma, alternative = "two.sided”)
Arguments

rho rho for the rho-gamma family of weights

gamma gamma for the rho-gamma family of weights

alternative alternative hypothesis for the tests "two.sided" or "one.sieded"
Details

alternative canbe "two.sided" for a two sided test of equality of the summary statistic or "one.sided"
for a one sided test testing HO: treatment has equal or shorter survival than control vs. H1 treatment
has longer survival than control.

Value

a function with the arguments condition, dat and fixed_objects that returns a dataframe with the
p-value of the weighted logrank test in the column p. See ?SimDesign::Analyse for details on the
arguments condition, dat, fixed_arguments.

Examples

condition <- merge(
assumptions_delayed_effect(),
design_fixed_followup(),

by = NULL
) 1>
head(1)

dat <- generate_delayed_effect(condition)

create two functions with different weights
analyse_01 <- analyse_logrank_fh_weights(rho = @, gamma
analyse_10 <- analyse_logrank_fh_weights(rho = 1, gamma
run the tests created before

analyse_01(condition, dat)

analyse_10(condition, dat)

D)
2)

analyse_maxcombo 13

analyse_maxcombo Analyse Dataset with the Maxcombo Test

Description

Analyse Dataset with the Maxcombo Test

Usage

analyse_maxcombo(alternative = "two.sided")
Arguments

alternative alternative hypothesis for the tests "two.sided" or "one.sieded"
Details

alternative canbe "two.sided" for a two sided test of equality of the summary statistic or "one.sided"
for a one sided test testing HO: treatment has equal or shorter survival than control vs. H1 treatment
has longer survival than control.

Value

an analyse function that returns a data.frame with the combined p-value of the max combo test in
the column p

Examples

condition <- merge(
assumptions_delayed_effect(),
design_fixed_followup(),

by = NULL
) 1>
head(1)

dat <- generate_delayed_effect(condition)
analyse_maxcombo() (condition, dat)

analyse_milestone_survival
Analyse the Dataset using difference or quotient of milestone survival

Description

Analyse the Dataset using difference or quotient of milestone survival

14 analyse_milestone_survival

Usage
analyse_milestone_survival(
times,
what = "quot”,
level = 0.95,
alternative = "two.sided”
)
Arguments
times followup times at which the the survival should be compared
what "quot" for quotient and "diff" for differnce of surival probabilities
level confidence level for CI computation
alternative alternative hypothesis for the tests "two.sided" or "one.sieded"
Details

The implementation from the nph package is used, see the documentation there for details.

alternative canbe "two.sided" for a two sided test of equality of the summary statistic or "one.sided"
for a one sided test testing HO: treatment has equal or shorter survival than control vs. H1 treatment
has longer survival than control.

The data.frame returned by the created function includes the follwing columns:

* milestone_surv_ratio/milestone_surv_diff ratio or differnce of survival probabilities
* times followup times at which the the survival are compared

* N_pat number of patients

¢ N_evt number of events

* p p value for the HO that the ratios are 1 or the differnce is O respectively

e alternative the alternative used

* milestone_surv_ratio_lower /milestone_surv_diff_lower upper/lower CI for the esti-
mate

* milestone_surv_ratio_upper /milestone_surv_diff_upper upper/lower CI for the esti-
mate

e CI_level the CI level used

Value

Returns an analysis function, that can be used in runSimulations

See Also

nph::nphparams

analyse_modelstly_weighted 15

Examples

condition <- merge(
assumptions_delayed_effect(),
design_fixed_followup(),
by=NULL
e
head(1)
dat <- generate_delayed_effect(condition)
analyse_milestone_survival(3:5)(condition, dat)
analyse_milestone_survival(3:5, what="diff")(condition, dat)

analyse_modelstly_weighted
Create Analyse function for the modestly weighted logrank test

Description

Create Analyse function for the modestly weighted logrank test

Usage

analyse_modelstly_weighted(t_star)

Arguments

t_star parameter t* of the modestly weighted logrank test

Value

an analyse function that can be used in runSimulation

Examples

condition <- merge(
assumptions_delayed_effect(),
design_fixed_followup(),
by=NULL

) 1>

head(1)

dat <- generate_delayed_effect(condition)

analyse_modelstly_weighted(20) (condition, dat)

16 analyse_piecewise_exponential

analyse_piecewise_exponential
Create Analyse function for piecewise exponential model

Description

Create Analyse function for piecewise exponential model

Usage

analyse_piecewise_exponential (cuts, testing_only = FALSE)

Arguments

cuts interval boundaries for the piecewise exponential model

testing_only if set to TRUE omits all statistics in the intervals and just returns the p value of
the global test.

Details

If there’s any time interval no patients ever enter, NA is returned for all time intervals. This behavior
will likely change in future package versions.

Value

an analyse function that can be used in runSimulation

Examples

condition <- merge(
assumptions_delayed_effect(),
design_fixed_followup(),
by=NULL

E

head(1)

dat <- generate_delayed_effect(condition)

analyse_piecewise_exponential (cuts=c(90, 360))(condition, dat)

analyse_rmst_diff 17

analyse_rmst_diff Analyse the Dataset using the difference in RMST

Description

Analyse the Dataset using the difference in RMST

Usage

analyse_rmst_diff(max_time = NA, level = 0.95, alternative = "two.sided")
Arguments

max_time time for which the RMST is calculated

level confidence level for CI computation

alternative alternative hypothesis for the tests "two.sided" or "one.sieded"
Details

The implementation from the nph package is used, see the documentation there for details.

alternative canbe "two.sided" for a two sided test of equality of the summary statistic or "one.sided"
for a one sided test testing HO: treatment has equal or shorter survival than control vs. H1 treatment
has longer survival than control.

The data.frame returned by the created function includes the follwing columns:

* p p value of the test, see Details

* alternative the alternative used

* rmst_diff estimated differnce in RMST

* rmst_diff_lower unadjusted lower bound of the confidence interval for differnce in RMST
* rmst_diff_upper unadjusted upper bound of the confidence interval for differnce in RMST
e CI_level the CI level used

N_pat number of patients

¢ N_evt number of events

Value

Returns an analysis function, that can be used in runSimulations

See Also

nph::nphparams

18 analyse_weibull

Examples

condition <- merge(
assumptions_delayed_effect(),
design_fixed_followup(),

by = NULL
) 1>
head(1)

dat <- generate_delayed_effect(condition)
analyse_rmst_diff () (condition, dat)

analyse_weibull Analyse Dataset with Weibull Regression

Description

Analyse Dataset with Weibull Regression

Usage

analyse_weibull(level = 0.95, alternative = "two.sided")
Arguments

level confidence level for CI computation

alternative alternative hypothesis for the tests "two.sided" or "one.sieded"
Details

the columns in the return are the two-sided p-value for the test of equal medians. The estimated
medians in the treatment and control group and the estimated difference in median survival with
confidence intervals.

The estimates and tests are comstructed by fitting seperate Weibull regression models in the treat-
ment and control groups and then estimating the medians and respective variances with the delta-
method.

Value

an analysis function that returns a data.frame

Examples

condition <- merge(
assumptions_delayed_effect(),
design_fixed_followup(),
by=NULL
) 1>
head(3) |>
tail(1)

assumptions_progression 19

dat <- generate_delayed_effect(condition)
analyse_weibull() (condition, dat)

assumptions_progression
Create an empty assumtions data.frame for generate_progression

Description

Create an empty assumtions data.frame for generate_progression
Generate Dataset with changing hazards after disease progression
Calculate progression rate from proportion of patients who progress

Calculate hr after onset of treatment effect

Usage

assumptions_progression(print = interactive())
generate_progression(condition, fixed_objects = NULL)

true_summary_statistics_progression(
Design,
what = "os",
cutoff_stats = NULL,
fixed_objects = NULL,
milestones = NULL

progression_rate_from_progression_prop(design)
cen_rate_from_cen_prop_progression(design)

hazard_before_progression_from_PH_effect_size(
design,
target_power_ph = NA_real_,
final_events = NA_real_,
target_alpha = 0.025

)

Arguments
print print code to generate parameter set?
condition condition row of Design dataset

fixed_objects additional settings, see details

Design Design data.frame for subgroup

20 assumptions_progression

what True summary statistics for which estimand

cutoff_stats (optionally named) cutoff time, see details

milestones (optionally named) vector of times at which milestone survival should be calcu-
lated
design design data.frame

target_power_ph

target power under proportional hazards
final_events target events for inversion of Schonfeld Formula, defaults to condition$final_events
target_alpha target one-sided alpha level for the power calculation

Details

assumptions_progression generates a default design data. frame for use with generate_progression
If print is TRUE code to produce the template is also printed for copying, pasting and editing by the
user. (This is the default when run in an interactive session.)

Condidtion has to contain the following columns:

* n_trt number of paitents in treatment arm

* n_ctrl number of patients in control arm

* hazard_ctrl hazard in the control arm

* hazard_trt hazard in the treatment arm for not cured patients

* hazard_after_prog hazard after disease progression

» prog_rate_ctrl hazard rate for disease progression unter control

* prog_rate_trt hazard rate for disease progression unter treatment

what can be "os" for overall survival and "pfs” for progression free survival.

The if fixed_objects contains t_max then this value is used as the maximum time to calculate
function like survival, hazard, ... of the data generating models. If this is not given t_max is
choosen as the minimum of the 1-(1/10000) quantile of all survival distributions in the model.

cutoff_stats are the times used to calculate the statistics like average hazard ratios and RMST,
that are only calculated up to a certain point.

For progression_rate_from_progression_prop, the design data.frame, has to contain the columns
prog_prop_trt and prog_prop_ctrl with the proportions of patients, who progress in the respec-
tive arms.

cen_rate_from_cen_prop_progression takes the proportion of censored patients from the column
censoring_prop. This column describes the proportion of patients who are censored randomly
before experiencing an event, without regard to administrative censoring.

hazard_before_progression_from_PH_effect_size calculates the hazard ratio after onset of
treatment effect as follows: First calculate the hazard in the control arm that would give the same
median survival under an exponential model. Then calculate the median survival in the treatment
arm that would give the desired power of the logrank test under exponential models in control and
treatment arm. Then callibrate the hazard before progression in the treatment arm to give the same
median survival time.

This is a heuristic and to some extent arbitrary approach to calculate hazard ratios that correspond
to reasonable and realistic scenarios.

assumptions_progression 21

Value

For generate_progression: a design tibble with default values invisibly

For generate_progression: A dataset with the columns t (time) and trt (1=treatment, O=control),
evt (event, currently TRUE for all observations), t_ice (time of intercurrent event), ice (intercurrent
event)

For true_summary_statistics_subgroup: the design data.frame passed as argument with the addi-
tional columns

For progression_rate_from_progression_prop: the design data.frame passed as argument with the
additional columns prog_rate_trt, prog_rate_ctrl

for cen_rate_from_cen_prop_progression: design data.frame with the additional column random_withdrawal

For hazard_before_progression_from_PH_effect_size: the design data.frame passed as argument
with the additional column hazard_trt.

Functions

* assumptions_progression(): generate default assumptions data. frame

* generate_progression(): simulates a dataset with changing hazards after disease progres-
sion

* true_summary_statistics_progression(): calculate true summary statistics for scenarios
with disease progression

* progression_rate_from_progression_prop(): Calculate progression rate from propor-
tion of patients who progress

* cen_rate_from_cen_prop_progression(): calculate censoring rate from censoring propor-
tion

¢ hazard_before_progression_from_PH_effect_size(): Calculate hazard in the treatment
arm before progression from PH effect size

Examples

Design <- assumptions_progression()
Design
one_simulation <- merge(
assumptions_progression(),
design_fixed_followup(),
by=NULL
E
tail(1) |>
generate_progression()
head(one_simulation)
tail(one_simulation)

my_design <- merge(
assumptions_progression(),
design_fixed_followup(),
by=NULL

)

22

my_design_os <- true_summary_statistics_progression(my_design,
my_design_pfs <- true_summary_statistics_progression(my_design,

my_design_os
my_design_pfs
my_design <- merge(
assumptions_progression(),
design_fixed_followup(),
by=NULL
)
my_design$prog_rate_ctrl <- NA_real_
my_design$prog_rate_trt <- NA_real_
my_design$prog_prop_trt <- 0.2
my_design$prog_prop_ctrl <- 0.3
my_design <- progression_rate_from_progression_prop(my_design)

combination_tests_delayed

uosn)
"pfs")

hazard for disease progression under control
hazard for disease progression under treatment

my_design

design <- expand.grid(

hazard_ctrl = m2r(15), # hazard under control
hazard_trt = m2r(18), # hazard under treatment
hazard_after_prog = m2r(3), # hazard after progression
prog_rate_ctrl =m2r(12), #

prog_rate_trt =m2r(c(12,16,18)), #

censoring_prop =0.1, # rate of random withdrawal
followup = 100, # follow up time

n_trt = 50, # patients in treatment arm
n_ctrl = 50 # patients in control arm

)

cen_rate_from_cen_prop_progression(design)

my_design <- merge(
design_fixed_followup(),
assumptions_progression(),
by=NULL

)

my_design$hazard_trt <- NULL

my_design$final_events <- ceiling(0.75 * (my_design$n_trt + my_design$n_ctrl))

my_design <- hazard_before_progression_from_PH_effect_size(my_design, target_power_ph=0.7)

my_design

combination_tests_delayed

Results of an example simulation

Description

Results of an example simulation study comparing the power of logrank max-combo and modelstly
weighted logrank test in differnt scenarios with delayed onset of treatment effect.

create_summarise_function 23

Usage

combination_tests_delayed

Format

a tibble as returned by SimDesign: :runSimulation.

create_summarise_function
Create a summarise function from a named list of functions

Description

Create a summarise function from a named list of functions

Usage

create_summarise_function(...)

Arguments

summarise function

Details

the names of the list of functions correspond to the names in the list of analyse functions, each
summarise function is applied to the results of the analyse function of the same name, names not
present in both lists are ommitted in either list.

The functions in the list should have the arguments condition, results and fixed_objects.
results is a list of lists. The outer list has one element for each replication, the inner list has one
entry for each Analyse function. (Analyse functions have to return lists for this to work, otherwise
the results are simplified to data.frames. Analyse functions from the SimNPH package all return
lists.)

The individual summarise functions have to return data.frames, which are concatendated column-
wise to give one row per condition. The names of the analyse methods are prepended to the respec-
tive coumn names, if the functions have a "name" attribute this is appended to the column names of
the output. Column names not unique after that are appended numbers by make . unique.

Value

a function with arguments condition, results, fixed objects

24 design_fixed_followup

Examples

Summarise <- create_summarise_function(
maxcombo = function(condition, results, fixed_objects=NULL){
data.frame("rejection”=mean(results$p < alpha))
3,
logrank = function(condition, results, fixed_objects=NULL){
data.frame("rejection”=mean(results$p < alpha))
}
)

design_fixed_followup Create a data.frame with an example fixed design

Description

Create a data.frame with an example fixed design

Usage

design_fixed_followup(print = interactive())

Arguments

print print code to generate parameter set?

Details

design_fixed_followup generates a default design data. frame for use with generate_delayed_effect
or other generate_... functions. If print is TRUE code to produce the template is also printed for
copying, pasting and editing by the user. (This is the default when run in an interactive session.)

Value

For design_fixed_followup: a design tibble with default values invisibly

Functions

* design_fixed_followup(): generate default fixed design

Examples

Design <- design_fixed_followup()
Design

design_group_sequential 25

design_group_sequential
Create a data.frame with an example group sequential design

Description

Create a data.frame with an example group sequential design

Usage

design_group_sequential (print = interactive())

Arguments

print print code to generate parameter set?

Details

design_group_sequential generates a default design data. frame for use with generate_delayed_effect
or other generate_... functions. If print is TRUE code to produce the template is also printed for copy-
ing, pasting and editing by the user. (This is the default when run in an interactive session.)

Value

For design_group_sequential: a design tibble with default values invisibly

Functions

* design_group_sequential(): generate default group sequential design

Examples

Design <- design_group_sequential()
Design

generate_crossing_hazards
Generate Dataset with crossing hazards

Description

Generate Dataset with crossing hazards
Create an empty assumtions data.frame for generate_crossing_hazards
Calculate hr after crossing the hazard functions

Calculate true summary statistics for scenarios with crossing hazards

26

Usage

generate_crossing_hazards

generate_crossing_hazards(condition, fixed_objects = NULL)

assumptions_crossing_hazards(print = interactive())

hr_after_crossing_from_PH_effect_size(

design,

target_power_ph = NA_real_,
final_events = NA_real_,
target_alpha = 0.025

cen_rate_from_cen_prop_crossing_hazards(design)

true_summary_statistics_crossing_hazards(

Design,

cutoff_stats = NULL,
milestones = NULL,
fixed_objects = NULL

Arguments

condition condition row of Design dataset

fixed_objects additional settings, see details

print print code to generate parameter set?

design design data.frame
target_power_ph

final_events

target power under proportional hazards

target_alpha target one-sided alpha level for the power calculation

Design Design data.frame for crossing hazards

cutoff_stats (optionally named) cutoff time, see details

milestones

lated

Details

Condidtion has to contain the following columns:

* n_trt number of paitents in treatment arm
* n_ctrl number of patients in control arm

* crossing time of crossing of the hazards

e hazard_ctrl hazard in the control arm = hazard before onset of treatment effect

e hazard_trt_before hazard in the treatment arm before onset of treatment effect

target events for inversion of Schonfeld Formula, defaults to condition$final_events

(optionally named) vector of times at which milestone survival should be calcu-

generate_crossing_hazards 27

e hazard_trt_after hazard in the treatment arm afert onset of treatment effect

If fixed_objects is given and contains an element t_max, then this is used as the cutoff for the
simulation used internally. If t _max is not given in this way the 1-(1/10000) quantile of the survival
distribution in the control or treatment arm is used (which ever is larger).

assumptions_crossing_hazards generates a default design data. frame for use with generate_crossing_hazards
If print is TRUE code to produce the template is also printed for copying, pasting and editing by the
user. (This is the default when run in an interactive session.)

hr_after_crossing_from_PH_effect_size calculates the hazard ratio after crossing of hazards
as follows: First, the hazard ratio needed to archive the desired power under proportional hazards
is calculated by inverting Schonfeld’s sample size formula. Second the median survival times for
both arm under this hazard ratio and proportional hazards are calculated. Finally the hazard rate of
the treatment arm after crossing of hazards is set such that the median survival time is the same as
the one calculated under proportional hazards.

This is a heuristic and to some extent arbitrary approach to calculate hazard ratios that correspond
to reasonable and realistic scenarios.

cen_rate_from_cen_prop_crossing_hazards takes the proportion of censored patients from the col-
umn censoring_prop. This column describes the proportion of patients who are censored ran-
domly before experiencing an event, without regard to administrative censoring.

cutoff_stats are the times used to calculate the statistics like average hazard ratios and RMST,
that are only calculated up to a certain point.

Value

For generate_crossing_hazards: A dataset with the columns t (time) and trt (1=treatment, O=con-
trol), evt (event, currently TRUE for all observations)

For assumptions_crossing_hazards: a design tibble with default values invisibly

For hr_after_crossing_from_PH_effect_size: the design data.frame passed as argument with the
additional column hazard_ trt.

for cen_rate_from_cen_prop_crossing_hazards: design data.frame with the additional column ran-
dom_withdrawal

For true_summary_statistics_crossing_hazards: the design data.frame passed as argument with ad-
ditional columns,

Functions

* generate_crossing_hazards(): simulates a dataset with crossing hazards
* assumptions_crossing_hazards(): generate default assumptions data.frame

e hr_after_crossing_from_PH_effect_size(): Calculate hr after crossing of the hazards
from PH effect size

e cen_rate_from_cen_prop_crossing_hazards(): calculate censoring rate from censoring
proportion

* true_summary_statistics_crossing_hazards(): calculate true summary statistics for cross-
ing hazards

28 generate_delayed_effect

Examples

one_simulation <- merge(
assumptions_crossing_hazards(),
design_fixed_followup(),
by=NULL
) 1>
head(1) |>
generate_crossing_hazards()
head(one_simulation)
tail(one_simulation)
Design <- assumptions_crossing_hazards()
Design
my_design <- merge(
assumptions_crossing_hazards(),
design_fixed_followup(),
by=NULL
)

my_design$final_events <- ceiling((my_design$n_trt + my_design$n_ctrl)*0.75)
my_design$hazard_trt <- NA
my_design <- hr_after_crossing_from_PH_effect_size(my_design, target_power_ph=0.9)
my_design
design <- data.frame(
crossing = c(2, 4, 6),
hazard_ctrl = c(0.05, 0.05, 0.05),
hazard_trt_before = c(0.025, 0.025, 0.025),
hazard_trt_after = c(0.1, 0.1, 0.1),
censoring_prop = c(0.1, 0.3, 0.2),
n_trt = c(50, 50, 50),
n_ctrl = c(50, 50, 50),
followup = c(200, 200, 200),
recruitment = c(50, 50, 50)
)
cen_rate_from_cen_prop_crossing_hazards(design)
my_design <- merge(
assumptions_crossing_hazards(),
design_fixed_followup(),
by=NULL
)
my_design$follwup <- 15
my_design <- true_summary_statistics_crossing_hazards(my_design)
my_design

generate_delayed_effect
Generate Dataset with delayed effect

Description

Generate Dataset with delayed effect

generate_delayed_effect 29

Create an empty assumtions data.frame for generate_delayed_effect
Calculate hr after onset of treatment effect

Calculate true summary statistics for scenarios with delayed treatment effect

Usage

generate_delayed_effect(condition, fixed_objects = NULL)
assumptions_delayed_effect(print = interactive())

hr_after_onset_from_PH_effect_size(
design,
target_power_ph = NA_real_,
final_events = NA_real_,
target_alpha = 0.025

)
cen_rate_from_cen_prop_delayed_effect(design)

true_summary_statistics_delayed_effect(
Design,
cutoff_stats = NULL,
milestones = NULL,
fixed_objects = NULL
)

Arguments

condition condition row of Design dataset
fixed_objects additional settings, see details
print print code to generate parameter set?

design design data.frame
target_power_ph
target power under proportional hazards

final_events targetevents for inversion of Schonfeld Formula defaults to condition$final_events
target_alpha target one-sided alpha level for the power calculation

Design Design data.frame for delayed effect

cutoff_stats (optionally named) cutoff times, see details

milestones (optionally named) vector of times at which milestone survival should be calcu-
lated

Details
Condidtion has to contain the following columns:

* n_trt number of paitents in treatment arm

30 generate_delayed_effect

* n_ctrl number of patients in control arm
* delay time until onset of effect
e hazard_ctrl hazard in the control arm = hazard before onset of treatment effect
e hazard_trt hazard in the treatment arm afert onset of treatment effect
If fixed_objects is given and contains an element t_max, then this is used as the cutoff for the

simulation used internally. If t_max is not given in this way the 1-(1/10000) quantile of the survival
distribution in the control or treatment arm is used (which ever is larger).

assumptions_delayed_effect generates a default design data. frame for use with generate_delayed_effect.
If print is TRUE code to produce the template is also printed for copying, pasting and editing by the
user. (This is the default when run in an interactive session.)

hr_after_onset_from_PH_effect_size calculates the hazard ratio after onset of treatment effect
as follows: First, the hazard ratio needed to archive the desired power under proportional hazards is
calculated by inverting Schonfeld’s sample size formula. Second the median survival times for both
arm under this hazard ratio and proportional hazards are calculated. Finally the hazard rate of the
treatment arm after onset of treatment effect is set such that the median survival time is the same as
the one calculated under proportional hazards.

This is a heuristic and to some extent arbitrary approach to calculate hazard ratios that correspond
to reasonable and realistic scenarios.

cen_rate_from_cen_prop_delayed_effect takes the proportion of censored patients from the column
censoring_prop. This column describes the proportion of patients who are censored randomly
before experiencing an event, without regard to administrative censoring.

cutoff_stats are the times used to calculate the statistics like average hazard ratios and RMST,
that are only calculated up to a certain point.

Value
For generate_delayed_effect: A dataset with the columns t (time) and trt (1=treatment, O=control),
evt (event, currently TRUE for all observations)
For assumptions_delayed_effect: a design tibble with default values invisibly

For hr_after_onset_from_PH_effect_size: the design data.frame passed as argument with the addi-
tional column hazard_trt.

for cen_rate_from_cen_prop_delayed_effect: design data.frame with the additional column ran-
dom_withdrawal

For true_summary_statistics_delayed_effect: the design data.frame passed as argument with addi-
tional columns

Functions

* generate_delayed_effect(): simulates a dataset with delayed treatment effect
e assumptions_delayed_effect(): generate default assumptions data.frame

e hr_after_onset_from_PH_effect_size(): Calculate hr after onset of treatment effect of
the hazards from PH effect size

e cen_rate_from_cen_prop_delayed_effect(): calculate censoring rate from censoring pro-
portion

generate_subgroup 31

e true_summary_statistics_delayed_effect(): calculate true summary statistics for de-
layed effect

Examples

one_simulation <- merge(
assumptions_delayed_effect(),
design_fixed_followup(),
by=NULL
) 1>
head(1) |>
generate_delayed_effect()
head(one_simulation)
tail(one_simulation)
Design <- assumptions_delayed_effect()
Design
my_design <- merge(
assumptions_delayed_effect(),
design_fixed_followup(),
by=NULL
)

my_design$hazard_ctrl <- 0.05

my_design$final_events <- ceiling((my_design$n_trt + my_design$n_ctrl)*0.75)
my_design$hazard_trt <- NA

my_design <- hr_after_onset_from_PH_effect_size(my_design, target_power_ph=0.9)
my_design

design <- expand.grid(

delay=seq(@, 10, by=5), # delay of @, 1, ..., 10 days

hazard_ctrl=0.2, # hazard under control and before treatment effect
hazard_trt=0.02, # hazard after onset of treatment effect
censoring_prop=c(0.1, 0.25, 0.01), # 10%, 25%, 1% random censoring

followup=100, # followup of 100 days

n_trt=50, # 50 patients treatment

n_ctrl=50 # 50 patients control

)
cen_rate_from_cen_prop_delayed_effect(design)
my_design <- merge(

assumptions_delayed_effect(),

design_fixed_followup(),

by=NULL

)

my_design <- true_summary_statistics_delayed_effect(my_design)
my_design

generate_subgroup Generate Dataset with different treatment effect in subgroup

32 generate_subgroup

Description

Generate Dataset with different treatment effect in subgroup
Create an empty assumtions data.frame for generate_subgroup
Calculate true summary statistics for scenarios with differential treatment effect in subgroup

Calculate hazards in treatment arm in subgroup and compliment

Usage

generate_subgroup(condition, fixed_objects = NULL)
assumptions_subgroup(print = interactive())

true_summary_statistics_subgroup(
Design,
cutoff_stats = NULL,
milestones = NULL,
fixed_objects = NULL

hazard_subgroup_from_PH_effect_size(
design,
target_power_ph = NA_real_,
final_events = NA_real_,
target_alpha = 0.025

)

cen_rate_from_cen_prop_subgroup(design)

Arguments

condition condition row of Design dataset
fixed_objects additional settings, see details

print print code to generate parameter set?
Design Design data.frame for subgroup

cutoff_stats (optionally named) cutoff times, see details

milestones (optionally named) vector of times at which milestone survival should be calcu-
lated
design design data.frame

target_power_ph
target power under proportional hazards

final_events target events for inversion of Schonfeld Formula, defaults to condition$final_events

target_alpha target one-sided alpha level for the power calculation

generate_subgroup 33

Details
Condidtion has to contain the following columns:

 n_trt number of paitents in treatment arm
* n_ctrl number of patients in control arm
e hazard_ctrl hazard in the control arm
* hazard_trt hazard in the treatment arm for not cured patients
* hazard_subgroup hazard in the subgroup in the treatment arm
* prevalence proportion of cured patients
assumptions_subgroup generates a default design data. frame for use with generate_subgroup If

print is TRUE code to produce the template is also printed for copying, pasting and editing by the
user. (This is the default when run in an interactive session.)

cutoff_stats are the times used to calculate the statistics like average hazard ratios and RMST,
that are only calculated up to a certain point.

hazard_subgroup_from_PH_effect_size calculates the hazard rate in the subgroup and the com-
pliment of the subgroup in the treatment arm as follows: First, the hazard ratio needed to archive
the desired power under proportional hazards is calculated by inverting Schonfeld’s sample size
formula. Second the median survival times for both arms under this hazard ratio and proportional
hazards are calculated. Finally the hazard rate of the treatment arm in the subgroup and its comple-
ment are set such that the median survival time is the same as the one calculated under proportional
hazards.

This is a heuristic and to some extent arbitrary approach to calculate hazard ratios that correspond
to reasonable and realistic scenarios.

cen_rate_from_cen_prop_subgroup takes the proportion of censored patients from the column censoring_prop.
This column describes the proportion of patients who are censored randomly before experiencing
an event, without regard to administrative censoring.

Value
For generate_subgroup: A dataset with the columns t (time) and trt (1=treatment, O=control), evt
(event, currently TRUE for all observations)
For assumptions_subgroup: a design tibble with default values invisibly

For true_summary_statistics_subgroup: the design data.frame passed as argument with the addi-
tional columns

For hazard_subgroup_from_PH_effect_size: the design data.frame passed as argument with the
additional columns hazard_trt and hazard_subgroup.

for cen_rate_from_cen_prop_subgroup: design data.frame with the additional column random_withdrawal

Functions

* generate_subgroup(): simulates a dataset with a mixture of cured patients

* assumptions_subgroup(): generate default assumptions data. frame

* true_summary_statistics_subgroup(): calculate true summary statistics for subgroup

¢ hazard_subgroup_from_PH_effect_size(): Calculate hazards in treatement arm

* cen_rate_from_cen_prop_subgroup(): calculate censoring rate from censoring proportion

34 labs_from_labels

Examples

one_simulation <- merge(
assumptions_subgroup(),
design_fixed_followup(),
by=NULL
) 1>
head(1) |>
generate_subgroup()
head(one_simulation)
tail(one_simulation)
Design <- assumptions_subgroup()
Design
my_design <- merge(
assumptions_subgroup(),
design_fixed_followup(),
by=NULL
)
my_design <- true_summary_statistics_subgroup(my_design)
my_design

my_design <- merge(
assumptions_subgroup(),
design_fixed_followup(),
by=NULL

)

my_design$hazard_trt <- NA

my_design$hazard_subgroup <- NA

my_design$hr_subgroup_relative <- 0.9

my_design$final_events <- ceiling((my_design$n_ctrl + my_design$n_trt) * 0.75)
my_design <- hazard_subgroup_from_PH_effect_size(my_design, target_power_ph=0.9)

my_design

design <- expand.grid(
hazard_ctrl=0.2, # hazard under control and before treatment effect
hazard_trt=0.02, # hazard after onset of treatment effect
hazard_subgroup=0.01, # hazard in the subgroup in treatment
prevalence = c(0.2, 0.5), # subgroup prevalence
censoring_prop=c(0.1, 0.25, 0.01), # 10%, 25%, 1% random censoring
followup=100, # followup of 100 days
n_trt=50, # 50 patients treatment
n_ctrl=50 # 50 patients control

)

cen_rate_from_cen_prop_subgroup(design)

labs_from_labels Add ggplot axis labels from labels attribute

Description

Add ggplot axis labels from labels attribute

mixture_haz_fun 35

Usage
labs_from_labels(gg)

Arguments

gg a ggplot object

Value

a ggplot object

Examples

library("ggplot2")

test <- mtcars

add a label attribute

attr(test$cyl, "label”) <- "cylinders"

plot witht the variable names as axis titles

ggl <- ggplot(test, aes(x=wt, y=cyl)) +
geom_point()

ggl

add labels where defined in the attribute

gg2 <- ggplot(test, aes(x=wt, y=cyl)) +
geom_point()

gg2 <- labs_from_labels(gg2)

gg2
mixture_haz_fun Fast implementation of hazard, cumulative hazard, ... for mixtures of
subpopulations
Description

Fast implementation of hazard, camulative hazard, ... for mixtures of subpopulations

Usage
mixture_haz_fun(p, pdfs, survs)
mixture_cumhaz_fun(p, survs)

mixture_cdf_fun(p, cdfs)

mixture_pdf_fun(p, pdfs)

36

mixture_haz_fun

mixture_surv_fun(p, survs)

mixture_quant_fun(p, cdfs, quants)

mixture_rng_fun(p, rngs)

Arguments
p vector of probabilities of the mixture
pdfs list of probability density functions of the mixture components
survs list of survuval functions of the mixture components
cdfs list of cumulative density functions of the mixture components
quants list of quantile functions of the mixture components
rngs random number generating functions of the components
Details

the last time interval extends to +Inf

mixture_quant_fun relies on numeric root finding and is therefore not as fast as miniPCH::qpch_fun.

mixture_rng samples the counts from the respective mixtures from a multinomial distribution with
parameter p and then samples from the components and shuffles the result.

Value

A function with one parameter, a vector of times/probabilities where the function should be evalu-

ated.

Functions

mixture_haz_fun(): hazard function of mixture
mixture_cumhaz_fun(): cumulative hazard function of mixture
mixture_cdf_fun(): cumulative density function of mixture
mixture_pdf_fun(): probability density function of mixture
mixture_surv_fun(): survival function of mixture
mixture_quant_fun(): quantile function of mixture

mixture_rng_fun(): quantile function of mixture

Examples

haz <- mixture_haz_fun(
p=c(0.3, 0.7),
pdfs = list(

miniPCH: :dpch_fun(@, 0.1),
miniPCH: :dpch_fun(c(@,5), c(0.1, 0.12))

)?

mixture_haz_fun

survs = list(
miniPCH: :spch_fun(@, 0.1),
miniPCH: :spch_fun(c(@,5), c(0.1, 0.12))
)
)

plot(haz(seq(@, 30, by=0.15)), ylim=c(0, 0.2), type="1")

abline(h=0)
cumhaz <- mixture_cumhaz_fun(
p=c(0.3, 0.7),
survs = list(
miniPCH: :spch_fun(@, 0.1),
miniPCH: :spch_fun(c(@,5), c(0.1, 0.12))
)
)
plot(cumhaz(seq(@, 30, by=0.15)), type="1")
cdf <- mixture_cdf_fun(
p=c(0.3, 0.7),
cdfs = list(
miniPCH: :ppch_fun(@, 0.1),
miniPCH: :ppch_fun(c(@,5), c(0.1, 0.12))
)
)
plot(cdf(seq(@, 30, by=0.15)), type="1")
pdf <- mixture_pdf_fun(
p=c(0.3, 0.7),
pdfs = list(
miniPCH: :dpch_fun(@, 0.1),
miniPCH: :dpch_fun(c(@,5), c(@.1, 0.12))
)
)
plot(pdf(seq(@, 30, by=0.15)), type="1")
surv <- mixture_surv_fun(
p=c(0.3, 0.7),
survs = list(
miniPCH: :spch_fun(@, 0.1),
miniPCH: :spch_fun(c(@,5), c(0.1, 0.12))
)

)
plot(surv(seq(@, 30, by=0.15)), type="1")

quant <- mixture_quant_fun(
p=c(0.3, 0.7),
cdfs = list(
miniPCH: :ppch_fun(@, 0.1),
miniPCH: :ppch_fun(c(@,5), c(0.1, 0.12))
),
quants = list(
miniPCH: :gpch_fun(@, 0.1),
miniPCH: :gpch_fun(c(@,5), c(0.1, 0.12))
)
)

x <- seq(@, 1, by=0.015)

37

38 progression_cdf_fun

plot(x, quant(x), type="1")
rng <- mixture_rng_fun(
p=c(0.3, 0.7),
rngs = list(
miniPCH: :rpch_fun(@, 0.1, discrete = TRUE),
miniPCH: :rpch_fun(c(@,5), c(@.1, 0.12), discrete = TRUE)
)
)
hist(rng(100))

progression_cdf_fun Fast implementation of cumulative density function, survival function,
... for scenarios with progression

Description
Fast implementation of cumulative density function, survival function, ... for scenarios with pro-
gression

Usage

progression_cdf_fun(hazard_before, prog_rate, hazard_after)
progression_surv_fun(hazard_before, prog_rate, hazard_after)
progression_pdf_fun(hazard_before, prog_rate, hazard_after)
progression_haz_fun(hazard_before, prog_rate, hazard_after)

progression_quant_fun(hazard_before, prog_rate, hazard_after)

Arguments

hazard_before hazard for death before progression
prog_rate hazard rate for progression

hazard_after hazard for death after progression

Details

Calculations are done by viewing the disease process as a three state (non-progressed disease, pro-
gressed disease, death) continuous time markov chain. Calculations can then easily be done using
the matrix exponential function and Q-matrices.

Value

A function with one parameter, a vector of times/probabilities where the function should be evalu-
ated.

progression_cdf_fun

Functions

* progression_cdf_fun(): cumulative density function for progression scenario
* progression_surv_fun(): survival function for progression scenario

* progression_pdf_fun(): probability density function for progression scenario
* progression_haz_fun(): hazard function for progression scenario

* progression_quant_fun(): quantile function for progression scenario

Examples

cdf <- progression_cdf_fun(
hazard_before = m2r(48),
prog_rate = m2r(18),
hazard_after = m2r(6)

)

t <- 0:1000

plot(t, cdf(t), type="1")

surv <- progression_surv_fun(
hazard_before = m2r(48),
prog_rate = m2r(18),
hazard_after = m2r(6)

)

t <- 0:1000

plot(t, surv(t), type="1")

pdf <- progression_pdf_fun(
hazard_before = m2r(48),
prog_rate = m2r(18),
hazard_after = m2r(6)

)

t <- 0:1000

plot(t, pdf(t), type="1")

haz <- progression_haz_fun(
hazard_before = m2r(48),
prog_rate = m2r(18),
hazard_after = m2r(6)

)

t <- 0:1000

plot(t, haz(t), type="1")

quant <- progression_quant_fun(
hazard_before = m2r(48),
prog_rate = m2r(18),
hazard_after = m2r(6)

)

p <- seq(9,0.99, by=.01)

plot(p, quant(p), type="1")

40 2m

r2m Functions to Convert Between Days and Months and Medians and
Rates

Description

Some functions to convert between days and months and rates and medians.

Usage
r2m(lambda)

m2r (med)
m2d(mon)

d2m(day)

Arguments

lambda hazard rate
med median in months
mon time in months

day time in days

Value

median survival time in months (r2m)
hazard rate per day (m2r)
time in days (m2d)

time in months (d2m)

Functions

e r2m(): daily rate to median in months
e m2r(): median to months to daily rate
* m2d(): months to days
e d2m(): days to months

Examples

r2m(0.002)
m2r(12)
m2d(1)
d2m(31)

random_censoring_exp 41

random_censoring_exp Apply Random Exponentially Distributed Censoring

Description

Apply Random Exponentially Distributed Censoring

Usage

random_censoring_exp(dat, rate, discrete = TRUE)

Arguments

dat the dataset to apply the random censoring to

rate time of end of enrollment

discrete should the censoring times be rounded to whole days?
Value

Returns a Function with one argument dat that modifies a dataset generated by the generate func-
tions by censoring the times and setting the event indicator to FALSE for censored observations.

Examples

one_simulation <- merge(
assumptions_delayed_effect(),
design_fixed_followup(),
by=NULL

) 1>
head(1) |>
generate_delayed_effect()

apply censoring to dataset
censored_sim <- random_censoring_exp(one_simulation, ©.01)

plot

uncensored (blue) observations are the same for original and modified
dataset

censored (red) observations are smaller than the uncensored ones
plot(

one_simulation$t,
censored_sim$t,

col=ifelse(censored_sim$evt, "blue”, "red"),
xlab = "uncensored times”,
ylab = "censored times”

)
abline(0,1)

42 recruitment_uniform

recruitment_uniform Add recruitment time to Dataset

Description

Add recruitment time to Dataset
Apply Administrative Censoring After Fixed Time

Apply Administrative Censoring After Fixed Number of Events

Usage

recruitment_uniform(
dat,
recruitment_until,
recruitment_from = 0,
discrete = TRUE

admin_censoring_time(dat, followup, keep_non_recruited = FALSE)

admin_censoring_events(

dat,
events,
keep_non_recruited = FALSE,
on_incomplete = "ignore”
)
Arguments
dat a simulated dataset

recruitment_until
time of end of recruitment

recruitment_from
time of start of recruitment (defaults to 0)

discrete should the recruitment time be rounded to full days?

followup followup time

keep_non_recruited
should patients recruited after end of study be kept

events number of events after which the dataset is analyzed

non non

on_incomplete what to do if there are fewer events than planned "ignore","warn","stop"

recruitment_uniform 43

Details

The Dataset hast to include a column rec_time containing the recruitment time as well as the
columns with the event times t and a column with the event indicator evt.

Times and event indicaotrs for patients recruited after followup are set to NA.

The Dataset hast to include a column rec_time containing the recruitment time as well as the
columns with the event times t and a column with the event indicator evt.

Times and event indicaotrs for patients recruited after followup are set to NA.

If there are less events than planned for study end on_incomplete defines what should be done.
"ignore" simply returns the dataset with the maximum of the observed times as followup. "warn"
does the same but gives a warning. "stop" stopps with an error.

Value

Returns the dataset with added recruitment times.

Returns the dataset with administrative censoring after follwup, adds the attribute followup with
the followup time to the dataset.

Returns the dataset with administrative censoring after events events, adds the attribute followup
with the followup time to the dataset.

Functions

e recruitment_uniform(): add recruitment time
* admin_censoring_time(): apply administrative censoring after fixed time

* admin_censoring_events(): apply administrative censoring after fixed number of events

Examples

dat <- data.frame(t=c(@, 1, 2), trt=c(FALSE, FALSE, TRUE))
recruitment_uniform(dat, 7, @)
dat <- data.frame(
t =1:10,
rec_time = rep(1:5, each=2),
trt = rep(c(TRUE, FALSE), times=5),
evt = rep(TRUE, times=10)
)
dat

admin_censoring_time(dat, 4)
admin_censoring_time(dat, 4, keep_non_recruited = TRUE)

dat_censored <- admin_censoring_time(dat, 5)
attr(dat_censored, "followup")
dat <- data.frame(

t =1:10,

rec_time = rep(2x(1:5), each=2),

trt = rep(c(TRUE, FALSE), times=5),

evt = rep(TRUE, times=10)

44 rename._results_column

dat

admin_censoring_events(dat, 4)
admin_censoring_events(dat, 4, keep_non_recruited = TRUE)

dat_censored <- admin_censoring_events(dat, 4)
attr(dat_censored, "followup")

rename_results_column Rename Columns in Simulation Results and Update Attributes

Description

Rename Columns in Simulation Results and Update Attributes

Usage

rename_results_column(results, rename)

rename_results_column_pattern(results, pattern, replacement)

Arguments
results SimDesign object
rename named vector of new names
pattern regexp pattern as understood by stringr::str_replace_all
replacement replacement as understood by stringr::str_replace_all
Value

SimDesign object with updated column names

Functions

¢ rename_results_column(): Rename Columns in Simulation Results

* rename_results_column_pattern(): Rename Columns in Simulation Results by Pattern

Examples

condition <- merge(
assumptions_delayed_effect(),
design_fixed_followup(),

by=NULL
) 1>
tail(4) |>

true_summary_statistics_delayed_effect(cutoff_stats = 15)

sim_results <- runSimulation(

rename._results_column

design=condition,
replications=10,
generate=generate_delayed_effect,
analyse=list(
logrank = analyse_logrank(alternative = "one.sided"),
mwlrt = analyse_modelstly_weighted(t_star = m2d(24))
),
summarise = create_summarise_function(
logrank = summarise_test(0.025),
mwlrt = summarise_test(0.025)
)
)

names(sim_results)
attr(sim_results, "design_names")

sim_results <- sim_results |>
rename_results_column(c("delay”="onset"))

names(sim_results)
attr(sim_results, "design_names")

condition <- merge(
assumptions_delayed_effect(),
design_fixed_followup(),
by=NULL
) 1>
tail(4) |>
true_summary_statistics_delayed_effect(cutoff_stats = 15)

sim_results <- runSimulation(
design=condition,
replications=10,
generate=generate_delayed_effect,
analyse=list(
logrank = analyse_logrank(alternative = "one.sided"),
mwlrt = analyse_modelstly_weighted(t_star = m2d(24))
),
summarise = create_summarise_function(
logrank = summarise_test(0.025),
mwlrt = summarise_test(0.025)

names(sim_results)
attr(sim_results, "design_names")

sim_results <- sim_results |>
rename_results_column_pattern(pattern = "_0.025", replacement = "")

names(sim_results)
attr(sim_results, "design_names")

45

46

results_pivot_longer

results_pivot_longer Functions for Plotting and Reporting Results

Description

Functions for Plotting and Reporting Results

Usage

results_pivot_longer(data, exclude_from_methods = c("descriptive"”))

combined_plot(
data,
methods,
xvars,
yvar,
facet_x_vars
facet_y_vars

cQ),
=cQ,

split_var =1,

heights_plots

scale_stairs
grid_level =

=c@, 1D,
= NULL,
2,

scales = "fixed",
hlines = numeric(9),

use_colours
use_shapes =

expand_x_axis

Arguments

data

NULL,
NULL,
= c(0.05, 0, 0.05, 0)

for results_pivot_longer: simulation result as retured by SimDesign, for com-
bined_plot: simulation results in long format, as returned by results_pivot_longer.

exclude_from_methods

methods
xvars

yvar
facet_x_vars
facet_y_vars
split_var

heights_plots

"methods" that should not be pivoted into long format

methods to include in the plot

orderd vector of variable names to display on the x axis

variable name of the variable to be displayed on the y axis (metric)
vector of variable names to create columns of facets

vector of variable names to create rows of facets

where should the lines be split, see details

relative heights of the main plot and the stairs on the bottom

results_pivot_longer 47

scale_stairs this argument is deprecated and will be ignored

grid_level depth of loops for which the grid-lines are drawn

scales passed on to facet_grid

hlines position of horizontal lines, passed as yintercept to geom_hline
use_colours optional named vector of colours used in scale_colour_manual
use_shapes optional named vector of shapes used in scale_shape_manual

expand_x_axis axis expansion factor, passed to scale_x_continuous

Details
With exclude_from_methods descriptive statistics or results of reference methods can be kept as
own columns and used like the columns of the simulation parameters.
use_colours and use_shapes both use the method variable in their respective aesthetics.

split_var break the lines after the 1st, 2nd, ... variable in xvars. Use 0 for one continuous line
per method.

Value

dataset in long format with one row per method and scenario and one column per metric

a ggplot/patchwork object containing the plots

Functions

* results_pivot_longer(): pivot simulation results into long format

* combined_plot(): Nested Loop Plot with optional Facets

Examples

data("combination_tests_delayed”)

combination_tests_delayed |>
results_pivot_longer() |>
head()

library("ggplot2")
library("patchwork™)
data("combination_tests_delayed”)

results_long <- results_pivot_longer(combination_tests_delayed)

plot the rejection rate of two methods
combined_plot(
results_long,
c("logrank”, "mwlrt”, "maxcombo"),
c("hr"”, "n_pat_design”, "delay"”, "hazard_ctrl”, "recruitment"),
"rejection_0.025",
grid_level=2

results_pivot_longer

use custom colour and shape scales
this can be used to group methods by shape or colour
this is also helpful if methods should have the same aesthetics across plots
my_colours <- c(
logrank="black",
mwlrt="blue",
maxcombo="green"

)

my_shapes <- c(
logrank=1,
mwlrt=2,
maxcombo=2

combined_plot(
results_long,
c("logrank”, "mwlrt"”, "maxcombo"),
c("hr", "n_pat_design”, "delay", "hazard_ctrl”, "recruitment”),
"rejection_0.025",
grid_level=2,
use_colours = my_colours,
use_shapes = my_shapes

if one has a dataset of metadata with categories of methods

one could uses those two definitions

colours for methods, same shapes for methods of same category
metadata <- data.frame(

method = c("logrank”, "mwlrt”, "maxcombo"),
method_name = c("logrank test”, "modestly weighed logrank test”, "maxcombo test"”),
category = c("logrank test”, "combination test”, "combination test")

)

my_colours <- ggplot2::scale_colour_discrete()$palette(n=nrow(metadata)) |>
sample() |>
setNames(metadata$method)

my_shapes <- metadata$category |>
as.factor() |>
as.integer() |>
setNames(metadata$method)

combined_plot(
results_long,
c("logrank”, "mwlrt”, "maxcombo"),
c("hr", "n_pat_design”, "delay"”, "hazard_ctrl”, "recruitment"),
"rejection_0.025",
grid_level=2,
use_colours = my_colours,
use_shapes = my_shapes

shhr_gg 49
)
shhr_gg Plot of survival, hazard and hazard ratio of two groups as a function
of time using ggplot and patchwork
Description

Plot of survival, hazard and hazard ratio of two groups as a function of time using ggplot and

patchwork

Usage

shhr_gg(
A,
B,
main = NULL,
sub = NULL,
group_names = c("control”, "treatment”),
lab_time = "Days",
lab_group = "Group”,
trafo_time = identity,
colours = palette()[c(1, 3)1,
linetypes = c(1, 3),
linewidths = c(1.3, 1.3),
as_list = FALSE

)

Arguments
A mixpch object for group 1 (reference)
B mixpch object for group 2
main Title for the overall plot
sub Subtitle for the overall plot
group_names Group Names
lab_time Title for the time axis
lab_group Title group legend
trafo_time Function to transform time
colours vector of two colours
linetypes vector of two linetypes
linewidths vector of two linewidths

as_list return a list of ggplot objects instead of a patchwork object

50 summarise_estimator
Value
a patchwork object as defined in the patchwork package or a list of ggplot objects if as_1ist=TRUE.
Examples
library(ggplot2)
library(patchwork)
library(nph)
B <- pchaz(c(@, 10, 100), c(0.1, 0.05))
A <- pchaz(c(@, 100), c(0.1))
shhr_gg(A, B)
shhr_gg(A, B, lab_time="Months"”, trafo_time=d2m)
summarise_estimator Generic Summarise function for esitmators
Description
Generic Summarise function for esitmators
Usage
summarise_estimator(
est,
real,
lower = NULL,
upper = NULL,
null = NULL,
est_sd = NULL,
name = NULL
)
Arguments
est estimator, expression evaluated in results
real real summary statistic, expression evaluated in condition
lower lower CI, expression evaluated in results
upper upper CI, expression evaluated in results
null parameter value under the null hypothesis
est_sd standard deviation estimated by the method, evaluated in results
name name for the summarise function, appended to the name of the analysis method

in the final results

summarise_estimator

Details

51

The different parameters are evaluated in different envionments, est, lower, upper, est_sd refer
to output of the method and are evaluated in the results dataset. real refers to a real value of a
summary statistic in this scenario and is therefore evaluated in the condition dataset. null and name
are constants and directly evaluated when the function is defined. The argument null, the parameter
value under the null hypothesis is used to output the rejection rate based on the confidence intervall.
Which is output in the column null_cover

Value

A function that can be used in Summarise that returns a data frame with summary statistics of the
performance measures in the columns.

Examples

generate the design matrix and append the true summary statistics

condition <- merge(

assumptions_delayed_effect(),
design_fixed_followup(),

by=NULL

|>

tail(4) |>
head(1) |>

true_summary_statistics_delayed_effect(cutoff_stats = 15)

create some summarise functions
summarise_all <- create_summarise_function(

)

coxph=summarise_estimator(hr, gAHR_15, hr_lower, hr_upper, name="gAHR"),

coxph=summarise_estimator(hr, hazard_trt/hazard_ctrl, hr_lower, hr_upper, name="HR"),

coxph=summarise_estimator(hr, NA_real_, name="NA")

runs simulations
sim_results <- runSimulation(

)

mse is missing for the summarise function in which the real value was NA
sim_results[, names(sim_results) |> grepl(pattern="\\.mse$")]

design=condition,
replications=10,
generate=generate_delayed_effect,

analyse=list(

coxph=analyse_coxph()

)Y

summarise = summarise_all

but the standard deviation can be estimated in all cases

sim_results[, names(sim_results) |> grepl(pattern="\\.sd_est$")]

52 summarise_test

summarise_test Generic summarise function for tests

Description

Generic summarise function for tests

Usage

summarise_test(alpha, name = NULL)

Arguments
alpha the significance level(s)
name name for the summarise function, appended to the name of the analysis method
in the final results
Value

A function that can be used in Summarise that returns a data frame with the columns

* rejection_X
* rejection_Y

Where X, Y, ... are the alpha levels given in the argument

Examples

condition <- merge(
assumptions_delayed_effect(),
design_fixed_followup(),
by=NULL

) 1>
tail(4) |>
head(1)

summarise_all <- create_summarise_function(
logrank=summarise_test(alpha=c(0.5, 0.9, 0.95, 0.99))
)

runs simulations

sim_results <- runSimulation(
design=condition,
replications=100,
generate=generate_delayed_effect,
analyse=list(

logrank=analyse_logrank()

),

upsert_merge 53

summarise = summarise_all

)

sim_results[, grepl("rejection”, names(sim_results))]

upsert_merge Merge results from additional or updated simulations

Description

Merge results from additional or updated simulations

Usage

upsert_merge(x, y, by)

merge_additional_results(
old,
new,
design_names = NULL,
descriptive_regex = NULL

)
Arguments
X left data.frame
y right data.frame
by columns to match by
old old results
new new/additional results

design_names names of the paramterst
descriptive_regex
regular expression for columns of descriptive statistics

Details

updates columns in x with values from matched rows in y and add joins columns from y not present
in X. Calls rows_upsert and then full_join.

if design_names is omitted its value is taken from the design_names attribute of the simulation
results.

If descriptive_regex is given, columns matching the regular expression in both datasets are com-
pared, a warning is given, if the values of those columns do not match. This is intended to compare
descriptive statistics or results of unchanged analysis methods to ensure, that both results stem from
an exact replication of the simulation results.

54

Value

a data.frame

a data.frame of the merged simulation results

Functions

» upsert_merge(): Update or add Rows and Columns

Examples

a <- data.frame(x=5:2, y=5:2, a=5:2)
b <- data.frame(x=1:4, y=1:4+10, b=1:4%10)
upsert_merge(a, b, by="x")

condition <- merge(
assumptions_delayed_effect(),
design_fixed_followup(),
by=NULL
) 1>
tail(4) |>
true_summary_statistics_delayed_effect(cutoff_stats = 15)

condition_1 <- condition[1:2,]
condition_2 <- condition[3:4,]

runs simulations
sim_results_1 <- runSimulation(
design=condition_1,
replications=100,
generate=generate_delayed_effect,
analyse=list(
logrank = analyse_logrank(alternative = "one.sided"),
maxcombo = analyse_logrank(alternative = "one.sided")

),
summarise = create_summarise_function(
logrank = summarise_test(0.025),
maxcombo = summarise_test(0.025)
)
)

sim_results_2 <- runSimulation(
design=condition_2,
replications=100,
generate=generate_delayed_effect,
analyse=list(
logrank = analyse_logrank(alternative = "one.sided"),
maxcombo = analyse_logrank(alternative = "one.sided")
),
summarise = create_summarise_function(
logrank = summarise_test(0.025),
maxcombo = summarise_test(0.025)

upsert_merge

wrap_all_in_trycatch 55

)

sim_results_3 <- runSimulation(
design=condition,
replications=100,
generate=generate_delayed_effect,
analyse=list(
mwlrt = analyse_modelstly_weighted(t_star = m2d(24))
),
summarise = create_summarise_function(
mwlrt = summarise_test(0.025)

all_results <- sim_results_1 |>
merge_additional_results(sim_results_2) |>
merge_additional_results(sim_results_3)

all_results |>
subset(select=c(delay, logrank.rejection_0.025, maxcombo.rejection_0.025, mwlrt.rejection_0.025))

wrap_all_in_trycatch Wrappers around Analyse Functions

Description

Wrappers around Analyse Functions

Usage

wrap_all_in_trycatch(
list_of_functions,
error = function(e) {
warning(e$message)
NA

wrap_all_in_preserve_seed(list_of_functions)

Arguments

list_of_functions
the list of functions to be wrapped

error the error function in the tryCatch call

56 wrap_all_in_trycatch

Details

SimDesign redraws data if one analysis function fails. This is not only highly inefficient for large
studies, but failure of a method is informative and might be of interest. Moreover redrawing of data
might introduce bias if the failure of the method is not independent of the parameter value, which
would be a strong assumption.

To avoid redrawing data, we can catch all errors the analysis methods could throw and return NA
instead.

This is handled well by the summarise functions generated with create_summarise_function
other summarise functions might throw errors when trying to rbind a data.frame to a scalar NA
value. In this case add another error argument. For example \(e){NULL} could work in some
cases, in other cases you’ll have to give a function that returns a data.frame with the same columns
as the analyse functions and only NA values.

Analysis functions might use random numbers. If simulations should be replicated this can interfere
with the RNG state of other analysis functions. To avoid this you can wrap all analysis function
inawithr::with_preserve_seed call, so that the RNG state is reset after each analysis function
is called. This way adding, removing or changing one analysis function has no effect on the other
analysis functions, even if the analysis functions use random numbers.

Value

a list of functions

Functions

e wrap_all_in_trycatch(): Wrap all functions in a list in tryCatch calls

e wrap_all_in_preserve_seed(): wrap all functions in withr: :with_preserve_seed

Examples

funsl <= list(\(){stop("test")}, \O{1})
funs2 <- wrap_all_in_trycatch(funs1)
try(lapply (funs1, \(F){fO})

try(lapply (funs2, \(f){f(O}))

funs1 <- list(\(O{rnorm(1)3})

funs2 <= list(\Q){runif (1)}, \O{rnorm(1)3})
funs3 <- funs2 |> wrap_all_in_preserve_seed()
set.seed(1)

lapply(funs1, \(f){f(O})

set.seed(1)

lapply(funs2, \(f){fO}

set.seed(1)

lapply(funs3, \(f){fO})

Index

+ datasets
combination_tests_delayed, 22

admin_censoring_events
(recruitment_uniform), 42
admin_censoring_time
(recruitment_uniform), 42
analyse_aft, 3
analyse_ahr, 4
analyse_coxph, 5
analyse_describe, 6
analyse_diff_median_survival, 7
analyse_gehan_wilcoxon, 9
analyse_group_sequential, 9
analyse_logrank, 11
analyse_logrank_fh_weights, 12
analyse_maxcombo, 13
analyse_milestone_survival, 13
analyse_modelstly_weighted, 15
analyse_piecewise_exponential, 16
analyse_rmst_diff, 17
analyse_weibull, 18
assumptions_crossing_hazards
(generate_crossing_hazards), 25
assumptions_delayed_effect
(generate_delayed_effect), 28
assumptions_progression, 19
assumptions_subgroup
(generate_subgroup), 31

cen_rate_from_cen_prop_crossing_hazards
(generate_crossing_hazards), 25
cen_rate_from_cen_prop_delayed_effect
(generate_delayed_effect), 28
cen_rate_from_cen_prop_progression
(assumptions_progression), 19
cen_rate_from_cen_prop_subgroup
(generate_subgroup), 31
combination_tests_delayed, 22
combined_plot (results_pivot_longer), 46

57

create_summarise_function, 23

d2m (r2m), 40
design_fixed_followup, 24
design_group_sequential, 25

generate_crossing_hazards, 25
generate_delayed_effect, 28
generate_progression
(assumptions_progression), 19
generate_subgroup, 31

hazard_before_progression_from_PH_effect_size

(assumptions_progression), 19
hazard_subgroup_from_PH_effect_size
(generate_subgroup), 31
hr_after_crossing_from_PH_effect_size
(generate_crossing_hazards), 25
hr_after_onset_from_PH_effect_size
(generate_delayed_effect), 28

labs_from_labels, 34

m2d (r2m), 40

m2r (r2m), 40

merge_additional_results
(upsert_merge), 53

mixture_cdf_fun (mixture_haz_fun), 35

mixture_cumhaz_fun (mixture_haz_fun), 35

mixture_haz_fun, 35

mixture_pdf_fun (mixture_haz_fun), 35

mixture_quant_fun (mixture_haz_fun), 35

mixture_rng_fun (mixture_haz_fun), 35

mixture_surv_fun (mixture_haz_fun), 35

nph: :nphparams, 5, 8, 14, 17
progression_cdf_fun, 38

progression_haz_fun
(progression_cdf_fun), 38

58

progression_pdf_fun
(progression_cdf_fun), 38
progression_quant_fun
(progression_cdf_fun), 38
progression_rate_from_progression_prop
(assumptions_progression), 19
progression_surv_fun
(progression_cdf_fun), 38

r2m, 40

random_censoring_exp, 41

recruitment_uniform, 42

rename_results_column, 44

rename_results_column_pattern
(rename_results_column), 44

results_pivot_longer, 46

shhr_gg, 49

summarise_describe (analyse_describe), 6

summarise_estimator, 50

summarise_group_sequential
(analyse_group_sequential), 9

summarise_test, 52

true_summary_statistics_crossing_hazards
(generate_crossing_hazards), 25
true_summary_statistics_delayed_effect
(generate_delayed_effect), 28
true_summary_statistics_progression
(assumptions_progression), 19
true_summary_statistics_subgroup
(generate_subgroup), 31

upsert_merge, 53

wrap_all_in_preserve_seed
(wrap_all_in_trycatch), 55
wrap_all_in_trycatch, 55

INDEX

	analyse_aft
	analyse_ahr
	analyse_coxph
	analyse_describe
	analyse_diff_median_survival
	analyse_gehan_wilcoxon
	analyse_group_sequential
	analyse_logrank
	analyse_logrank_fh_weights
	analyse_maxcombo
	analyse_milestone_survival
	analyse_modelstly_weighted
	analyse_piecewise_exponential
	analyse_rmst_diff
	analyse_weibull
	assumptions_progression
	combination_tests_delayed
	create_summarise_function
	design_fixed_followup
	design_group_sequential
	generate_crossing_hazards
	generate_delayed_effect
	generate_subgroup
	labs_from_labels
	mixture_haz_fun
	progression_cdf_fun
	r2m
	random_censoring_exp
	recruitment_uniform
	rename_results_column
	results_pivot_longer
	shhr_gg
	summarise_estimator
	summarise_test
	upsert_merge
	wrap_all_in_trycatch
	Index

