Package ‘SimCorrMix’

January 20, 2025

Type Package

Title Simulation of Correlated Data with Multiple Variable Types
Including Continuous and Count Mixture Distributions

Version 0.1.1
Author Allison Cynthia Fialkowski
Maintainer Allison Cynthia Fialkowski <allijazz@uab.edu>

Description Generate continuous (normal, non-normal, or mixture distributions), binary, ordinal,
and count (regular or zero-inflated, Poisson or Negative Binomial) variables with a specified
correlation matrix, or one continuous variable with a mixture distribution. This package can
be used to simulate data sets that mimic real-world clinical or genetic data sets (i.e.,
plasmodes, as in Vaughan et al., 2009 <DOI:10.1016/j.csda.2008.02.032>). The methods
extend those found in the 'SimMultiCorrData’ R package. Standard normal variables with an
imposed intermediate correlation matrix are transformed to generate the desired distributions.
Continuous variables are simulated using either Fleishman (1978)'s third order
<DOI:10.1007/BF02293811> or Headrick (2002)'s fifth order
<DOI:10.1016/S0167-9473(02)00072-5> polynomial transformation method (the power method
transformation, PMT). Non-mixture distributions require the user to specify mean, variance,
skewness, standardized kurtosis, and standardized fifth and sixth cumulants. Mixture
distributions require these inputs for the component distributions plus the mixing
probabilities. Simulation occurs at the component level for continuous mixture
distributions. The target correlation matrix is specified in terms of correlations with
components of continuous mixture variables. These components are transformed into the
desired mixture variables using random multinomial variables based on the mixing
probabilities. However, the package provides functions to approximate expected correlations
with continuous mixture variables given target correlations with the components. Binary and
ordinal variables are simulated using a modification of ordsample() in package 'GenOrd'.
Count variables are simulated using the inverse CDF method. There are two simulation
pathways which calculate intermediate correlations involving count variables differently.
Correlation Method 1 adapts Yahav and Shmueli's 2012 method <DOI:10.1002/asmb.901> and
performs best with large count variable means and positive correlations or small means and
negative correlations. Correlation Method 2 adapts Barbiero and Ferrari's 2015
modification of the 'GenOrd' package <DOI:10.1002/asmb.2072> and performs best under the
opposite scenarios. The optional error loop may be used to improve the accuracy of the
final correlation matrix. The package also contains functions to calculate the
standardized cumulants of continuous mixture distributions, check parameter inputs,

1

https://doi.org/10.1016/j.csda.2008.02.032
https://doi.org/10.1007/BF02293811
https://doi.org/10.1016/S0167-9473(02)00072-5
https://doi.org/10.1002/asmb.901
https://doi.org/10.1002/asmb.2072

calculate feasible correlation boundaries, and summarize and plot simulated variables.

Depends R (>= 3.4.0), SimMultiCorrData (>= 0.2.1)
License GPL-2

Imports BB, nlegslv, MASS, mvtnorm, Matrix, VGAM, triangle, ggplot2,
grid, stats, utils

Encoding UTF-8

LazyData true

RoxygenNote 6.0.1

Suggests knitr, rmarkdown, printr, bookdown, testthat

VignetteBuilder knitr

URL https://github.com/AFialkowski/SimCorrMix
NeedsCompilation no

Repository CRAN

Date/Publication 2018-07-01 13:31:03 UTC

Contents

calc_MIXMOMENTES v v e e e e e e e e e
contmixvarl L e e e

COIT_EITOT . . . v v e v e i e e e e e e e e e e e e e e e e e e
INEICOIT v i it i e i e e e e e e e e e e e e e e e e
INEICOIT2 o ot o o e
intercorr_cat_ nb L. L e e e e e e e e e
INEETCOIT_CAL_POIS « .« v v v v v e e e e e e e e e e e e e e e e
INEICOIT _COML v v v e e e e e e e e e e e e e e e e s e
intercorr_cont_nb L L e
intercorr_cont_nb2 L e e e
INEEICOIT_CONE_POIS . « . v v v v v e i e e e e e e e e e e e e e e e e e
INEErCOIT_CONt_POiS2 o v vt et e e e e e e e e e
INErCOIT_ND o o e e,
INEEICOIT_POIS « . v v v v v o e e e e e e e e e e e e e e
intercorr_pois_nbo
MAXCOUNL_SUPPOTL . .« v v o v v e i e e e e e e e e e e e e e e e e
NOrM_OTd o e e e e e e e e e e e e e e e
ord_NOIM o o e e e,
plot_simpdf theory
plot_simtheory
rho MIM2 e e
tho M1Y e
SIMCorrMIX e e e e e
SUMMATY_VAL .+« o v v v v e e e e e e e e e e e e e
validcorr L e e

Contents

https://github.com/AFialkowski/SimCorrMix

calc_mixmoments 3

valideorr2 L. 72
validpar L 77
Index 83
calc_mixmoments Find Standardized Cumulants of a Continuous Mixture Distribution by
Method of Moments
Description

This function uses the method of moments to calculate the expected mean, standard deviation,
skewness, standardized kurtosis, and standardized fifth and sixth cumulants for a continuous mix-
ture variable based on the distributions of its components. The result can be used as input to
find_constants or for comparison to a simulated mixture variable from contmixvar1, corrvar,
or corrvar?2. See the Expected Cumulants and Correlations for Continuous Mixture Variables
vignette for equations of the cumulants.

Usage

calc_mixmoments(mix_pis = NULL, mix_mus = NULL, mix_sigmas = NULL,
mix_skews = NULL, mix_skurts = NULL, mix_fifths = NULL,
mix_sixths = NULL)

Arguments
mix_pis a vector of mixing probabilities that sum to 1 for the component distributions
mix_mus a vector of means for the component distributions
mix_sigmas a vector of standard deviations for the component distributions
mix_skews a vector of skew values for the component distributions
mix_skurts a vector of standardized kurtoses for the component distributions
mix_fifths a vector of standardized fifth cumulants for the component distributions; keep
NULL if using method = "Fleishman" to generate continuous variables
mix_sixths a vector of standardized sixth cumulants for the component distributions; keep
NULL if using method = "Fleishman" to generate continuous variables
Value

A vector of the mean, standard deviation, skewness, standardized kurtosis, and standardized fifth
and sixth cumulants

References

Please see references for SimCorrMix.

4 contmixvarl

Examples

Mixture of Normal(-2, 1) and Normal(2, 1)

calc_mixmoments(mix_pis = c(@0.4, 0.6), mix_mus = c(-2, 2),
mix_sigmas = c(1, 1), mix_skews = c(@, @), mix_skurts = c(0, 0),
mix_fifths = c(@, @), mix_sixths = c(0@, @))

contmixvari Generation of One Continuous Variable with a Mixture Distribution
Using the Power Method Transformation

Description

This function simulates one continuous mixture variable. Mixture distributions describe random
variables that are drawn from more than one component distribution. For a random variable Y,,,;,
from a finite continuous mixture distribution with k& components, the probability density function
(PDF) can be described by:

k

k
hy (y) = Zﬂiin(y)7Z7Ti =1.

i=1

The 7; are mixing parameters which determine the weight of each component distribution fy;(y) in
the overall probability distribution. As long as each component has a valid PDF, the overall distribu-
tion hy (y) has a valid PDF. The main assumption is statistical independence between the process
of randomly selecting the component distribution and the distributions themselves. Each com-
ponent Y; is generated using either Fleishman’s third-order (method = "Fleishman", doi: 10.1007/
BF02293811) or Headrick’s fifth-order (method = "Polynomial", doi: 10.1016/S01679473(02)00072-
5) power method transformation (PMT). It works by matching standardized cumulants — the first
four (mean, variance, skew, and standardized kurtosis) for Fleishman’s method, or the first six
(mean, variance, skew, standardized kurtosis, and standardized fifth and sixth cumulants) for Head-
rick’s method. The transformation is expressed as follows:

Y=cotcr*xZ+coxZ*+e3xZ3+cyxZ* +cs+xZ°,Z ~ N(0,1),

where c4 and c5 both equal 0 for Fleishman’s method. The real constants are calculated by
find_constants. These components are then transformed to the desired mixture variable using a
random multinomial variable generated based on the mixing probabilities. There are no parameter
input checks in order to decrease simulation time. All inputs should be checked prior to simulation
with validpar. Summaries for the simulation results can be obtained with summary_var.

Mixture distributions provide a useful way for describing heterogeneity in a population, especially
when an outcome is a composite response from multiple sources. The vignette Variable Types
provides more information about simulation of mixture variables and the required parameters. The
vignette Expected Cumulants and Correlations for Continuous Mixture Variables gives the
equations for the expected cumulants of a mixture variable. In addition, Headrick & Kowalchuk
(2007, doi: 10.1080/10629360600605065) outlined a general method for comparing a simulated
distribution Y to a given theoretical distribution Y *. These steps can be found in the Continuous
Mixture Distributions vignette.

http://doi.org/10.1007/BF02293811
http://doi.org/10.1007/BF02293811
http://doi.org/10.1016/S0167-9473(02)00072-5
http://doi.org/10.1016/S0167-9473(02)00072-5
http://doi.org/10.1080/10629360600605065

contmixvarl 5

Usage

contmixvar1(n = 10000, method = c("Fleishman”, "Polynomial”), means = 0,
vars = 1, mix_pis = NULL, mix_mus = NULL, mix_sigmas = NULL,
mix_skews = NULL, mix_skurts = NULL, mix_fifths = NULL,
mix_sixths = NULL, mix_Six = list(), seed = 1234, cstart = list(),
quiet = FALSE)

Arguments

n the sample size (i.e. the length of the simulated variable; default = 10000)

method the method used to generate the component variables. "Fleishman" uses Fleish-
man’s third-order polynomial transformation and "Polynomial" uses Headrick’s
fifth-order transformation.

means mean for the mixture variable (default = 0)

vars variance for the mixture variable (default = 1)

mix_pis a vector of mixing probabilities that sum to 1 for the component distributions

mix_mus a vector of means for the component distributions

mix_sigmas a vector of standard deviations for the component distributions

mix_skews a vector of skew values for the component distributions

mix_skurts a vector of standardized kurtoses for the component distributions

mix_fifths a vector of standardized fifth cumulants for the component distributions; keep
NULL if using method = "Fleishman" to generate continuous variables

mix_sixths a vector of standardized sixth cumulants for the component distributions; keep
NULL if using method = "Fleishman" to generate continuous variables

mix_Six a list of vectors of sixth cumulant correction values for the component distri-
butions of Y,,;,; use NULL if no correction is desired for a given component;
if no correction is desired for any component keep as mix_Six = list() (not
necessary for method = "Fleishman")

seed the seed value for random number generation (default = 1234)

cstart a list of length equal to the total number of mixture components containing
initial values for root-solving algorithm used in find_constants. If user spec-
ified, each list element must be input as a matrix. For method = "Fleishman",
each should have 3 columns for ¢y, co, c3; for method = "Polynomial”, each
should have 5 columns for c1, co, c3,cq, c5. If no starting values are specified
for a given component, that list element should be NULL.

quiet if FALSE prints total simulation time

Value

A list with the following components:
constants a data.frame of the constants
Y_comp a data.frame of the components of the mixture variable

Y_mix a data.frame of the generated mixture variable

6 contmixvarl

sixth_correction the sixth cumulant correction values for Y_comp
valid.pdf "TRUE" if constants generate a valid PDF, else "FALSE"

Time the total simulation time in minutes

Overview of Simulation Process

1) A check is performed to see if any distributions are repeated within the parameter inputs, i.e. if
the mixture variable contains 2 components with the same standardized cumulants. These are noted
so that the constants are only calculated once.

2) The constants are calculated for each component variable using find_constants. If no solutions
are found that generate a valid power method PDF, the function will return constants that produce an
invalid PDF (or a stop error if no solutions can be found). Possible solutions include: 1) changing
the seed, or 2) using a mix_Six list with vectors of sixth cumulant correction values (if method
= "Polynomial"). Errors regarding constant calculation are the most probable cause of function
failure.

3) A matrix X_cont of dim n x length(mix_pis) of standard normal variables is generated and
singular-value decomposition is done to remove any correlation. The constants are applied to
X_cont to create the component variables Y with the desired distributions.

4) A random multinomial variable M = rmultinom(n, size =1, prob =mix_pis) is generated us-
ing stats::rmultinom. The continuous mixture variable Y_mix is created from the component
variables Y based on this multinomial variable. That is, if M[i, k_i] =1, then Y_mix[i] =Y[i,
k_i]. A location-scale transformation is done on Y_mix to give it mean means and variance vars.

Reasons for Function Errors

1) The most likely cause for function errors is that no solutions to fleish or poly converged
when using find_constants. If this happens, the simulation will stop. It may help to first use
find_constants for each component variable to determine if a sixth cumulant correction value
is needed. The solutions can be used as starting values (see cstart below). If the standardized
cumulants are obtained from calc_theory, the user may need to use rounded values as inputs (i.e.
skews = round(skews, 8)). For example, in order to ensure that skew is exactly O for symmetric
distributions.

2) The kurtosis may be outside the region of possible values. There is an associated lower boundary
for kurtosis associated with a given skew (for Fleishman’s method) or skew and fifth and sixth
cumulants (for Headrick’s method). Use calc_lower_skurt to determine the boundary for a given
set of cumulants.

References

See references for SimCorrMix.

See Also

find_constants, validpar, summary_var

corrvar 7

Examples

Mixture of Normal(-2, 1) and Normal(2, 1)

Nmix <- contmixvarl(n = 1000, "Polynomial”, means = @, vars = 1,
mix_pis = ¢(@0.4, 0.6), mix_mus = c(-2, 2), mix_sigmas = c(1, 1),
mix_skews = c(@, @), mix_skurts = c(@, 0), mix_fifths = c(0, 0),
mix_sixths = c(0, 0))

Not run:

Mixture of Beta(6, 3), Beta(4, 1.5), and Beta(10, 20)

Stcuml <- calc_theory("Beta”, c(6, 3))

Stcum2 <- calc_theory("Beta”, c(4, 1.5))

Stcum3 <- calc_theory("Beta”, c(10, 20))

mix_pis <- c¢(0.5, 0.2, 0.3)

mix_mus <- c(Stcum1[1], Stcum2[1], Stcum3[1])

mix_sigmas <- c(Stcum1[2], Stcum2[2], Stcum3[2])

mix_skews <- c(Stcum1[3], Stcum2[3], Stcum3[3])

mix_skurts <- c(Stcum1[4], Stcum2[4], Stcum3[4])

mix_fifths <- c(Stcum1[5], Stcum2[5], Stcum3[5])

mix_sixths <- c(Stcum1[6], Stcum2[6], Stcum3[6])

mix_Six <- list(seq(@.01, 10, 0.01), c(0.01, 0.02, 0.03),
seq(0.01, 10, 0.01))

Bstcum <- calc_mixmoments(mix_pis, mix_mus, mix_sigmas, mix_skews,
mix_skurts, mix_fifths, mix_sixths)

Bmix <- contmixvarl(n = 10000, "Polynomial”, Bstcum[1], Bstcum[2]"2,
mix_pis, mix_mus, mix_sigmas, mix_skews, mix_skurts, mix_fifths,
mix_sixths, mix_Six)

Bsum <- summary_var(Y_comp = Bmix$Y_comp, Y_mix = Bmix$Y_mix, means = means,
vars = vars, mix_pis = mix_pis, mix_mus = mix_mus,
mix_sigmas = mix_sigmas, mix_skews = mix_skews, mix_skurts = mix_skurts,
mix_fifths = mix_fifths, mix_sixths = mix_sixths)

End(Not run)

corrvar Generation of Correlated Ordinal, Continuous (mixture and non-
mixture), and/or Count (Poisson and Negative Binomial, regular and
zero-inflated) Variables: Correlation Method 1

Description

This function simulates k_cat ordinal (r > 2 categories), k_cont continuous non-mixture, k_mix
continuous mixture, k_pois Poisson (regular and zero-inflated), and/or k_nb Negative Binomial
(regular and zero-inflated) variables with a specified correlation matrix rho. The variables are gen-
erated from multivariate normal variables with intermediate correlation matrix Sigma, calculated
by intercorr, and then transformed. The intermediate correlations involving count variables are
determined using correlation method 1. The ordering of the variables in rho must be 1st ordinal,
2nd continuous non-mixture, 3rd components of the continuous mixture, 4th regular Poisson, 5th
zero-inflated Poisson, 6th regular NB, and 7th zero-inflated NB. Note that it is possible for k_cat,
k_cont, k_mix, k_pois, and/or k_nb to be 0. Simulation occurs at the component-level for con-
tinuous mixture distributions. The target correlation matrix is specified in terms of correlations

8 corrvar

with components of continuous mixture variables. There are no parameter input checks in order
to decrease simulation time. All inputs should be checked prior to simulation with validpar and
validcorr. Summaries for the simulation results can be obtained with summary_var.

All continuous variables are simulated using either Fleishman’s third-order (method = "Fleishman",
doi: 10.1007/BF02293811) or Headrick’s fifth-order (method = "Polynomial", doi: 10.1016/S0167-
9473(02)000725) power method transformation. It works by matching standardized cumulants —
the first four (mean, variance, skew, and standardized kurtosis) for Fleishman’s method, or the first
six (mean, variance, skew, standardized kurtosis, and standardized fifth and sixth cumulants) for
Headrick’s method. The transformation is expressed as follows:

Y=co+erxZ+cy*xZ>+e3xZ3+cyxZ +e5%x2°,Z ~ N(0,1),

where c4 and c5 both equal 0 for Fleishman’s method. The real constants are calculated by
find_constants. Continuous mixture variables are generated componentwise and then trans-
formed to the desired mixture variables based on random multinomial variables generated from
the mixing probabilities. Ordinal variables (r > 2 categories) are generated by discretizing the
standard normal variables at quantiles. These quantiles are determined by evaluating the inverse
standard normal CDF at the cumulative probabilities defined by each variable’s marginal distri-
bution. Count variables are generated using the inverse CDF method. The CDF of a standard
normal variable has a uniform distribution. The appropriate quantile function (F_Y)"(-1) is ap-
plied to this uniform variable with the designated parameters to generate the count variable: Y =
(F_Y)*(-1)(Phi(Z)). The Negative Binomial variable represents the number of failures which occur
in a sequence of Bernoulli trials before the target number of successes is achieved. Zero-inflated
Poisson or NB variables are obtained by setting the probability of a structural zero to be greater
than 0. The optional error loop attempts to correct the final pairwise correlations to be within a
user-specified precision value (epsilon) of the target correlations.

The vignette Variable Types discusses how each of the different variables are generated and de-
scribes the required parameters.

The vignette Overall Workflow for Generation of Correlated Data provides a detailed example
discussing the step-by-step simulation process and comparing correlation methods 1 and 2.

Usage

corrvar(n = 10000, k_cat = @, k_cont = @, k_mix = @, k_pois = @,
k_nb = @, method = c("Fleishman”, "Polynomial”), means = NULL,
vars = NULL, skews = NULL, skurts = NULL, fifths = NULL,
sixths = NULL, Six = list(), mix_pis = list(), mix_mus = list(),
mix_sigmas = list(), mix_skews = list(), mix_skurts = list(),
mix_fifths = list(), mix_sixths = list(), mix_Six = list(),
marginal = list(), support = list(), lam = NULL, p_zip = 0,
size = NULL, prob = NULL, mu = NULL, p_zinb = @, rho = NULL,
seed = 1234, errorloop = FALSE, epsilon = 0.001, maxit = 1000,
use.nearPD = TRUE, nrand = 100000, Sigma = NULL, cstart = list(),
quiet = FALSE)

Arguments

n the sample size (i.e. the length of each simulated variable; default = 10000)

http://doi.org/10.1007/BF02293811
http://doi.org/10.1016/S0167-9473(02)00072-5
http://doi.org/10.1016/S0167-9473(02)00072-5

corrvar

k_cat
k_cont
k_mix
k_pois
k_nb

method

means

vars

skews

skurts

fifths

sixths

Six

mix_pis

mix_mus

mix_sigmas

mix_skews

mix_skurts

mix_fifths

mix_sixths

the number of ordinal (r >= 2 categories) variables (default = 0)

the number of continuous non-mixture variables (default = 0)

the number of continuous mixture variables (default = Q)

the number of regular Poisson and zero-inflated Poisson variables (default = 0)

the number of regular Negative Binomial and zero-inflated Negative Binomial
variables (default = 0)

the method used to generate the k_cont non-mixture and k_mix mixture contin-
uous variables. "Fleishman" uses Fleishman’s third-order polynomial transfor-
mation and "Polynomial" uses Headrick’s fifth-order transformation.

a vector of means for the k_cont non-mixture and k_mix mixture continuous
variables (i.e. rep(0, (k_cont +k_mix)))

a vector of variances for the k_cont non-mixture and k_mix mixture continuous
variables (i.e. rep(1, (k_cont + k_mix)))

a vector of skewness values for the k_cont non-mixture continuous variables

a vector of standardized kurtoses (kurtosis - 3, so that normal variables have a
value of 0) for the k_cont non-mixture continuous variables

a vector of standardized fifth cumulants for the k_cont non-mixture continuous
variables (not necessary for method = "Fleishman")

a vector of standardized sixth cumulants for the k_cont non-mixture continuous
variables (not necessary for method = "Fleishman")

a list of vectors of sixth cumulant correction values for the k_cont non-mixture
continuous variables if no valid PDF constants are found,

ex: Six=1ist(seq(0.01, 2, 0.01), seq(1, 10, 0.5)); if no correction is
desired for Y,,+,, set the i-th list component equal to NULL; if no correction is
desired for any of the Y,,,,; keep as Six = 1list() (not necessary for method =
"Fleishman")

a list of length k_mix with i-th component a vector of mixing probabilities that
sum to 1 for component distributions of Yz,

a list of length k_mix with i-th component a vector of means for component
distributions of Yy,

a list of length k_mix with i-th component a vector of standard deviations for
component distributions of Y;,,;2,

alist of length k_mix with i-th component a vector of skew values for component
distributions of Yy,

a list of length k_mix with i-th component a vector of standardized kurtoses for
component distributions of Y,

a list of length k_mix with i-th component a vector of standardized fifth cumu-
lants for component distributions of Y,,,;., (not necessary for method = "Fleish-
man")

a list of length k_mix with i-th component a vector of standardized sixth cumu-
lants for component distributions of Y,,,;,., (not necessary for method = "Fleish-
man"

corrvar

mix_Six a list of length k_mix with i-th component a list of vectors of sixth cumulant
correction values for component distributions of Y;,,;., ; use NULL if no correction
is desired for a given component or mixture variable; if no correction is desired
for any of the Y,,,;, keep as mix_Six = list() (not necessary for method =
"Fleishman")

marginal a list of length equal to k_cat; the i-th element is a vector of the cumulative
probabilities defining the marginal distribution of the i-th variable; if the variable
can take r values, the vector will contain r - 1 probabilities (the r-th is assumed to
be 1); for binary variables, these should be input the same as for ordinal variables
with more than 2 categories (i.e. the user-specified probability is the probability
of the 1st category, which has the smaller support value)

support a list of length equal to k_cat; the i-th element is a vector containing the r
ordered support values; if not provided (i.e. support =1ist()), the default is
for the i-th element to be the vector 1, ..., r

lam a vector of lambda (mean > 0) constants for the Poisson variables (see stats: :dpois);
the order should be 1st regular Poisson variables, 2nd zero-inflated Poisson vari-
ables

p_zip a vector of probabilities of structural zeros (not including zeros from the Pois-

son distribution) for the zero-inflated Poisson variables (see VGAM: : dzipois); if
p_zip =0, Y,,is has a regular Poisson distribution; if p_zip is in (0, 1), Y,
has a zero-inflated Poisson distribution; if p_zip isin (-(exp(lam) - 1)*(-1),
0), Y,0is has a zero-deflated Poisson distribution and p_zip is not a probabil-
ity; if p_zip = -(exp(lam) - 1)*(-1), Yp0is has a positive-Poisson distribution
(see VGAM: :dpospois); if length(p_zip) < length(lam), the missing values
are set to O (and ordered 1st)

size a vector of size parameters for the Negative Binomial variables (see stats: :dnbinom);
the order should be 1st regular NB variables, 2nd zero-inflated NB variables

prob a vector of success probability parameters for the NB variables; order the same
asin size

mu a vector of mean parameters for the NB variables (*Note: either prob or mu

should be supplied for all Negative Binomial variables, not a mixture; default =
NULL); order the same as in size; for zero-inflated NB this refers to the mean
of the NB distribution (see VGAM: : dzinegbin)

p_zinb a vector of probabilities of structural zeros (not including zeros from the NB dis-
tribution) for the zero-inflated NB variables (see VGAM: : dzinegbin); if p_zinb
= 0, Y, has a regular NB distribution; if p_zinb is in (-prob*size/(1 -
prob*size), 0), Y,; has a zero-deflated NB distribution and p_zinb is not a
probability; if p_zinb = -prob*size/(1 - prob*size), Y,,; has a positive-NB
distribution (see VGAM: : dposnegbin); if length(p_zinb) < length(size), the
missing values are set to O (and ordered 1st)

rho the target correlation matrix which must be ordered /st ordinal, 2nd continu-
ous non-mixture, 3rd components of continuous mixtures, 4th regular Poisson,
Sth zero-inflated Poisson, 6th regular NB, 7th zero-inflated NB; note that rho is
specified in terms of the components of Y., ;.

seed the seed value for random number generation (default = 1234)

corrvar 11

errorloop if TRUE, uses corr_error to attempt to correct final pairwise correlations to be
within epsilon of target pairwise correlations (default = FALSE)

epsilon the maximum acceptable error between the final and target pairwise correlations
(default = 0.001) in the calculation of ordinal intermediate correlations with
ord_norm or in the error loop

maxit the maximum number of iterations to use (default = 1000) in the calculation of
ordinal intermediate correlations with ord_norm or in the error loop

use.nearPD TRUE to convert the overall intermediate correlation matrix to the nearest pos-
itive definite matrix with Matrix: :nearPD if necessary; if FALSE the negative
eigenvalues are replaced with 0 if necessary

nrand the number of random numbers to generate in calculating intermediate correla-
tions with intercorr (default = 10000)

Sigma an intermediate correlation matrix to use if the user wants to provide one, else it
is calculated within by intercorr

cstart a list of length equal to k_cont + the total number of mixture components con-
taining initial values for root-solving algorithm used in find_constants. If user
specified, each list element must be input as a matrix. For method = "Fleish-
man", each should have 3 columns for ¢y, ¢, c3; for method = "Polynomial",
each should have 5 columns for c1, c2, 3, ¢4, 5. If no starting values are speci-
fied for a given component, that list element should be NULL.

quiet if FALSE prints simulation messages, if TRUE suppresses message printing

Value

A list whose components vary based on the type of simulated variables.
If ordinal variables are produced: Y_cat the ordinal variables,

If continuous variables are produced:

constants a data.frame of the constants,

Y_cont the continuous non-mixture variables,

Y_comp the components of the continuous mixture variables,

Y_mix the continuous mixture variables,

sixth_correction a list of sixth cumulant correction values,

valid.pdf a vector where the i-th element is "TRUE" if the constants for the i-th continuous vari-
able generate a valid PDF, else "FALSE"

If Poisson variables are produced: Y_pois the regular and zero-inflated Poisson variables,

If Negative Binomial variables are produced: Y_nb the regular and zero-inflated Negative Bino-
mial variables,

Additionally, the following elements:

Sigma the intermediate correlation matrix (after the error loop),
Error_Time the time in minutes required to use the error loop,
Time the total simulation time in minutes,

niter a matrix of the number of iterations used for each variable in the error loop,

12 corrvar

Overview of Correlation Method 1

The intermediate correlations used in method 1 are more simulation based than those in method 2,
which means that accuracy increases with sample size and the number of repetitions. In addition,
specifying the seed allows for reproducibility. In addition, method 1 differs from method 2 in the
following ways:

1) The intermediate correlation for count variables is based on the method of Yahav & Shmueli
(2012, doi: 10.1002/asmb.901), which uses a simulation based, logarithmic transformation of the
target correlation. This method becomes less accurate as the variable mean gets closer to zero.

2) The ordinal - count variable correlations are based on an extension of the method of Amatya &
Demirtas (2015, doi: 10.1080/00949655.2014.953534), in which the correlation correction factor
is the product of the upper Frechet-Hoeffding bound on the correlation between the count variable
and the normal variable used to generate it and a simulated upper bound on the correlation between
an ordinal variable and the normal variable used to generate it (see Demirtas & Hedeker, 2011,
doi: 10.1198/tast.2011.10090).

3) The continuous - count variable correlations are based on an extension of the methods of
Amatya & Demirtas (2015) and Demirtas et al. (2012, doi: 10.1002/sim.5362), in which the cor-
relation correction factor is the product of the upper Frechet-Hoeffding bound on the correlation
between the count variable and the normal variable used to generate it and the power method corre-
lation between the continuous variable and the normal variable used to generate it (see Headrick &
Kowalchuk, 2007, doi: 10.1080/10629360600605065). The intermediate correlations are the ratio
of the target correlations to the correction factor.

Please see the Comparison of Correlation Methods 1 and 2 vignette for more information and a
step-by-step overview of the simulation process.

Choice of Fleishman’s third-order or Headrick’s fifth-order method

Using the fifth-order approximation allows additional control over the fifth and sixth moments of the
generated distribution, improving accuracy. In addition, the range of feasible standardized kurtosis
(2) values, given skew (v1) and standardized fifth (v3) and sixth (v4) cumulants, is larger than
with Fleishman’s method (see calc_lower_skurt). For example, the Fleishman method can not
be used to generate a non-normal distribution with a ratio of v3/y2 > 9/14 (see Headrick &
Kowalchuk, 2007). This eliminates the Chi-squared family of distributions, which has a constant
ratio of 73 /72 = 2/3. The fifth-order method also generates more distributions with valid PDF’s.
However, if the fifth and sixth cumulants are unknown or do not exist, the Fleishman approximation
should be used.

Reasons for Function Errors

1) The most likely cause for function errors is that no solutions to fleish or poly converged
when using find_constants. If this happens, the simulation will stop. It may help to first use
find_constants for each continuous variable to determine if a sixth cumulant correction value
is needed. The solutions can be used as starting values (see cstart below). If the standardized
cumulants are obtained from calc_theory, the user may need to use rounded values as inputs (i.e.
skews = round(skews, 8)). For example, in order to ensure that skew is exactly O for symmetric
distributions.

2) The kurtosis may be outside the region of possible values. There is an associated lower boundary
for kurtosis associated with a given skew (for Fleishman’s method) or skew and fifth and sixth

http://doi.org/10.1002/asmb.901
http://doi.org/10.1080/00949655.2014.953534
http://doi.org/10.1198/tast.2011.10090
http://doi.org/10.1002/sim.5362
http://doi.org/10.1080/10629360600605065

corrvar 13

cumulants (for Headrick’s method). Use calc_lower_skurt to determine the boundary for a given
set of cumulants.

3) The feasibility of the final correlation matrix rho, given the distribution parameters, should be
checked first using validcorr. This function either checks if a given rho is plausible or returns the
lower and upper final correlation limits. It should be noted that even if a target correlation matrix is
within the "plausible range," it still may not be possible to achieve the desired matrix. This happens
most frequently when generating ordinal variables or using negative correlations. The error loop
frequently fixes these problems.

References

Please see references for SimCorrMix.

See Also

find_constants, validpar, validcorr, intercorr, corr_error, summary_var

Examples

Sim1 <- corrvar(n = 1000, k_cat = 1, k_cont = 1, method = "Polynomial”,
means = @, vars = 1, skews = 0, skurts = 0, fifths = 0, sixths = 0,
marginal = list(c(1/3, 2/3)), support = list(0:2),
rho = matrix(c(1, 0.4, 0.4, 1), 2, 2), quiet = TRUE)

Not run:

2 continuous mixture, 1 binary, 1 zero-inflated Poisson, and
1 zero-inflated NB variable

n <- 10000

seed <- 1234

Mixture variables: Normal mixture with 2 components;
mixture of Logistic(@, 1), Chisq(4), Beta(4, 1.5)

Find cumulants of components of 2nd mixture variable
L <- calc_theory("Logistic", c(@, 1))

C <- calc_theory("Chisq"”, 4)

B <- calc_theory("Beta”, c(4, 1.5))

skews <- skurts <- fifths <- sixths <- NULL

Six <- list()

mix_pis <- list(c(0.4, 0.6), c(0.3, 0.2, 0.5))

mix_mus <- list(c(-2, 2), c(L[1], C[1]1, B[1]))

mix_sigmas <- list(c(1, 1), c(L[2], C[2]1, B[2]))
mix_skews <- list(rep(@, 2), c(L[3]1, C[3], B[31))
mix_skurts <- list(rep(@, 2), c(L[4]1, C[41, B[41))
mix_fifths <- list(rep(@, 2), c(L[5], C[51, B[51))
mix_sixths <- list(rep(@, 2), c(L[6], C[6]1, B[6]1))
mix_Six <- list(list(NULL, NULL), list(1.75, NULL, ©.03))

Nstcum <- calc_mixmoments(mix_pis[[1]1], mix_mus[[1]1], mix_sigmas[[1]],
mix_skews[[1]], mix_skurts[[1]], mix_fifths[[1]], mix_sixths[[1]])
Mstcum <- calc_mixmoments(mix_pis[[2]]1, mix_mus[[2]], mix_sigmas[[2]],
mix_skews[[2]], mix_skurts[[2]], mix_fifths[[2]], mix_sixths[[2]])

14

means <- c(Nstcum[1], Mstcum[1])
vars <- c(Nstcum[2]%2, Mstcum[2]"2)

marginal <- 1list(0.3)
support <- list(c(@, 1))
lam <- 0.5

p_zip <- 0.1

size <- 2

prob <- 0.75

p_zinb <- 0.2

k_cat <- k_pois <- k_nb <- 1

k_cont <- @

k_mix <- 2

Rey <- matrix(@.39, 8, 8)

diag(Rey) <- 1

rownames(Rey) <- colnames(Rey) <- c("01", "M1_1", "M1_2", "M2_1", "M2_2",
"M2_3", "P1", "NB1")

set correlation between components of the same mixture variable to @
Rey["M1_1", "M1_2"] <- Rey["M1_2", "M1_1"]1 <- @

Rey["M2_1", "M2_2"] <- Rey["M2_2", "M2_1"] <- Rey["M2_1", "M2_3"]
Rey["M2_3", "M2_1"] <- Rey["M2_2", "M2_3"] <- Rey["M2_3", "M2_2"]

check parameter inputs

validpar(k_cat, k_cont, k_mix, k_pois, k_nb, "Polynomial”, means,
vars, skews, skurts, fifths, sixths, Six, mix_pis, mix_mus, mix_sigmas,
mix_skews, mix_skurts, mix_fifths, mix_sixths, mix_Six, marginal, support,
lam, p_zip, size, prob, mu = NULL, p_zinb, rho = Rey)

check to make sure Rey is within the feasible correlation boundaries
validcorr(n, k_cat, k_cont, k_mix, k_pois, k_nb, "Polynomial”, means,
vars, skews, skurts, fifths, sixths, Six, mix_pis, mix_mus, mix_sigmas,
mix_skews, mix_skurts, mix_fifths, mix_sixths, mix_Six, marginal,
lam, p_zip, size, prob, mu = NULL, p_zinb, Rey, seed)

simulate without the error loop

Sim2 <- corrvar(n, k_cat, k_cont, k_mix, k_pois, k_nb, "Polynomial”, means,
vars, skews, skurts, fifths, sixths, Six, mix_pis, mix_mus, mix_sigmas,
mix_skews, mix_skurts, mix_fifths, mix_sixths, mix_Six, marginal, support,
lam, p_zip, size, prob, mu = NULL, p_zinb, Rey, seed, epsilon = 0.01)

names (Sim2)

simulate with the error loop

Sim2_EL <- corrvar(n, k_cat, k_cont, k_mix, k_pois, k_nb, "Polynomial”,
means, vars, skews, skurts, fifths, sixths, Six, mix_pis, mix_mus,
mix_sigmas, mix_skews, mix_skurts, mix_fifths, mix_sixths, mix_Six,
marginal, support, lam, p_zip, size, prob, mu = NULL, p_zinb, Rey,
seed, errorloop = TRUE, epsilon = 0.01)

names(Sim2_EL)

corrvar

corrvar2 15

End(Not run)

corrvar2 Generation of Correlated Ordinal, Continuous (mixture and non-
mixture), and/or Count (Poisson and Negative Binomial, regular and
zero-inflated) Variables: Correlation Method 2

Description

This function simulates k_cat ordinal (r > 2 categories), k_cont continuous non-mixture, k_mix
continuous mixture, k_pois Poisson (regular and zero-inflated), and/or k_nb Negative Binomial
(regular and zero-inflated) variables with a specified correlation matrix rho. The variables are gen-
erated from multivariate normal variables with intermediate correlation matrix Sigma, calculated
by intercorr2, and then transformed. The intermediate correlations involving count variables are
determined using correlation method 2. The ordering of the variables in rho must be 1st ordinal,
2nd continuous non-mixture, 3rd components of the continuous mixture, 4th regular Poisson, Sth
zero-inflated Poisson, 6th regular NB, and 7th zero-inflated NB. Note that it is possible for k_cat,
k_cont, k_mix, k_pois, and/or k_nb to be 0. Simulation occurs at the component-level for con-
tinuous mixture distributions. The target correlation matrix is specified in terms of correlations
with components of continuous mixture variables. There are no parameter input checks in order
to decrease simulation time. All inputs should be checked prior to simulation with validpar and
validcorr2. Summaries for the simulation results can be obtained with summary_var.

All continuous variables are simulated using either Fleishman’s third-order (method = "Fleishman",
doi: 10.1007/BF02293811) or Headrick’s fifth-order (method = "Polynomial", doi: 10.1016/S0167-
9473(02)000725) power method transformation. It works by matching standardized cumulants —
the first four (mean, variance, skew, and standardized kurtosis) for Fleishman’s method, or the first
six (mean, variance, skew, standardized kurtosis, and standardized fifth and sixth cumulants) for
Headrick’s method. The transformation is expressed as follows:

Y:co+01*Z—i—cg*ZQ+63*Z3+C4*Z4+C5*ZS,ZNN(OJ),

where ¢4 and c5 both equal 0 for Fleishman’s method. The real constants are calculated by
find_constants. Continuous mixture variables are generated componentwise and then trans-
formed to the desired mixture variables based on random multinomial variables generated from
the mixing probabilities. Ordinal variables (r > 2 categories) are generated by discretizing the
standard normal variables at quantiles. These quantiles are determined by evaluating the inverse
standard normal CDF at the cumulative probabilities defined by each variable’s marginal distri-
bution. Count variables are generated using the inverse CDF method. The CDF of a standard
normal variable has a uniform distribution. The appropriate quantile function (F_Y)"(-1) is ap-
plied to this uniform variable with the designated parameters to generate the count variable: Y =
(F_Y)*(-1)(Phi(Z)). The Negative Binomial variable represents the number of failures which occur
in a sequence of Bernoulli trials before the target number of successes is achieved. Zero-inflated
Poisson or NB variables are obtained by setting the probability of a structural zero to be greater
than 0. The optional error loop attempts to correct the final pairwise correlations to be within a
user-specified precision value (epsilon) of the target correlations.

http://doi.org/10.1007/BF02293811
http://doi.org/10.1016/S0167-9473(02)00072-5
http://doi.org/10.1016/S0167-9473(02)00072-5

16 corrvar2

The vignette Variable Types discusses how each of the different variables are generated and de-
scribes the required parameters.

The vignette Overall Workflow for Generation of Correlated Data provides a detailed example
discussing the step-by-step simulation process and comparing correlation methods 1 and 2.

Usage

corrvar2(n = 10000, k_cat = @, k_cont = @, k_mix = @, k_pois = 0,
k_nb = @, method = c("Fleishman”, "Polynomial”), means = NULL,
vars = NULL, skews = NULL, skurts = NULL, fifths = NULL,
sixths = NULL, Six = list(), mix_pis = list(), mix_mus = list(),
mix_sigmas = list(), mix_skews = list(), mix_skurts = list(),
mix_fifths = list(), mix_sixths = list(), mix_Six = list(),
marginal = list(), support = list(), lam = NULL, p_zip = 0,
size = NULL, prob = NULL, mu = NULL, p_zinb = @, pois_eps = 0.0001,
nb_eps = 0.0001, rho = NULL, seed = 1234, errorloop = FALSE,
epsilon = 0.001, maxit = 1000, use.nearPD = TRUE, Sigma = NULL,

cstart = list(), quiet = FALSE)
Arguments

n the sample size (i.e. the length of each simulated variable; default = 10000)

k_cat the number of ordinal (r >= 2 categories) variables (default = 0)

k_cont the number of continuous non-mixture variables (default = 0)

k_mix the number of continuous mixture variables (default = 0)

k_pois the number of regular Poisson and zero-inflated Poisson variables (default = 0)

k_nb the number of regular Negative Binomial and zero-inflated Negative Binomial
variables (default = 0)

method the method used to generate the k_cont non-mixture and k_mix mixture contin-
uous variables. "Fleishman" uses Fleishman’s third-order polynomial transfor-
mation and "Polynomial" uses Headrick’s fifth-order transformation.

means a vector of means for the k_cont non-mixture and k_mix mixture continuous
variables (i.e. rep(@, (k_cont +k_mix)))

vars a vector of variances for the k_cont non-mixture and k_mix mixture continuous
variables (i.e. rep(1, (k_cont +k_mix)))

skews a vector of skewness values for the k_cont non-mixture continuous variables

skurts a vector of standardized kurtoses (kurtosis - 3, so that normal variables have a
value of 0) for the k_cont non-mixture continuous variables

fifths a vector of standardized fifth cumulants for the k_cont non-mixture continuous
variables (not necessary for method = "Fleishman")

sixths a vector of standardized sixth cumulants for the k_cont non-mixture continuous
variables (not necessary for method = "Fleishman")

Six a list of vectors of sixth cumulant correction values for the k_cont non-mixture

continuous variables if no valid PDF constants are found,
ex: Six=1ist(seq(0.01, 2, 0.01), seq(1, 10, 0.5)); if no correction is

corrvar2 17

desired for Y,,+,, set the i-th list component equal to NULL; if no correction is
desired for any of the Y,,,,; keep as Six = 1list() (not necessary for method =
"Fleishman")

mix_pis a list of length k_mix with i-th component a vector of mixing probabilities that
sum to 1 for component distributions of Yz,

mix_mus a list of length k_mix with i-th component a vector of means for component
distributions of Yy,

mix_sigmas a list of length k_mix with i-th component a vector of standard deviations for
component distributions of Yy,

mix_skews alist of length k_mix with i-th component a vector of skew values for component
distributions of Yy,

mix_skurts a list of length k_mix with i-th component a vector of standardized kurtoses for
component distributions of Y;,,;z,

mix_fifths a list of length k_mix with i-th component a vector of standardized fifth cumu-
lants for component distributions of Y,,,;., (not necessary for method = "Fleish-
man")

mix_sixths a list of length k_mix with i-th component a vector of standardized sixth cumu-
lants for component distributions of Y;,,;,, (not necessary for method = "Fleish-
man"

mix_Six a list of length k_mix with i-th component a list of vectors of sixth cumulant

correction values for component distributions of Y,,,;,. ; use NULL if no correction
is desired for a given component or mixture variable; if no correction is desired
for any of the Y,,;, keep as mix_Six = list() (not necessary for method =
"Fleishman")

marginal a list of length equal to k_cat; the i-th element is a vector of the cumulative
probabilities defining the marginal distribution of the i-th variable; if the variable
can take r values, the vector will contain r - 1 probabilities (the r-th is assumed to
be 1); for binary variables, these should be input the same as for ordinal variables
with more than 2 categories (i.e. the user-specified probability is the probability
of the 1st category, which has the smaller support value)

support a list of length equal to k_cat; the i-th element is a vector containing the r
ordered support values; if not provided (i.e. support =1ist()), the default is
for the i-th element to be the vector 1, ..., r

lam a vector of lambda (mean > 0) constants for the Poisson variables (see stats: :dpois);
the order should be 1st regular Poisson variables, 2nd zero-inflated Poisson vari-
ables

p_zip a vector of probabilities of structural zeros (not including zeros from the Pois-

son distribution) for the zero-inflated Poisson variables (see VGAM: : dzipois); if
p_zip =0, Yy0s has a regular Poisson distribution; if p_zip is in (0, 1), Y05
has a zero-inflated Poisson distribution; if p_zip isin (-(exp(lam) - 1)*(-1),
0), Y,0is has a zero-deflated Poisson distribution and p_zip is not a probabil-
ity; if p_zip = -(exp(lam) - 1)*(-1), Y}, has a positive-Poisson distribution
(see VGAM: :dpospois); if length(p_zip) < length(lam), the missing values
are set to O (and ordered 1st)

18

size

prob

mu

p_zinb

pois_eps

nb_eps

rho

seed

errorloop

epsilon

maxit

use.nearPD

Sigma

cstart

quiet

corrvar2

a vector of size parameters for the Negative Binomial variables (see stats: : dnbinom);

the order should be 1st regular NB variables, 2nd zero-inflated NB variables

a vector of success probability parameters for the NB variables; order the same
asin size

a vector of mean parameters for the NB variables (*Note: either prob or mu
should be supplied for all Negative Binomial variables, not a mixture; default =
NULL); order the same as in size; for zero-inflated NB this refers to the mean
of the NB distribution (see VGAM: : dzinegbin)

a vector of probabilities of structural zeros (not including zeros from the NB dis-
tribution) for the zero-inflated NB variables (see VGAM: : dzinegbin); if p_zinb
= 0, Y, has a regular NB distribution; if p_zinb is in (-prob*size/(1 -
prob*size), 0), Y,; has a zero-deflated NB distribution and p_zinb is not a
probability; if p_zinb = -prob*size/(1 - prob*size), Y,,; has a positive-NB
distribution (see VGAM: : dposnegbin); if length(p_zinb) < length(size), the
missing values are set to O (and ordered 1st)

a vector of length k_pois containing total cumulative probability truncation val-
ues; if none are provided, the default is 0.0001 for each variable

a vector of length k_nb containing total cumulative probability truncation val-
ues; if none are provided, the default is 0.0001 for each variable

the target correlation matrix which must be ordered /st ordinal, 2nd continu-
ous non-mixture, 3rd components of continuous mixtures, 4th regular Poisson,
Sth zero-inflated Poisson, 6th regular NB, 7th zero-inflated NB; note that rho is
specified in terms of the components of Y;,,;,

the seed value for random number generation (default = 1234)

if TRUE, uses corr_error to attempt to correct final pairwise correlations to be
within epsilon of target pairwise correlations (default = FALSE)

the maximum acceptable error between the final and target pairwise correlations
(default = 0.001) in the calculation of ordinal intermediate correlations with
ord_norm or in the error loop

the maximum number of iterations to use (default = 1000) in the calculation of
ordinal intermediate correlations with ord_norm or in the error loop

TRUE to convert the overall intermediate correlation matrix to the nearest pos-
itive definite matrix with Matrix: :nearPD if necessary; if FALSE the negative
eigenvalues are replaced with 0O if necessary

an intermediate correlation matrix to use if the user wants to provide one, else it
is calculated within by intercorr2

a list of length equal to k_cont + the total number of mixture components con-
taining initial values for root-solving algorithm used in find_constants. If user
specified, each list element must be input as a matrix. For method = "Fleish-
man", each should have 3 columns for ¢y, co, c3; for method = "Polynomial”,
each should have 5 columns for c1, c2, 3, ¢4, 5. If no starting values are speci-
fied for a given component, that list element should be NULL.

if FALSE prints simulation messages, if TRUE suppresses message printing

corrvar2 19

Value

A list whose components vary based on the type of simulated variables.
If ordinal variables are produced: Y_cat the ordinal variables,

If continuous variables are produced:

constants a data.frame of the constants,

Y_cont the continuous non-mixture variables,

Y_comp the components of the continuous mixture variables,

Y_mix the continuous mixture variables,

sixth_correction a list of sixth cumulant correction values,

valid.pdf a vector where the i-th element is "TRUE" if the constants for the i-th continuous vari-
able generate a valid PDF, else "FALSE"

If Poisson variables are produced: Y_pois the regular and zero-inflated Poisson variables,

If Negative Binomial variables are produced: Y_nb the regular and zero-inflated Negative Bino-
mial variables,

Additionally, the following elements:

Sigma the intermediate correlation matrix (after the error loop),
Error_Time the time in minutes required to use the error loop,
Time the total simulation time in minutes,

niter a matrix of the number of iterations used for each variable in the error loop,

Overview of Method 2

The intermediate correlations used in method 2 are less simulation based than those in method 1,
and no seed is needed. Their calculations involve greater utilization of correction loops which make
iterative adjustments until a maximum error has been reached (if possible). In addition, method 2
differs from method 1 in the following ways:

1) The intermediate correlations involving count variables are based on the methods of Barbiero &
Ferrari (2012, doi: 10.1080/00273171.2012.692630, 2015, doi: 10.1002/asmb.2072). The Poisson
or Negative Binomial support is made finite by removing a small user-specified value (i.e. 1e-06)
from the total cumulative probability. This truncation factor may differ for each count variable.
The count variables are subsequently treated as ordinal and intermediate correlations are calculated
using the correction loop of ord_norm.

2) The continuous - count variable correlations are based on an extension of the method of
Demirtas et al. (2012, doi: 10.1002/sim.5362), and the count variables are treated as ordinal.
The correction factor is the product of the power method correlation between the continuous vari-
able and the normal variable used to generate it (see Headrick & Kowalchuk, 2007, doi: 10.1080/
10629360600605065) and the point-polyserial correlation between the ordinalized count variable
and the normal variable used to generate it (see Olsson et al., 1982, doi: 10.1007/BF02294164).
The intermediate correlations are the ratio of the target correlations to the correction factor.

Please see the Comparison of Correlation Methods 1 and 2 vignette for more information and a
step-by-step overview of the simulation process.

http://doi.org/10.1080/00273171.2012.692630
http://doi.org/10.1002/asmb.2072
http://doi.org/10.1002/sim.5362
http://doi.org/10.1080/10629360600605065
http://doi.org/10.1080/10629360600605065
http://doi.org/10.1007/BF02294164

20 corrvar2

Choice of Fleishman’s third-order or Headrick’s fifth-order method

Using the fifth-order approximation allows additional control over the fifth and sixth moments of the
generated distribution, improving accuracy. In addition, the range of feasible standardized kurtosis
(772) values, given skew (7;) and standardized fifth (v3) and sixth (v4) cumulants, is larger than
with Fleishman’s method (see calc_lower_skurt). For example, the Fleishman method can not
be used to generate a non-normal distribution with a ratio of vi/y2 > 9/14 (see Headrick &
Kowalchuk, 2007). This eliminates the Chi-squared family of distributions, which has a constant
ratio of 4% /2 = 2/3. The fifth-order method also generates more distributions with valid PDF’s.
However, if the fifth and sixth cumulants are unknown or do not exist, the Fleishman approximation
should be used.

Reasons for Function Errors

1) The most likely cause for function errors is that no solutions to fleish or poly converged
when using find_constants. If this happens, the simulation will stop. It may help to first use
find_constants for each continuous variable to determine if a sixth cumulant correction value
is needed. The solutions can be used as starting values (see cstart below). If the standardized
cumulants are obtained from calc_theory, the user may need to use rounded values as inputs (i.e.
skews = round(skews, 8)). For example, in order to ensure that skew is exactly O for symmetric
distributions.

2) The kurtosis may be outside the region of possible values. There is an associated lower boundary
for kurtosis associated with a given skew (for Fleishman’s method) or skew and fifth and sixth
cumulants (for Headrick’s method). Use calc_lower_skurt to determine the boundary for a given
set of cumulants.

3) The feasibility of the final correlation matrix rho, given the distribution parameters, should be
checked first using validcorr2. This function either checks if a given rho is plausible or returns the
lower and upper final correlation limits. It should be noted that even if a target correlation matrix is
within the "plausible range," it still may not be possible to achieve the desired matrix. This happens
most frequently when generating ordinal variables or using negative correlations. The error loop
frequently fixes these problems.

References

Barbiero A & Ferrari PA (2015). Simulation of correlated Poisson variables. Applied Stochastic
Models in Business and Industry, 31:669-80. doi: 10.1002/asmb.2072.

Barbiero A & Ferrari PA (2015). GenOrd: Simulation of Discrete Random Variables with Given
Correlation Matrix and Marginal Distributions. R package version 1.4.0.
https://CRAN.R-project.org/package=GenOrd

Davenport JW, Bezder JC, & Hathaway RJ (1988). Parameter Estimation for Finite Mixture Distri-
butions. Computers & Mathematics with Applications, 15(10):819-28.

Demirtas H (2006). A method for multivariate ordinal data generation given marginal distributions
and correlations. Journal of Statistical Computation and Simulation, 76(11):1017-1025.
doi: 10.1080/10629360600569246.

Demirtas H (2014). Joint Generation of Binary and Nonnormal Continuous Data. Biometrics &
Biostatistics, S12.

http://doi.org/10.1002/asmb.2072
https://CRAN.R-project.org/package=GenOrd
http://doi.org/10.1080/10629360600569246

corrvar2 21

Demirtas H, Hedeker D, & Mermelstein RJ (2012). Simulation of massive public health data by
power polynomials. Statistics in Medicine, 31(27):3337-3346. doi: 10.1002/sim.5362.

Everitt BS (1996). An Introduction to Finite Mixture Distributions. Statistical Methods in Medical
Research, 5(2):107-127. doi: 10.1177/096228029600500202.

Ferrari PA & Barbiero A (2012). Simulating ordinal data. Multivariate Behavioral Research, 47(4):
566-589. doi: 10.1080/00273171.2012.692630.

Fialkowski AC (2018). SimMultiCorrData: Simulation of Correlated Data with Multiple Variable
Types. R package version 0.2.2. https://CRAN.R-project.org/package=SimMultiCorrData.
Fleishman AI (1978). A Method for Simulating Non-normal Distributions. Psychometrika, 43:521-
532. doi: 10.1007/BF02293811.

Headrick TC (2002). Fast Fifth-order Polynomial Transforms for Generating Univariate and Mul-
tivariate Non-normal Distributions. Computational Statistics & Data Analysis, 40(4):685-711.
doi: 10.1016/S01679473(02)000725. (ScienceDirect)

Headrick TC (2004). On Polynomial Transformations for Simulating Multivariate Nonnormal Dis-
tributions. Journal of Modern Applied Statistical Methods, 3(1):65-71. doi: 10.22237/jmasm/
1083370080.

Headrick TC, Kowalchuk RK (2007). The Power Method Transformation: Its Probability Den-
sity Function, Distribution Function, and Its Further Use for Fitting Data. Journal of Statistical
Computation and Simulation, 77:229-249. doi: 10.1080/10629360600605065.

Headrick TC, Sawilowsky SS (1999). Simulating Correlated Non-normal Distributions: Extending
the Fleishman Power Method. Psychometrika, 64:25-35. doi: 10.1007/BF02294317.

Headrick TC, Sheng Y, & Hodis FA (2007). Numerical Computing and Graphics for the Power
Method Transformation Using Mathematica. Journal of Statistical Software, 19(3):1 - 17.

doi: 10.18637/jss.v019.103.

Higham N (2002). Computing the nearest correlation matrix - a problem from finance; IMA Journal
of Numerical Analysis 22:329-343.

Ismail N & Zamani H (2013). Estimation of Claim Count Data Using Negative Binomial, Gener-
alized Poisson, Zero-Inflated Negative Binomial and Zero-Inflated Generalized Poisson Regression
Models. Casualty Actuarial Society E-Forum 41(20):1-28.

Lambert D (1992). Zero-Inflated Poisson Regression, with an Application to Defects in Manufac-
turing. Technometrics 34(1):1-14.

Olsson U, Drasgow F, & Dorans NJ (1982). The Polyserial Correlation Coefficient. Psychometrika,
47(3):337-47. doi: 10.1007/BF02294164.

Pearson RK (2011). Exploring Data in Engineering, the Sciences, and Medicine. In. New York:
Oxford University Press.

Schork NIJ, Allison DB, & Thiel B (1996). Mixture Distributions in Human Genetics Research.
Statistical Methods in Medical Research, 5:155-178. doi: 10.1177/096228029600500204.

Vale CD & Maurelli VA (1983). Simulating Multivariate Nonnormal Distributions. Psychometrika,
48:465-471. doi: 10.1007/BF02293687.

Yee TW (2018). VGAM: Vector Generalized Linear and Additive Models. R package version 1.0-5.
https://CRAN.R-project.org/package=VGAM.

Zhang X, Mallick H, & Yi N (2016). Zero-Inflated Negative Binomial Regression for Differential

Abundance Testing in Microbiome Studies. Journal of Bioinformatics and Genomics 2(2):1-9.
doi: 10.18454/jbg.2016.2.2.1.

http://doi.org/10.1002/sim.5362
http://doi.org/10.1177/096228029600500202
http://doi.org/10.1080/00273171.2012.692630
https://CRAN.R-project.org/package=SimMultiCorrData
http://doi.org/10.1007/BF02293811
http://doi.org/10.1016/S0167-9473(02)00072-5
http://www.sciencedirect.com/science/article/pii/S0167947302000725
http://doi.org/10.22237/jmasm/1083370080
http://doi.org/10.22237/jmasm/1083370080
http://doi.org/10.1080/10629360600605065
http://doi.org/10.1007/BF02294317
http://doi.org/10.18637/jss.v019.i03
http://doi.org/10.1007/BF02294164
http://doi.org/10.1177/096228029600500204
http://doi.org/10.1007/BF02293687
https://CRAN.R-project.org/package=VGAM
http://doi.org/10.18454/jbg.2016.2.2.1

22

See Also

find_constants, validpar, validcorr2, intercorr2, corr_error, summary_var

Examples

Siml <- corrvar2(n = 1000, k_cat = 1, k_cont = 1, method = "Polynomial”,
means = @, vars = 1, skews = 0, skurts = 0, fifths = @, sixths = 0,
marginal = list(c(1/3, 2/3)), support = list(0:2),
rho = matrix(c(1, 0.4, 0.4, 1), 2, 2), quiet = TRUE)

Not run:

2 continuous mixture, 1 binary, 1 zero-inflated Poisson, and
1 zero-inflated NB variable

n <- 10000

seed <- 1234

Mixture variables: Normal mixture with 2 components;
mixture of Logistic(@, 1), Chisq(4), Beta(4, 1.5)

Find cumulants of components of 2nd mixture variable
L <- calc_theory("Logistic", c(@, 1))

C <- calc_theory("Chisq", 4)

B <- calc_theory("Beta”, c(4, 1.5))

skews <- skurts <- fifths <- sixths <- NULL

Six <- list()

mix_pis <- list(c(0.4, 0.6), c(0.3, 0.2, 0.5))

mix_mus <- list(c(-2, 2), c(L[1]1, C[1], B[11))

mix_sigmas <- list(c(1, 1), c(L[2], C[2]1, B[2]1))
mix_skews <- list(rep(@, 2), c(L[3], C[31, BL31))
mix_skurts <- list(rep(@, 2), c(L[4]1, C[4]1, B[41))
mix_fifths <- list(rep(@, 2), c(L[5], C[5], B[51))
mix_sixths <- list(rep(@, 2), c(L[6], C[6], B[61))
mix_Six <- list(list(NULL, NULL), list(1.75, NULL, ©.03))

Nstcum <- calc_mixmoments(mix_pis[[1]1], mix_mus[[1]], mix_sigmas[[1]],
mix_skews[[1]], mix_skurts[[1]], mix_fifths[[1]], mix_sixths[[1]])
Mstcum <- calc_mixmoments(mix_pis[[2]], mix_mus[[2]1], mix_sigmas[[2]],
mix_skews[[2]], mix_skurts[[2]], mix_fifths[[2]], mix_sixths[[2]])

means <- c(Nstcum[1], Mstcum[1])
vars <- c(Nstcum[2]72, Mstcum[2]"2)

marginal <- 1list(0.3)
support <- list(c(@, 1))
lam <- 0.5

p_zip <- 0.1

pois_eps <- 0.0001

size <- 2

prob <- 0.75

p_zinb <- 9.2

nb_eps <- 0.0001

k_cat <- k_pois <- k_nb <- 1

corrvar2

corr_error 23

k_cont <- @

k_mix <- 2

Rey <- matrix(0.39, 8, 8)

diag(Rey) <- 1

rownames (Rey) <- colnames(Rey) <- c("01", "M1_1", "M1_2", "M2_1", "M2_2",
"M2_3", "P1", "NB1")

set correlation between components of the same mixture variable to 0@
Rey["M1_1", "M1_2"] <- Rey["M1_2", "M1_1"]1 <- @

Rey["M2_1", "M2_2"] <- Rey["M2_2", "M2_1"] <- Rey["M2_1", "M2_3"] <- 0@
Rey["M2_3", "M2_1"] <- Rey["M2_2", "M2_3"] <- Rey["M2_3", "M2_2"] <- @

check parameter inputs

validpar(k_cat, k_cont, k_mix, k_pois, k_nb, "Polynomial”, means,
vars, skews, skurts, fifths, sixths, Six, mix_pis, mix_mus, mix_sigmas,
mix_skews, mix_skurts, mix_fifths, mix_sixths, mix_Six, marginal, support,
lam, p_zip, size, prob, mu = NULL, p_zinb, pois_eps, nb_eps, Rey)

check to make sure Rey is within the feasible correlation boundaries
validcorr2(n, k_cat, k_cont, k_mix, k_pois, k_nb, "Polynomial”, means,
vars, skews, skurts, fifths, sixths, Six, mix_pis, mix_mus, mix_sigmas,
mix_skews, mix_skurts, mix_fifths, mix_sixths, mix_Six, marginal,
lam, p_zip, size, prob, mu = NULL, p_zinb, pois_eps, nb_eps, Rey, seed)

simulate without the error loop

Sim2 <- corrvar2(n, k_cat, k_cont, k_mix, k_pois, k_nb, "Polynomial”, means,
vars, skews, skurts, fifths, sixths, Six, mix_pis, mix_mus, mix_sigmas,
mix_skews, mix_skurts, mix_fifths, mix_sixths, mix_Six, marginal, support,
lam, p_zip, size, prob, mu = NULL, p_zinb, pois_eps, nb_eps, Rey, seed,
epsilon = 0.01)

names(Sim2)

simulate with the error loop

Sim2_EL <- corrvar2(n, k_cat, k_cont, k_mix, k_pois, k_nb, "Polynomial”,
means, vars, skews, skurts, fifths, sixths, Six, mix_pis, mix_mus,
mix_sigmas, mix_skews, mix_skurts, mix_fifths, mix_sixths, mix_Six,
marginal, support, lam, p_zip, size, prob, mu = NULL, p_zinb, pois_eps,
nb_eps, Rey, seed, errorloop = TRUE, epsilon = 0.01)

names (Sim2_EL)

End(Not run)

corr_error Error Loop to Correct Final Correlation of Simulated Variables

Description

This function attempts to correct the final pairwise correlations of simulated variables to be within
epsilon of the target correlations. It updates the intermediate normal correlation iteratively in a

24 corr_error

loop until either the maximum error is less than epsilon or the number of iterations exceeds maxit.
This function would not ordinarily be called directly by the user. The function is a modification
of Barbiero & Ferrari’s ordcont function in GenOrd-package. The ordcont function has been
modified in the following ways:

1) It works for continuous, ordinal (r >= 2 categories), and count (regular or zero-inflated, Poisson
or Negative Binomial) variables.

2) The initial correlation check has been removed because the intermediate correlation matrix Sigma
from corrvar or corrvar?2 has already been checked for positive-definiteness and used to generate
variables.

3) Eigenvalue decomposition is done on Sigma to impose the correct intermediate correlations on
the normal variables. If Sigma is not positive-definite, the negative eigenvalues are replaced with 0.

4) The final positive-definite check has been removed.
5) The intermediate correlation update function was changed to accommodate more situations.
6) Allowing specifications for the sample size and the seed for reproducibility.

The vignette Variable Types describes the algorithm used in the error loop.

Usage

corr_error(n = 10000, k_cat = @, k_cont = @, k_pois = @, k_nb = 0,
method = c("Fleishman”, "Polynomial”), means = NULL, vars = NULL,
constants = NULL, marginal = list(), support = list(), lam = NULL,
p_zip = @, size = NULL, mu = NULL, p_zinb = @, seed = 1234,
epsilon = 0.001, maxit = 1000, rho® = NULL, Sigma = NULL,
rho_calc = NULL)

Arguments

n the sample size

k_cat the number of ordinal (r >= 2 categories) variables

k_cont the number of continuous variables (these may be regular continuous variables
or components of continuous mixture variables)

k_pois the number of Poisson (regular or zero-inflated) variables

k_nb the number of Negative Binomial (regular or zero-inflated) variables

method the method used to generate the continuous variables. "Fleishman" uses a third-
order polynomial transformation and "Polynomial" uses Headrick’s fifth-order
transformation.

means a vector of means for the continuous variables

vars a vector of variances for the continuous variables

constants a matrix with k_cont rows, each a vector of constants c0, c1, c2, c3 (if method
= "Fleishman") or c0, cl, c2, c3, c4, c¢5 (if method = "Polynomial"), like that
returned by find_constants

marginal a list of length equal k_cat; the i-th element is a vector of the cumulative proba-

bilities defining the marginal distribution of the i-th variable; if the variable can
take r values, the vector will contain r - 1 probabilities (the r-th is assumed to be

1y

corr_error

support

lam

p_zip

size

mu

p_zinb

seed

epsilon

maxit

rho@
Sigma

rho_calc

Value

25

a list of length equal k_cat; the i-th element is a vector of containing the r
ordered support values; if not provided, the default is for the i-th element to be
the vector 1, ..., r

a vector of lambda (mean > 0) constants for the Poisson variables (see stats: :dpois);
the order should be 1st regular Poisson variables, 2nd zero-inflated Poisson vari-
ables

a vector of probabilities of structural zeros (not including zeros from the Poisson
distribution) for the zero-inflated Poisson variables (see VGAM: :dzipois)

a vector of size parameters for the Negative Binomial variables (see stats: :dnbinom);
the order should be 1st regular NB variables, 2nd zero-inflated NB variables

a vector of mean parameters for the NB variables; order the same as in size; for
zero-inflated NB this refers to the mean of the NB distribution (see VGAM: : dzinegbin)

a vector of probabilities of structural zeros (not including zeros from the NB
distribution) for the zero-inflated NB variables (see VGAM: : dzinegbin)

the seed value for random number generation

the maximum acceptable error between the final and target pairwise correlation;
smaller epsilons take more time

the maximum number of iterations to use to find the intermediate correlation; the
correction loop stops when either the iteration number passes maxit or epsilon
is reached

the target correlation matrix
the intermediate correlation matrix previously used in corrvar or corrvar?2

the final correlation matrix calculated in corrvar or corrvar?2 before execution
of corr_error

A list with the following components:

Sigma the intermediate MVN correlation matrix resulting from the error loop

rho_calc the calculated final correlation matrix generated from Sigma

Y_cat the ordinal variables

Y the continuous (mean 0, variance 1) variables

Y_cont the continuous variables with desired mean and variance

Y_pois the Poisson variables

Y_nb the Negative Binomial variables

niter a matrix containing the number of iterations required for each variable pair

References

Please see references for SimCorrMix.

See Also

corrvar, corrvar?2

26

intercorr

intercorr Calculate Intermediate MVN Correlation for Ordinal, Continuous,
Poisson, or Negative Binomial Variables: Correlation Method 1

Description

This function calculates a k x k intermediate matrix of correlations, where k = k_cat + k_cont +
k_pois + k_nb, to be used in simulating variables with corrvar. The k_cont includes regular
continuous variables and components of continuous mixture variables. The ordering of the vari-
ables must be ordinal, continuous non-mixture, components of continuous mixture variables, reg-
ular Poisson, zero-inflated Poisson, regular Negative Binomial (NB), and zero-inflated NB (note
that it is possible for k_cat, k_cont, k_pois, and/or k_nb to be 0). There are no parameter input
checks in order to decrease simulation time. All inputs should be checked prior to simulation with
validpar. There is a message given if the calculated intermediate correlation matrix Sigma is not
positive-definite because it may not be possible to find a MVN correlation matrix that will produce
the desired marginal distributions. This function is called by the simulation function corrvar, and
would only be used separately if the user wants to first find the intermediate correlation matrix. This
matrix Sigma can be used as an input to corrvar.

Please see the Comparison of Correlation Methods 1 and 2 vignette for information about calcu-
lations by variable pair type and the differences between this function and intercorr?2.

Usage

intercorr(k_cat = @, k_cont = @, k_pois = 0, k_nb = 0,
method = c("Fleishman”, "Polynomial”), constants = NULL,
marginal = list(), support = list(), lam = NULL, p_zip = 0,
size = NULL, prob = NULL, mu = NULL, p_zinb = @, rho = NULL,
seed = 1234, epsilon = 0.001, maxit = 1000, nrand = 100000,
quiet = FALSE)

Arguments

k_cat the number of ordinal (r >= 2 categories) variables (default = 0)

k_cont the number of continuous non-mixture variables and components of continuous
mixture variables (default = 0)

k_pois the number of regular and zero-inflated Poisson variables (default = 0)

k_nb the number of regular and zero-inflated Negative Binomial variables (default =
0)

method the method used to generate the k_cont continuous variables. "Fleishman" uses
a third-order polynomial transformation and "Polynomial" uses Headrick’s fifth-
order transformation.

constants a matrix with k_cont rows, each a vector of constants c0, c1, c2, c3 (if method

= "Fleishman") or c0, cl, c2, c3, c4, c5 (if method = "Polynomial") like that
returned by find_constants

intercorr 27

marginal a list of length equal to k_cat; the i-th element is a vector of the cumulative
probabilities defining the marginal distribution of the i-th variable; if the variable
can take r values, the vector will contain r - 1 probabilities (the r-th is assumed
to be 1; default = list())

support a list of length equal to k_cat; the i-th element is a vector of containing the r
ordered support values; if not provided (i.e. support = list()), the default is for
the i-th element to be the vector 1, ..., r

lam a vector of lambda (mean > 0) constants for the regular and zero-inflated Poisson
variables (see stats: :dpois); the order should be 1st regular Poisson variables,
2nd zero-inflated Poisson variables

p_zip a vector of probabilities of structural zeros (not including zeros from the Pois-
son distribution) for the zero-inflated Poisson variables (see VGAM: : dzipois); if
p_zip =0, Y}, has a regular Poisson distribution; if p_zip is in (0, 1), Y,
has a zero-inflated Poisson distribution; if p_zip isin (-(exp(lam) - 1)*(-1),
0), Ypis has a zero-deflated Poisson distribution and p_zip is not a probabil-
ity; if p_zip = -(exp(lam) - 1)*(-1), Y0, has a positive-Poisson distribution
(see VGAM: :dpospois); if length(p_zip) < length(lam), the missing values
are set to O (and ordered 1st)

size a vector of size parameters for the Negative Binomial variables (see stats: : dnbinom);
the order should be 1st regular NB variables, 2nd zero-inflated NB variables

prob a vector of success probability parameters for the NB variables; order the same
asin size

mu a vector of mean parameters for the NB variables (*Note: either prob or mu

should be supplied for all Negative Binomial variables, not a mixture; default =
NULL); order the same as in size; for zero-inflated NB this refers to the mean
of the NB distribution (see VGAM: : dzinegbin)

p_zinb a vector of probabilities of structural zeros (not including zeros from the NB dis-
tribution) for the zero-inflated NB variables (see VGAM: : dzinegbin); if p_zinb
= 0, Y, has a regular NB distribution; if p_zinb is in (-prob*size/(1 -
prob*size), 0), Y,; has a zero-deflated NB distribution and p_zinb is not a
probability; if p_zinb = -prob*size/(1 - prob*size), Y,,; has a positive-NB
distribution (see VGAM: : dposnegbin); if length(p_zinb) < length(size), the
missing values are set to 0 (and ordered 1st)

rho the target correlation matrix which must be ordered /st ordinal, 2nd continu-
ous non-mixture, 3rd components of continuous mixtures, 4th regular Poisson,
Sth zero-inflated Poisson, 6th regular NB, 7th zero-inflated NB; note that rho is
specified in terms of the components of Y., ;.

seed the seed value for random number generation (default = 1234)

epsilon the maximum acceptable error between the pairwise correlations (default = 0.001)
in the calculation of ordinal intermediate correlations with ord_norm

maxit the maximum number of iterations to use (default = 1000) in the calculation of
ordinal intermediate correlations with ord_norm

nrand the number of random numbers to generate in calculating intermediate correla-
tions (default = 10000)

quiet if FALSE prints simulation messages, if TRUE suppresses message printing

28 intercorr

Value

the intermediate MVN correlation matrix

References

Please see references for SimCorrMix.

See Also

corrvar

Examples

Sigmal <- intercorr(k_cat = 1, k_cont = 1, method = "Polynomial”,
constants = matrix(c(o, 1, @, @, @, @), 1, 6), marginal = 1list(0.3),
support = list(c(@, 1)), rho = matrix(c(1, 0.4, 0.4, 1), 2, 2),
quiet = TRUE)

Not run:

1 continuous mixture, 1 binary, 1 zero-inflated Poisson, and

1 zero-inflated NB variable

seed <- 1234

Mixture of N(-2, 1) and N(2, 1)
constants <- rbind(c(o, 1, 0, @, @, @), c(o, 1, @, 0, 9, 0))

marginal <- 1ist(0.3)
support <- list(c(Q, 1))
lam <- 0.5

p_zip <- 0.1

size <- 2

prob <- 0.75

p_zinb <- 0.2

k_cat <- k_pois <- k_nb <- 1

k_cont <- 2

Rey <- matrix(@.35, 5, 5)

diag(Rey) <- 1

rownames(Rey) <- colnames(Rey) <- c("01", "M1_1", "M1_2", "P1", "NB1")

set correlation between components of the same mixture variable to @
Rey["M1_1", "M1_2"] <- Rey["M1_2", "M1_1"]1 <- @

Sigma2 <- intercorr(k_cat, k_cont, k_pois, k_nb, "Polynomial”, constants,
marginal, support, lam, p_zip, size, prob, mu = NULL, p_zinb, Rey, seed)

End(Not run)

intercorr2 29

intercorr2 Calculate Intermediate MVN Correlation for Ordinal, Continuous,
Poisson, or Negative Binomial Variables: Correlation Method 2

Description

This function calculates a k x k intermediate matrix of correlations, where k = k_cat + k_cont +
k_pois + k_nb, to be used in simulating variables with corrvar2. The k_cont includes regular
continuous variables and components of continuous mixture variables. The ordering of the vari-
ables must be ordinal, continuous non-mixture, components of continuous mixture variables, reg-
ular Poisson, zero-inflated Poisson, regular Negative Binomial (NB), and zero-inflated NB (note
that it is possible for k_cat, k_cont, k_pois, and/or k_nb to be 0). There are no parameter input
checks in order to decrease simulation time. All inputs should be checked prior to simulation with
validpar. There is a message given if the calculated intermediate correlation matrix Sigma is not
positive-definite because it may not be possible to find a MVN correlation matrix that will produce
the desired marginal distributions. This function is called by the simulation function corrvar2, and
would only be used separately if the user wants to first find the intermediate correlation matrix. This
matrix Sigma can be used as an input to corrvar2.

Please see the Comparison of Correlation Methods 1 and 2 vignette for information about calcu-
lations by variable pair type and the differences between this function and intercorr.

Usage

intercorr2(k_cat = @, k_cont = @, k_pois = @, k_nb = 0,
method = c("Fleishman”, "Polynomial”), constants = NULL,
marginal = list(), support = list(), lam = NULL, p_zip = 0,
size = NULL, prob = NULL, mu = NULL, p_zinb = @, pois_eps = 0.0001,
nb_eps = 0.0001, rho = NULL, epsilon = 0.001, maxit = 1000,
quiet = FALSE)

Arguments

k_cat the number of ordinal (r >= 2 categories) variables (default = 0)

k_cont the number of continuous non-mixture variables and components of continuous
mixture variables (default = 0)

k_pois the number of regular and zero-inflated Poisson variables (default = 0)

k_nb the number of regular and zero-inflated Negative Binomial variables (default =
0)

method the method used to generate the k_cont continuous variables. "Fleishman" uses
a third-order polynomial transformation and "Polynomial" uses Headrick’s fifth-
order transformation.

constants a matrix with k_cont rows, each a vector of constants c0, c1, c2, c3 (if method

= "Fleishman") or c0, cl, c2, c3, c4, c5 (if method = "Polynomial") like that
returned by find_constants

30

marginal

support

lam

p_zip

size

prob

mu

p_zinb

pois_eps

nb_eps

rho

epsilon

maxit

quiet

intercorr2

a list of length equal to k_cat; the i-th element is a vector of the cumulative
probabilities defining the marginal distribution of the i-th variable; if the variable
can take r values, the vector will contain r - 1 probabilities (the r-th is assumed
to be 1; default = list())

a list of length equal to k_cat; the i-th element is a vector of containing the r
ordered support values; if not provided (i.e. support = list()), the default is for
the i-th element to be the vector 1, ..., r

a vector of lambda (mean > 0) constants for the regular and zero-inflated Poisson
variables (see stats: :dpois); the order should be 1st regular Poisson variables,
2nd zero-inflated Poisson variables

a vector of probabilities of structural zeros (not including zeros from the Pois-
son distribution) for the zero-inflated Poisson variables (see VGAM: : dzipois); if
p_zip =0, Yy0is has a regular Poisson distribution; if p_zip is in (0, 1), Yy0:s
has a zero-inflated Poisson distribution; if p_zipisin (-(exp(lam) - 1)*(-1),
0), Y,is has a zero-deflated Poisson distribution and p_zip is not a probabil-
ity; if p_zip = -(exp(lam) - 1)*(-1), Y}, has a positive-Poisson distribution
(see VGAM: :dpospois); if length(p_zip) < length(lam), the missing values
are set to O (and ordered 1st)

a vector of size parameters for the Negative Binomial variables (see stats: :dnbinom);

the order should be 1st regular NB variables, 2nd zero-inflated NB variables

a vector of success probability parameters for the NB variables; order the same
asin size

a vector of mean parameters for the NB variables (*Note: either prob or mu
should be supplied for all Negative Binomial variables, not a mixture; default =
NULL); order the same as in size; for zero-inflated NB this refers to the mean
of the NB distribution (see VGAM: : dzinegbin)

a vector of probabilities of structural zeros (not including zeros from the NB dis-
tribution) for the zero-inflated NB variables (see VGAM: : dzinegbin); if p_zinb
= 0, Y,, has a regular NB distribution; if p_zinb is in (-prob*size/(1 -
prob*size), @), Y,; has a zero-deflated NB distribution and p_zinb is not a
probability; if p_zinb = -prob*size/ (1 - prob*size), Y,,;, has a positive-NB
distribution (see VGAM: : dposnegbin); if length(p_zinb) < length(size), the
missing values are set to 0 (and ordered 1st)

a vector of length k_pois containing total cumulative probability truncation val-
ues; if none are provided, the default is 0.0001 for each variable

a vector of length k_nb containing total cumulative probability truncation val-
ues; if none are provided, the default is 0.0001 for each variable

the target correlation matrix which must be ordered /st ordinal, 2nd continu-
ous non-mixture, 3rd components of continuous mixtures, 4th regular Poisson,
Sth zero-inflated Poisson, 6th regular NB, 7th zero-inflated NB; note that rho is
specified in terms of the components of Y., ;.

the maximum acceptable error between the pairwise correlations (default = 0.001)
in the calculation of ordinal intermediate correlations with ord_norm

the maximum number of iterations to use (default = 1000) in the calculation of
ordinal intermediate correlations with ord_norm

if FALSE prints simulation messages, if TRUE suppresses message printing

intercorr2 31

Value

the intermediate MVN correlation matrix

References

Please see references for SimCorrMix.

See Also

corrvar?2

Examples

Sigmal <- intercorr2(k_cat = 1, k_cont = 1, method = "Polynomial”,
constants = matrix(c(o, 1, @, 0, @, @), 1, 6), marginal = 1ist(0.3),
support = list(c(@, 1)), rho = matrix(c(1, 0.4, 0.4, 1), 2, 2),
quiet = TRUE)

Not run:

1 continuous mixture, 1 binary, 1 zero-inflated Poisson, and
1 zero-inflated NB variable
The defaults of pois_eps <- nb_eps <- 0.0001 are used.

Mixture of N(-2, 1) and N(2, 1)
constants <- rbind(c(o, 1, 0, @, @, @), c(o, 1, @, 0, 9, 0))

marginal <- 1ist(0.3)
support <- list(c(Q, 1))
lam <- 0.5

p_zip <- 0.1

size <- 2

prob <- 0.75

p_zinb <- 0.2

k_cat <- k_pois <- k_nb <- 1

k_cont <- 2

Rey <- matrix(@.35, 5, 5)

diag(Rey) <- 1

rownames(Rey) <- colnames(Rey) <- c("01", "M1_1", "M1_2", "P1", "NB1")

set correlation between components of the same mixture variable to @
Rey["M1_1", "M1_2"] <- Rey["M1_2", "M1_1"]1 <- @

Sigma2 <- intercorr2(k_cat, k_cont, k_pois, k_nb, "Polynomial”, constants,
marginal, support, lam, p_zip, size, prob, mu = NULL, p_zinb, rho = Rey)

End(Not run)

32 intercorr_cat_nb

intercorr_cat_nb Calculate Intermediate MVN Correlation for Ordinal - Negative Bino-
mial Variables: Correlation Method 1

Description

This function calculates the k_cat x k_nb intermediate matrix of correlations for the k_cat or-
dinal (r >= 2 categories) and k_nb Negative Binomial variables required to produce the target
correlations in rho_cat_nb. It extends the method of Amatya & Demirtas (2015, doi: 10.1080/
00949655.2014.953534) to ordinal - Negative Binomial pairs and allows for regular or zero-inflated
NB variables. Here, the intermediate correlation between Z1 and Z2 (where Z1 is the standard nor-
mal variable discretized to produce an ordinal variable Y1, and Z2 is the standard normal variable
used to generate a Negative Binomial variable via the inverse CDF method) is calculated by divid-
ing the target correlation by a correction factor. The correction factor is the product of the upper
Frechet-Hoeffding bound on the correlation between a Negative Binomial variable and the normal
variable used to generate it and a simulated GSC upper bound on the correlation between an ordinal
variable and the normal variable used to generate it (see Demirtas & Hedeker, 2011, doi: 10.1198/
tast.2011.10090). The function is used in intercorr and corrvar. This function would not ordi-
narily be called by the user.

Usage

intercorr_cat_nb(rho_cat_nb = NULL, marginal = list(), size = NULL,
mu = NULL, p_zinb = @, nrand = 100000, seed = 1234)

Arguments

rho_cat_nb a k_cat x k_nb matrix of target correlations among ordinal and Negative Bino-
mial variables; the NB variables should be ordered 1st regular, 2nd zero-inflated

marginal a list of length equal to k_cat; the i-th element is a vector of the cumulative
probabilities defining the marginal distribution of the i-th variable; if the variable
can take r values, the vector will contain r - 1 probabilities (the r-th is assumed
tobe 1)

size a vector of size parameters for the Negative Binomial variables (see stats: : dnbinom);
the order should be 1st regular NB variables, 2nd zero-inflated NB variables

mu a vector of mean parameters for the NB variables (*Note: either prob or mu
should be supplied for all Negative Binomial variables, not a mixture; default =
NULL); order the same as in size; for zero-inflated NB this refers to the mean
of the NB distribution (see VGAM: : dzinegbin)

p_zinb a vector of probabilities of structural zeros (not including zeros from the NB dis-

tribution) for the zero-inflated NB variables (see VGAM: : dzinegbin); if p_zinb
= 0, Y, has a regular NB distribution; if p_zinb is in (-prob*size/(1 -
prob*size), @), Y,; has a zero-deflated NB distribution and p_zinb is not a
probability; if p_zinb = -prob*size/ (1 - prob*size), Y,,;, has a positive-NB
distribution (see VGAM: : dposnegbin); if length(p_zinb) < length(size), the
missing values are set to 0 (and ordered 1st)

http://doi.org/10.1080/00949655.2014.953534
http://doi.org/10.1080/00949655.2014.953534
http://doi.org/10.1198/tast.2011.10090
http://doi.org/10.1198/tast.2011.10090

intercorr_cat_pois 33

nrand the number of random numbers to generate in calculating the bound (default =
10000)
seed the seed used in random number generation (default = 1234)
Value

a k_cat x k_nb matrix whose rows represent the k_cat ordinal variables and columns represent the
k_nb Negative Binomial variables

References

Please see references for intercorr_cat_pois.

See Also

intercorr, corrvar

intercorr_cat_pois Calculate Intermediate MVN Correlation for Ordinal - Poisson Vari-
ables: Correlation Method 1

Description

This function calculates a k_cat x k_pois intermediate matrix of correlations for the k_cat or-
dinal (r >= 2 categories) and k_pois Poisson variables required to produce the target corre-
lations in rho_cat_pois. It extends the method of Amatya & Demirtas (2015, doi: 10.1080/
00949655.2014.953534) to ordinal - Poisson pairs and allows for regular or zero-inflated Poisson
variables. Here, the intermediate correlation between Z1 and Z2 (where Z1 is the standard normal
variable discretized to produce an ordinal variable Y1, and Z2 is the standard normal variable used
to generate a Poisson variable via the inverse CDF method) is calculated by dividing the target cor-
relation by a correction factor. The correction factor is the product of the upper Frechet-Hoeffding
bound on the correlation between a Poisson variable and the normal variable used to generate it
and a simulated GSC upper bound on the correlation between an ordinal variable and the normal
variable used to generate it (see Demirtas & Hedeker, 2011, doi: 10.1198/tast.2011.10090). The
function is used in intercorr and corrvar. This function would not ordinarily be called by the
user.

Usage

intercorr_cat_pois(rho_cat_pois = NULL, marginal = list(), lam = NULL,
p_zip = @0, nrand = 100000, seed = 1234)

http://doi.org/10.1080/00949655.2014.953534
http://doi.org/10.1080/00949655.2014.953534
http://doi.org/10.1198/tast.2011.10090

34 intercorr_cat_pois

Arguments

rho_cat_pois ak_cat x k_pois matrix of target correlations among ordinal and Poisson vari-
ables; the Poisson variables should be ordered 1st regular, 2nd zero-inflated

marginal a list of length equal to k_cat; the i-th element is a vector of the cumulative
probabilities defining the marginal distribution of the i-th variable; if the variable
can take r values, the vector will contain r - 1 probabilities (the r-th is assumed
tobe 1)

lam a vector of lambda (mean > 0) constants for the regular and zero-inflated Poisson
variables (see stats: :dpois); the order should be 1st regular Poisson variables,
2nd zero-inflated Poisson variables

p_zip a vector of probabilities of structural zeros (not including zeros from the Pois-
son distribution) for the zero-inflated Poisson variables (see VGAM: :dzipois); if
p_zip =0, Y,,is has a regular Poisson distribution; if p_zip is in (0, 1), Y,us
has a zero-inflated Poisson distribution; if p_zip isin (-(exp(lam) - 1)*(-1),
0), Y,is has a zero-deflated Poisson distribution and p_zip is not a probabil-
ity; if p_zip = -(exp(lam) - 1)*(-1), Y}, has a positive-Poisson distribution
(see VGAM: :dpospois); if length(p_zip) < length(lam), the missing values
are set to O (and ordered 1st)

nrand the number of random numbers to generate in calculating the bound (default =
10000)
seed the seed used in random number generation (default = 1234)
Value

a k_cat x k_pois matrix whose rows represent the k_cat ordinal variables and columns represent
the k_pois Poisson variables

References

Amatya A & Demirtas H (2015). Simultaneous generation of multivariate mixed data with Pois-
son and normal marginals. Journal of Statistical Computation and Simulation, 85(15):3129-39.
doi: 10.1080/00949655.2014.953534.

Demirtas H & Hedeker D (2011). A practical way for computing approximate lower and upper
correlation bounds. American Statistician, 65(2):104-109. doi: 10.1198/tast.2011.10090.

Frechet M (1951). Sur les tableaux de correlation dont les marges sont donnees. Ann. 1’Univ. Lyon
SectA, 14:53-77.

Hoeffding W. Scale-invariant correlation theory. In: Fisher NI, Sen PK, editors. The collected
works of Wassily Hoeffding. New York: Springer-Verlag; 1994. p. 57-107.

Yahav I & Shmueli G (2012). On Generating Multivariate Poisson Data in Management Science
Applications. Applied Stochastic Models in Business and Industry, 28(1):91-102. doi: 10.1002/
asmb.901.

Yee TW (2018). VGAM: Vector Generalized Linear and Additive Models. R package version 1.0-5.
https://CRAN.R-project.org/package=VGAM.

http://doi.org/10.1080/00949655.2014.953534
http://doi.org/10.1198/tast.2011.10090
http://doi.org/10.1002/asmb.901
http://doi.org/10.1002/asmb.901
https://CRAN.R-project.org/package=VGAM

intercorr_cont 35

See Also

intercorr, corrvar

intercorr_cont Calculate Intermediate MVN Correlation for Continuous Variables
Generated by Polynomial Transformation Method

Description

This function finds the intermediate correlation for standard normal random variables which are
used in Fleishman’s third-order (doi: 10.1007/BF02293811) or Headrick’s fifth-order (doi: 10.1016/
S01679473(02)000725) polynomial transformation method (PMT) using nlegslv. It is used in
intercorr and intercorr2 and would not ordinarily be called by the user. The correlations are
found pairwise so that eigen-value or principal components decomposition should be done on the
resulting Sigma matrix. The Comparison of Correlation Methods 1 and 2 vignette contains
the equations which were derived by Headrick and Sawilowsky (doi: 10.1007/BF02294317) or
Headrick (doi: 10.1016/S01679473(02)000725).

Usage

intercorr_cont(method = c("Fleishman”, "Polynomial”), constants = NULL,
rho_cont = NULL)

Arguments
method the method used to generate the continuous variables. "Fleishman" uses Fleish-
man’s third-order polynomial transformation and "Polynomial" uses Headrick’s
fifth-order transformation.
constants a matrix with each row a vector of constants c0, cl1, c2, ¢3 (if method = "Fleish-
man") or c0, cl, c2, c3, c4, c5 (if method = "Polynomial"), like that returned by
find_constants
rho_cont a matrix of target correlations among continuous variables, does not have to be
symmetric
Value

the intermediate matrix of correlations with the same dimensions as rho_cont

References

Please see additional references for SimCorrMix.

Fialkowski AC (2018). SimMultiCorrData: Simulation of Correlated Data with Multiple Variable
Types. R package version 0.2.2. https://CRAN.R-project.org/package=SimMultiCorrData.
Headrick TC (2002). Fast Fifth-order Polynomial Transforms for Generating Univariate and Mul-

tivariate Non-normal Distributions. Computational Statistics & Data Analysis, 40(4):685-711.
doi: 10.1016/S01679473(02)000725. (ScienceDirect)

http://doi.org/10.1007/BF02293811
http://doi.org/10.1016/S0167-9473(02)00072-5
http://doi.org/10.1016/S0167-9473(02)00072-5
http://doi.org/10.1007/BF02294317
http://doi.org/10.1016/S0167-9473(02)00072-5
https://CRAN.R-project.org/package=SimMultiCorrData
http://doi.org/10.1016/S0167-9473(02)00072-5
http://www.sciencedirect.com/science/article/pii/S0167947302000725

36 intercorr_cont_nb

Headrick TC, Kowalchuk RK (2007). The Power Method Transformation: Its Probability Den-
sity Function, Distribution Function, and Its Further Use for Fitting Data. Journal of Statistical
Computation and Simulation, 77:229-249. doi: 10.1080/10629360600605065.

Headrick TC, Sawilowsky SS (1999). Simulating Correlated Non-normal Distributions: Extending
the Fleishman Power Method. Psychometrika, 64:25-35. doi: 10.1007/BF02294317.

See Also

intercorr, intercorr2, nlegslv

intercorr_cont_nb Calculate Intermediate MVN Correlation for Continuous - Negative
Binomial Variables: Correlation Method 1

Description

This function calculates a k_cont x k_nb intermediate matrix of correlations for the k_cont con-
tinuous and k_nb Negative Binomial variables. It extends the method of Amatya & Demirtas
(2015, doi: 10.1080/00949655.2014.953534) to continuous variables generated using Headrick’s
fifth-order polynomial transformation and regular or zero-inflated NB variables. Here, the interme-
diate correlation between Z1 and Z2 (where Z1 is the standard normal variable transformed using
Headrick’s fifth-order or Fleishman’s third-order method to produce a continuous variable Y1, and
72 is the standard normal variable used to generate a Negative Binomial variable via the inverse
CDF method) is calculated by dividing the target correlation by a correction factor. The correction
factor is the product of the upper Frechet-Hoeffding bound on the correlation between a Negative
Binomial variable and the normal variable used to generate it and the power method correlation
(described in Headrick & Kowalchuk, 2007, doi: 10.1080/10629360600605065) between Y1 and
Z1. The function is used in intercorr and corrvar. This function would not ordinarily be called
by the user.

Usage
intercorr_cont_nb(method = c("Fleishman”, "Polynomial”), constants = NULL,
rho_cont_nb = NULL, size = NULL, mu = NULL, p_zinb = 0,
nrand = 100000, seed = 1234)
Arguments
method the method used to generate the k_cont continuous variables. "Fleishman" uses
a third-order polynomial transformation and "Polynomial" uses Headrick’s fifth-
order transformation.
constants a matrix with k_cont rows, each a vector of constants c0, c1, c2, c3 (if method
= "Fleishman") or c0, cl, c2, c3, c4, c5 (if method = "Polynomial"), like that
returned by find_constants
rho_cont_nb a k_cont x k_nb matrix of target correlations among continuous and Negative

Binomial variables; the NB variables should be ordered 1st regular, 2nd zero-
inflated

http://doi.org/10.1080/10629360600605065
http://doi.org/10.1007/BF02294317
http://doi.org/10.1080/00949655.2014.953534
http://doi.org/10.1080/10629360600605065

intercorr_cont_nb2 37

size a vector of size parameters for the Negative Binomial variables (see stats: : dnbinom);
the order should be 1st regular NB variables, 2nd zero-inflated NB variables

mu a vector of mean parameters for the NB variables (*Note: either prob or mu
should be supplied for all Negative Binomial variables, not a mixture; default =
NULL); order the same as in size; for zero-inflated NB this refers to the mean
of the NB distribution (see VGAM: : dzinegbin)

p_zinb a vector of probabilities of structural zeros (not including zeros from the NB dis-
tribution) for the zero-inflated NB variables (see VGAM: : dzinegbin); if p_zinb
= 0, Y, has a regular NB distribution; if p_zinb is in (-prob*size/(1 -
prob*size), @), Y,; has a zero-deflated NB distribution and p_zinb is not a
probability; if p_zinb = -prob*size/(1 - prob*size), Y,,; has a positive-NB
distribution (see VGAM: : dposnegbin); if length(p_zinb) < length(size), the
missing values are set to O (and ordered 1st)

nrand the number of random numbers to generate in calculating the bound (default =
10000)
seed the seed used in random number generation (default = 1234)
Value

a k_cont x k_nb matrix whose rows represent the k_cont continuous variables and columns repre-
sent the k_nb Negative Binomial variables

References

Please see references for intercorr_cont_pois.

See Also

find_constants, intercorr, corrvar

intercorr_cont_nb2 Calculate Intermediate MVN Correlation for Continuous - Negative
Binomial Variables: Correlation Method 2

Description

This function calculates a k_cont x k_nb intermediate matrix of correlations for the k_cont con-
tinuous and k_nb Negative Binomial variables. It extends the methods of Demirtas et al. (2012,
doi: 10.1002/sim.5362) and Barbiero & Ferrari (2015, doi: 10.1002/asmb.2072) by:

1) including non-normal continuous and regular or zero-inflated Negative Binomial variables

2) allowing the continuous variables to be generated via Fleishman’s third-order or Headrick’s fifth-
order transformation, and

3) since the count variables are treated as ordinal, using the point-polyserial and polyserial correla-
tions to calculate the intermediate correlations (similar to findintercorr_cont_cat in
SimMultiCorrData).

http://doi.org/10.1002/sim.5362
http://doi.org/10.1002/asmb.2072

38

intercorr_cont_nb2

Here, the intermediate correlation between Z1 and Z2 (where Z1 is the standard normal variable
transformed using Headrick’s fifth-order or Fleishman’s third-order method to produce a contin-
uous variable Y1, and Z2 is the standard normal variable used to generate a Negative Binomial
variable via the inverse CDF method) is calculated by dividing the target correlation by a correction
factor. The correction factor is the product of the point-polyserial correlation between Y2 and Z2
(described in Olsson et al., 1982, doi: 10.1007/BF02294164) and the power method correlation (de-
scribed in Headrick & Kowalchuk, 2007, doi: 10.1080/10629360600605065) between Y1 and Z1.
After the maximum support value has been found using maxcount_support, the point-polyserial
correlation is given by:

r—1
1
py2,z2 = —— E A(75) (Y2541 — ¥25)
ov2 i

where
o(r) = (27r)*1/2 * e:z:p(fO.57'2)
Here, y; is the j-th support value and 7; is &~ ({:1 Pr(Y = y;)). The power method correlation
is given by:
py1,z1 = 1 + 3¢z + 15¢s,

where c; = 0 if method = "Fleishman". The function is used in intercorr2 and corrvar2. This
function would not ordinarily be called by the user.

Usage

intercorr_cont_nb2(method = c("Fleishman”, "Polynomial”), constants = NULL,
rho_cont_nb = NULL, nb_marg = list(), nb_support = list())

Arguments

method the method used to generate the k_cont continuous variables. "Fleishman"
uses Fleishman’s third-order polynomial transformation and "Polynomial" uses
Headrick’s fifth-order transformation.

constants a matrix with k_cont rows, each a vector of constants c0, c1, c2, c3 (if method
= "Fleishman") or c0, c1, c2, c3, c4, c5 (if method = "Polynomial"), like that
returned by find_constants

rho_cont_nb a k_cont x k_nb matrix of target correlations among continuous and Negative
Binomial variables; the NB variables should be ordered 1st regular, 2nd zero-
inflated

nb_marg a list of length equal to k_nb ordered 1st regular and 2nd zero-inflated; the i-th
element is a vector of the cumulative probabilities defining the marginal dis-
tribution of the i-th variable; if the variable can take r values, the vector will
contain r - 1 probabilities (the r-th is assumed to be 1); this is created within
intercorr2 and corrvar2

nb_support a list of length equal to k_nb ordered Ist regular and 2nd zero-inflated; the i-th
element is a vector of containing the r ordered support values, with a minimum
of 0 and maximum determined via maxcount_support

http://doi.org/10.1007/BF02294164
http://doi.org/10.1080/10629360600605065

intercorr._cont_pois 39

Value

a k_cont x k_nb matrix whose rows represent the k_cont continuous variables and columns repre-
sent the k_nb Negative Binomial variables

References

Please see references in intercorr_cont_pois2.

See Also

find_constants, power_norm_corr, intercorr2, corrvar2

intercorr_cont_pois Calculate Intermediate MVN Correlation for Continuous - Poisson
Variables: Correlation Method 1

Description

This function calculates a k_cont x k_pois intermediate matrix of correlations for the k_cont
continuous and k_pois Poisson variables. It extends the method of Amatya & Demirtas (2015,
doi: 10.1080/00949655.2014.953534) to continuous variables generated using Headrick’s fifth-
order polynomial transformation and zero-inflated Poisson variables. Here, the intermediate corre-
lation between Z1 and Z2 (where Z1 is the standard normal variable transformed using Headrick’s
fifth-order or Fleishman’s third-order method to produce a continuous variable Y1, and Z2 is the
standard normal variable used to generate a Poisson variable via the inverse CDF method) is calcu-
lated by dividing the target correlation by a correction factor. The correction factor is the product of
the upper Frechet-Hoeffding bound on the correlation between a Poisson variable and the normal
variable used to generate it and the power method correlation (described in Headrick & Kowalchuk,
2007, doi: 10.1080/10629360600605065) between Y1 and Z1. The function is used in intercorr
and corrvar. This function would not ordinarily be called by the user.

Usage

intercorr_cont_pois(method = c("Fleishman”, "Polynomial"”), constants = NULL,
rho_cont_pois = NULL, lam = NULL, p_zip = @, nrand = 100000,
seed = 1234)

Arguments

method the method used to generate the k_cont continuous variables. "Fleishman" uses
a third-order polynomial transformation and "Polynomial" uses Headrick’s fifth-
order transformation.

constants a matrix with k_cont rows, each a vector of constants c0, c1, c2, c3 (if method
= "Fleishman") or c0, cl, c2, c3, c4, c5 (if method = "Polynomial"), like that
returned by find_constants

rho_cont_pois ak_cont x k_pois matrix of target correlations among continuous and Poisson
variables; the Poisson variables should be ordered 1st regular, 2nd zero-inflated

http://doi.org/10.1080/00949655.2014.953534
http://doi.org/10.1080/10629360600605065

40

intercorr_cont_pois

lam a vector of lambda (mean > 0) constants for the regular and zero-inflated Poisson
variables (see stats: :dpois); the order should be 1st regular Poisson variables,
2nd zero-inflated Poisson variables

p_zip a vector of probabilities of structural zeros (not including zeros from the Pois-
son distribution) for the zero-inflated Poisson variables (see VGAM: : dzipois); if
p_zip =0, Y}, has a regular Poisson distribution; if p_zip is in (0, 1), Y4
has a zero-inflated Poisson distribution; if p_zipisin (-(exp(lam) - 1)*(-1),
0), Y,0is has a zero-deflated Poisson distribution and p_zip is not a probabil-
ity; if p_zip = -(exp(lam) - 1)*(-1), Y}0is has a positive-Poisson distribution
(see VGAM: :dpospois); if length(p_zip) < length(lam), the missing values
are set to O (and ordered 1st)

nrand the number of random numbers to generate in calculating the bound (default =
10000)
seed the seed used in random number generation (default = 1234)
Value

a k_cont x k_pois matrix whose rows represent the k_cont continuous variables and columns
represent the k_pois Poisson variables

References

Amatya A & Demirtas H (2015). Simultaneous generation of multivariate mixed data with Pois-
son and normal marginals. Journal of Statistical Computation and Simulation, 85(15):3129-39.
doi: 10.1080/00949655.2014.953534.

Demirtas H & Hedeker D (2011). A practical way for computing approximate lower and upper
correlation bounds. American Statistician, 65(2):104-109. doi: 10.1198/tast.2011.10090.

Frechet M (1951). Sur les tableaux de correlation dont les marges sont donnees. Ann. 1’Univ. Lyon
SectA, 14:53-77.

Headrick TC, Kowalchuk RK (2007). The Power Method Transformation: Its Probability Den-
sity Function, Distribution Function, and Its Further Use for Fitting Data. Journal of Statistical
Computation and Simulation, 77:229-249. doi: 10.1080/10629360600605065.

Hoeffding W. Scale-invariant correlation theory. In: Fisher NI, Sen PK, editors. The collected
works of Wassily Hoeffding. New York: Springer-Verlag; 1994. p. 57-107.

Yahav I & Shmueli G (2012). On Generating Multivariate Poisson Data in Management Science
Applications. Applied Stochastic Models in Business and Industry, 28(1):91-102. doi: 10.1002/
asmb.901.

Yee TW (2018). VGAM: Vector Generalized Linear and Additive Models. R package version 1.0-5.
https://CRAN.R-project.org/package=VGAM.

See Also

power_norm_corr, find_constants, intercorr, corrvar

http://doi.org/10.1080/00949655.2014.953534
http://doi.org/10.1198/tast.2011.10090
http://doi.org/10.1080/10629360600605065
http://doi.org/10.1002/asmb.901
http://doi.org/10.1002/asmb.901
https://CRAN.R-project.org/package=VGAM

intercorr._cont_pois2 41

intercorr_cont_pois2 Calculate Intermediate MVN Correlation for Continuous - Poisson
Variables: Correlation Method 2

Description

This function calculates a k_cont x k_pois intermediate matrix of correlations for the k_cont con-
tinuous and k_pois Poisson variables. It extends the methods of Demirtas et al. (2012, doi: 10.1002/
sim.5362) and Barbiero & Ferrari (2015, doi: 10.1002/asmb.2072) by:

1) including non-normal continuous and regular or zero-inflated Poisson variables

2) allowing the continuous variables to be generated via Fleishman’s third-order or Headrick’s fifth-
order transformation, and

3) since the count variables are treated as ordinal, using the point-polyserial and polyserial correla-
tions to calculate the intermediate correlations (similar to findintercorr_cont_cat) in
SimMultiCorrData).

Here, the intermediate correlation between Z1 and Z2 (where Z1 is the standard normal variable
transformed using Headrick’s fifth-order or Fleishman’s third-order method to produce a continuous
variable Y1, and Z2 is the standard normal variable used to generate a Poisson variable via the
inverse CDF method) is calculated by dividing the target correlation by a correction factor. The
correction factor is the product of the point-polyserial correlation between Y2 and Z2 (described
in Olsson et al., 1982, doi: 10.1007/BF02294164) and the power method correlation (described in
Headrick & Kowalchuk, 2007, doi: 10.1080/10629360600605065) between Y1 and Z1. After the
maximum support value has been found using maxcount_support, the point-polyserial correlation

is given by:
1 r—1
pyaze = — Y 6(1)(¥2541 — ¥2;)
Iy2 i
where

o(1) = (2m) "2 x exp(—0.572)
Here, y; is the j-th support value and 7; is &1 (Zle Pr(Y = y;)). The power method correlation
is given by:

py1,z1 = c1 + 3c3 + 1bcs,

where c; = 0 if method = "Fleishman". The function is used in intercorr2 and corrvar2. This
function would not ordinarily be called by the user.

Usage

intercorr_cont_pois2(method = c("Fleishman”, "Polynomial”),
constants = NULL, rho_cont_pois = NULL, pois_marg = list(),
pois_support = list())

http://doi.org/10.1002/sim.5362
http://doi.org/10.1002/sim.5362
http://doi.org/10.1002/asmb.2072
http://doi.org/10.1007/BF02294164
http://doi.org/10.1080/10629360600605065

42

Arguments

method

constants

rho_cont_pois

pois_marg

pois_support

Value

intercorr_nb

the method used to generate the k_cont continuous variables. "Fleishman"
uses Fleishman’s third-order polynomial transformation and "Polynomial" uses
Headrick’s fifth-order transformation.

a matrix with k_cont rows, each a vector of constants c0, c1, c2, c3 (if method
= "Fleishman") or c0, cl, c2, ¢3, c4, ¢5 (if method = "Polynomial"), like that
returned by find_constants

a k_cont x k_pois matrix of target correlations among continuous and Poisson
variables; the Poisson variables should be ordered 1st regular, 2nd zero-inflated

a list of length equal to k_pois ordered 1st regular and 2nd zero-inflated; the
i-th element is a vector of the cumulative probabilities defining the marginal
distribution of the i-th variable; if the variable can take r values, the vector will
contain r - 1 probabilities (the r-th is assumed to be 1); this is created within
intercorr2 and corrvar2

a list of length equal to k_pois ordered 1st regular and 2nd zero-inflated; the i-th
element is a vector of containing the r ordered support values, with a minimum
of 0 and maximum determined via maxcount_support

a k_cont x k_pois matrix whose rows represent the k_cont continuous variables and columns
represent the k_pois Poisson variables

References

Please see additional references in intercorr_cont_pois.

Barbiero A & Ferrari PA (2015). Simulation of correlated Poisson variables. Applied Stochastic
Models in Business and Industry, 31:669-80. doi: 10.1002/asmb.2072.

See Also

find_constants, power_norm_corr, intercorr2, corrvar2

intercorr_nb

Calculate Intermediate MVN Correlation for Negative Binomial Vari-
ables: Correlation Method 1

Description

This function calculates a k_nb x k_nb intermediate matrix of correlations for the Negative Bino-
mial variables by extending the method of Yahav & Shmueli (2012, doi: 10.1002/asmb.901). The
intermediate correlation between Z1 and Z2 (the standard normal variables used to generate the
Negative Binomial variables Y1 and Y2 via the inverse CDF method) is calculated using a logarith-
mic transformation of the target correlation. First, the upper and lower Frechet-Hoeffding bounds
(mincor, maxcor) on py1,y2 are simulated. Then the intermediate correlation is found as follows:

1 —c
pz172 =3 * ZOQ(MXTQ%

http://doi.org/10.1002/asmb.2072
http://doi.org/10.1002/asmb.901

intercorr_nb 43

where a = —(maxcor * mincor)/(mazxcor + mincor), b = log((mazcor + a)/a), and ¢ = —a.
The function adapts code from Amatya & Demirtas’ (2016) package PoisNor-package by:

1) allowing specifications for the number of random variates and the seed for reproducibility

2) providing the following checks: if Sigma_(Z1, Z2) > 1, Sigma_(Z1, Z2) issetto 1; if Sigma_(Z1,
Z2) <-1,Sigma_(Z1, Z2) is set to -1

3) simulating regular and zero-inflated Negative Binomial variables.

The function is used in intercorr and corrvar and would not ordinarily be called by the user.

Usage

intercorr_nb(rho_nb = NULL, size = NULL, mu = NULL, p_zinb = 0,
nrand = 100000, seed = 1234)

Arguments

rho_nb a k_nb x k_nb matrix of target correlations ordered Ist regular and 2nd zero-
inflated

size a vector of size parameters for the Negative Binomial variables (see stats: : dnbinom);
the order should be 1st regular NB variables, 2nd zero-inflated NB variables

mu a vector of mean parameters for the NB variables (*Note: either prob or mu
should be supplied for all Negative Binomial variables, not a mixture; default =
NULL); order the same as in size; for zero-inflated NB this refers to the mean
of the NB distribution (see VGAM: : dzinegbin)

p_zinb a vector of probabilities of structural zeros (not including zeros from the NB dis-
tribution) for the zero-inflated NB variables (see VGAM: : dzinegbin); if p_zinb
= 0, Y, has a regular NB distribution; if p_zinb is in (-prob*size/(1 -
prob*size), @), Y,; has a zero-deflated NB distribution and p_zinb is not a
probability; if p_zinb = -prob*size/ (1 - prob*size), Y,,; has a positive-NB
distribution (see VGAM: : dposnegbin); if length(p_zinb) < length(size), the
missing values are set to 0 (and ordered 1st)

nrand the number of random numbers to generate in calculating the bound (default =
10000)

seed the seed used in random number generation (default = 1234)

Value

the k_nb x k_nb intermediate correlation matrix for the Negative Binomial variables

References

Please see references for intercorr_pois.

See Also

intercorr_pois, intercorr_pois_nb, intercorr, corrvar

44

intercorr_pois

intercorr_pois Calculate Intermediate MVN Correlation for Poisson Variables: Cor-

relation Method 1

Description

This function calculates a k_pois x k_pois intermediate matrix of correlations for the Poisson
variables using the method of Yahav & Shmueli (2012, doi: 10.1002/asmb.901). The intermediate
correlation between Z1 and Z2 (the standard normal variables used to generate the Poisson variables
Y1 and Y2 via the inverse CDF method) is calculated using a logarithmic transformation of the
target correlation. First, the upper and lower Frechet-Hoeffding bounds (mincor, maxcor) on py1.y2
are simulated. Then the intermediate correlation is found as follows:
1 —-c

pz1,72 = 3 * ZOQ(IOYI%),
where a = —(maxcor x mincor)/(maxcor + mincor), b = log((maxcor + a)/a), and ¢ = —a.
The function adapts code from Amatya & Demirtas’ (2016) package PoisNor-package by:
1) allowing specifications for the number of random variates and the seed for reproducibility
2) providing the following checks: if Sigma_(Z1, Z2) > 1, Sigma_(Z1, Z2) is setto 1;if Sigma_(Z1,
72) <-1,Sigma_(Z1, Z2) is set to -1
3) simulating regular and zero-inflated Poisson variables.

The function is used in intercorr and corrvar and would not ordinarily be called by the user.

Usage

intercorr_pois(rho_pois = NULL, lam = NULL, p_zip = @, nrand = 100000,
seed = 1234)

Arguments

rho_pois a k_pois x k_pois matrix of target correlations ordered 1st regular and 2nd
zero-inflated

lam a vector of lambda (mean > 0) constants for the regular and zero-inflated Poisson
variables (see stats: :dpois); the order should be 1st regular Poisson variables,
2nd zero-inflated Poisson variables

p_zip a vector of probabilities of structural zeros (not including zeros from the Pois-
son distribution) for the zero-inflated Poisson variables (see VGAM: : dzipois); if
p_zip =0, Y}, has a regular Poisson distribution; if p_zip is in (0, 1), Y4
has a zero-inflated Poisson distribution; if p_zipisin (-(exp(lam) - 1)*(-1),
9), Y,0is has a zero-deflated Poisson distribution and p_zip is not a probabil-
ity; if p_zip = -(exp(lam) - 1)*(-1), Y, has a positive-Poisson distribution
(see VGAM: :dpospois); if length(p_zip) < length(lam), the missing values
are set to O (and ordered 1st)

nrand the number of random numbers to generate in calculating the bound (default =
10000)

seed the seed used in random number generation (default = 1234)

http://doi.org/10.1002/asmb.901

intercorr_pois_nb 45

Value

the k_pois x k_pois intermediate correlation matrix for the Poisson variables

References

Amatya A & Demirtas H (2015). Simultaneous generation of multivariate mixed data with Pois-
son and normal marginals. Journal of Statistical Computation and Simulation, 85(15):3129-39.
doi: 10.1080/00949655.2014.953534.

Demirtas H & Hedeker D (2011). A practical way for computing approximate lower and upper
correlation bounds. American Statistician, 65(2):104-109.

Frechet M (1951). Sur les tableaux de correlation dont les marges sont donnees. Ann. 1’Univ. Lyon
SectA, 14:53-77.

Hoeffding W. Scale-invariant correlation theory. In: Fisher NI, Sen PK, editors. The collected
works of Wassily Hoeffding. New York: Springer-Verlag; 1994. p. 57-107.

Yahav I & Shmueli G (2012). On Generating Multivariate Poisson Data in Management Science
Applications. Applied Stochastic Models in Business and Industry, 28(1):91-102. doi: 10.1002/
asmb.901.

Yee TW (2018). VGAM: Vector Generalized Linear and Additive Models. R package version 1.0-5.
https://CRAN.R-project.org/package=VGAM.

See Also

intercorr_nb, intercorr_pois_nb, intercorr, corrvar

intercorr_pois_nb Calculate Intermediate MVN Correlation for Poisson - Negative Bino-
mial Variables: Correlation Method 1

Description

This function calculates a k_pois x k_nb intermediate matrix of correlations for the Poisson and
Negative Binomial variables by extending the method of Yahav & Shmueli (2012, doi: 10.1002/
asmb.901). The intermediate correlation between Z1 and Z2 (the standard normal variables used to
generate the Poisson and Negative Binomial variables Y1 and Y2 via the inverse CDF method) is
calculated using a logarithmic transformation of the target correlation. First, the upper and lower
Frechet-Hoeffding bounds (mincor, maxcor) on py y2 are simulated. Then the intermediate cor-

relation is found as follows:
(py1,y2 - C)

1
pPz1,z2 = b * log

where a = —(maxcor * mincor) /(mazcor + mincor), b = log((maxcor + a)/a), and ¢ = —a.
The function adapts code from Amatya & Demirtas’ (2016) package PoisNor-package by:

9

1) allowing specifications for the number of random variates and the seed for reproducibility

2) providing the following checks: if Sigma_(Z1, Z2) > 1, Sigma_(Z1, Z2) issetto 1;if Sigma_(Z1,
Z2) <-1,Sigma_(Z1, Z2) is setto -1

3) simulating regular and zero-inflated Poisson and Negative Binomial variables.

The function is used in intercorr and corrvar and would not ordinarily be called by the user.

http://doi.org/10.1080/00949655.2014.953534
http://doi.org/10.1002/asmb.901
http://doi.org/10.1002/asmb.901
https://CRAN.R-project.org/package=VGAM
http://doi.org/10.1002/asmb.901
http://doi.org/10.1002/asmb.901

46 intercorr_pois_nb

Usage

intercorr_pois_nb(rho_pois_nb = NULL, lam = NULL, p_zip = 0,
size = NULL, mu = NULL, p_zinb = @, nrand = 100000, seed = 1234)

Arguments

rho_pois_nb a k_pois x k_nb matrix of target correlations; order of each type should be Ist
regular, 2nd zero-inflated

lam a vector of lambda (mean > 0) constants for the regular and zero-inflated Poisson
variables (see stats: :dpois); the order should be 1st regular Poisson variables,
2nd zero-inflated Poisson variables

p_zip a vector of probabilities of structural zeros (not including zeros from the Pois-
son distribution) for the zero-inflated Poisson variables (see VGAM: : dzipois); if
p_zip =0, Y,,is has a regular Poisson distribution; if p_zip is in (0, 1), Ys
has a zero-inflated Poisson distribution; if p_zip isin (-(exp(lam) - 1)*(-1),
0), Y,0is has a zero-deflated Poisson distribution and p_zip is not a probabil-
ity; if p_zip = -(exp(lam) - 1)*(-1), Y}, has a positive-Poisson distribution
(see VGAM: :dpospois); if length(p_zip) < length(lam), the missing values
are set to O (and ordered 1st)

size a vector of size parameters for the Negative Binomial variables (see stats: : dnbinom);
the order should be 1st regular NB variables, 2nd zero-inflated NB variables

mu a vector of mean parameters for the NB variables (*Note: either prob or mu
should be supplied for all Negative Binomial variables, not a mixture; default =
NULL); order the same as in size; for zero-inflated NB this refers to the mean
of the NB distribution (see VGAM: : dzinegbin)

p_zinb a vector of probabilities of structural zeros (not including zeros from the NB dis-
tribution) for the zero-inflated NB variables (see VGAM: :dzinegbin); if p_zinb
= 0, Y, has a regular NB distribution; if p_zinb is in (-prob*size/(1 -
prob*size), 0), Y,; has a zero-deflated NB distribution and p_zinb is not a
probability; if p_zinb = -prob*size/(1 - prob*size), Y,,; has a positive-NB
distribution (see VGAM: : dposnegbin); if length(p_zinb) < length(size), the
missing values are set to 0 (and ordered 1st)

nrand the number of random numbers to generate in calculating the bound (default =
10000)

seed the seed used in random number generation (default = 1234)

Value
the k_pois x k_nb intermediate correlation matrix whose rows represent the k_pois Poisson vari-
ables and columns represent the k_nb Negative Binomial variables

References

Please see references for intercorr_pois.

maxcount_support 47

See Also

intercorr_pois, intercorr_nb, intercorr, corrvar

maxcount_support Calculate Maximum Support Value for Count Variables: Correlation
Method 2

Description

This function calculates the maximum support value for count variables by extending the method
of Barbiero & Ferrari (2015, doi: 10.1002/asmb.2072) to include regular and zero-inflated Poisson
and Negative Binomial variables. In order for count variables to be treated as ordinal in the calcu-
lation of the intermediate MVN correlation matrix, their infinite support must be truncated (made
finite). This is done by setting the total cumulative probability equal to 1 - a small user-specified
value (pois_eps or nb_eps). The maximum support value equals the inverse CDF applied to this
result. The truncation values may differ for each variable. The function is used in intercorr2 and
corrvar? and would not ordinarily be called by the user.

Usage

maxcount_support(k_pois = @, k_nb = @, lam = NULL, p_zip = 0,
size = NULL, prob = NULL, mu = NULL, p_zinb = @, pois_eps = NULL,
nb_eps = NULL)

Arguments

k_pois the number of Poisson variables
k_nb the number of Negative Binomial variables

lam a vector of lambda (mean > 0) constants for the regular and zero-inflated Poisson
variables (see stats: :dpois); the order should be 1st regular Poisson variables,
2nd zero-inflated Poisson variables

p_zip a vector of probabilities of structural zeros (not including zeros from the Pois-
son distribution) for the zero-inflated Poisson variables (see VGAM: : dzipois); if
p_zip = 0, Y}, has a regular Poisson distribution; if p_zip is in (0, 1), Y4
has a zero-inflated Poisson distribution; if p_zipisin (-(exp(lam) - 1)*(-1),
0), Y,is has a zero-deflated Poisson distribution and p_zip is not a probabil-
ity; if p_zip = -(exp(lam) - 1)*(-1), Y}, has a positive-Poisson distribution
(see VGAM: :dpospois); if length(p_zip) < length(lam), the missing values
are set to 0 (and ordered 1st)

size a vector of size parameters for the Negative Binomial variables (see stats: :dnbinom);
the order should be 1st regular NB variables, 2nd zero-inflated NB variables

prob a vector of success probability parameters for the NB variables; order the same
asin size

http://doi.org/10.1002/asmb.2072

48

mu

p_zinb

pois_eps

nb_eps

Value

norm_ord

a vector of mean parameters for the NB variables (*Note: either prob or mu
should be supplied for all Negative Binomial variables, not a mixture; default =
NULL); order the same as in size; for zero-inflated NB this refers to the mean
of the NB distribution (see VGAM: : dzinegbin)

a vector of probabilities of structural zeros (not including zeros from the NB dis-
tribution) for the zero-inflated NB variables (see VGAM: : dzinegbin); if p_zinb
= 0, Y, has a regular NB distribution; if p_zinb is in (-prob*size/(1 -
prob*size), @), Y,; has a zero-deflated NB distribution and p_zinb is not a
probability; if p_zinb = -prob*size/ (1 - prob*size), Y,,; has a positive-NB
distribution (see VGAM: : dposnegbin); if length(p_zinb) < length(size), the
missing values are set to O (and ordered 1st)

a vector of length k_pois containing total cumulative probability truncation val-
ues; if none are provided, the default is 0.0001 for each variable

a vector of length k_nb containing total cumulative probability truncation val-
ues; if none are provided, the default is 0.0001 for each variable

a data.frame with k_pois + k_nb rows; the column names are:

Distribution Poisson or Negative Binomial

Number the variable index

Max the maximum support value

References

Barbiero A & Ferrari PA (2015). Simulation of correlated Poisson variables. Applied Stochastic
Models in Business and Industry, 31:669-80. doi: 10.1002/asmb.2072.

See Also

intercorr2, corrvar?

norm_ord

Calculate Correlations of Ordinal Variables Obtained from Discretiz-
ing Normal Variables

Description

This function calculates the correlation of ordinal variables (or variables treated as "ordinal"),
with given marginal distributions, obtained from discretizing standard normal variables with a
specified correlation matrix. The function modifies Barbiero & Ferrari’s contord function in
GenOrd-package. It uses pmvnorm function from the mvtnorm package to calculate multivari-
ate normal cumulative probabilities defined by the normal quantiles obtained at marginal and the
supplied correlation matrix Sigma. This function is used within ord_norm and would not ordinarily
be called by the user.

http://doi.org/10.1002/asmb.2072

ord_norm 49

Usage

norm_ord(marginal = list(), Sigma = NULL, support = list(),
Spearman = FALSE)

Arguments
marginal a list of length equal to the number of variables; the i-th element is a vector of the
cumulative probabilities defining the marginal distribution of the i-th variable; if
the variable can take r values, the vector will contain r - 1 probabilities (the r-th
is assumed to be 1)
Sigma the correlation matrix of the multivariate standard normal variable
support a list of length equal to the number of variables; the i-th element is a vector of
containing the r ordered support values; if not provided (i.e. support = list()),
the default is for the i-th element to be the vector 1, ..., r
Spearman if TRUE, Spearman’s correlations are used (and support is not required); if
FALSE (default) Pearson’s correlations are used
Value

the correlation matrix of the ordinal variables

References

Please see references in ord_norm.

Alan Genz, Frank Bretz, Tetsuhisa Miwa, Xuefei Mi, Friedrich Leisch, Fabian Scheipl, Torsten
Hothorn (2018). mvtnorm: Multivariate Normal and t Distributions. R package version 1.0-8.
https://CRAN.R-project.org/package=mvtnorm.

Alan Genz, Frank Bretz (2009), Computation of Multivariate Normal and t Probabilities. Lecture
Notes in Statistics, Vol. 195., Springer-Verlag, Heidelberg. ISBN 978-3-642-01688-2.

See Also
ord_norm
ord_norm Calculate Intermediate MVN Correlation to Generate Variables
Treated as Ordinal
Description

This function calculates the intermediate MVN correlation needed to generate a variable described
by a discrete marginal distribution and associated finite support. This includes ordinal (r > 2 cat-
egories) variables or variables that are treated as ordinal (i.e. count variables in the Barbiero &
Ferrari, 2015 method used in corrvar2, doi: 10.1002/asmb.2072). The function is a modification
of Barbiero & Ferrari’s ordcont function in GenOrd-package. It works by setting the intermediate
MVN correlation equal to the target correlation and updating each intermediate pairwise correlation

https://CRAN.R-project.org/package=mvtnorm
http://doi.org/10.1002/asmb.2072

50

ord_norm

until the final pairwise correlation is within epsilon of the target correlation or the maximum num-
ber of iterations has been reached. This function uses norm_ord to calculate the ordinal correlation
obtained from discretizing the normal variables generated from the intermediate correlation matrix.
The ordcont has been modified in the following ways:

1) the initial correlation check has been removed because this is done within the simulation func-
tions

2) the final positive-definite check has been removed
3) the intermediate correlation update function was changed to accommodate more situations

This function would not ordinarily be called by the user. Note that this will return a matrix that
is NOT positive-definite because this is corrected for in the simulation functions corrvar and
corrvar? using the method of Higham (2002) and the nearPD function.

Usage

ord_norm(marginal = list(), rho = NULL, support = list(),
epsilon = 0.001, maxit = 1000, Spearman = FALSE)

Arguments
marginal alist of length equal to the number of variables; the i-th element is a vector of the
cumulative probabilities defining the marginal distribution of the i-th variable; if
the variable can take r values, the vector will contain r - 1 probabilities (the r-th
is assumed to be 1)
rho the target correlation matrix
support a list of length equal to the number of variables; the i-th element is a vector of
containing the r ordered support values; if not provided (i.e. support = list()),
the default is for the i-th element to be the vector 1, ..., r
epsilon the maximum acceptable error between the final and target pairwise correlations
(default = 0.001); smaller values take more time
maxit the maximum number of iterations to use (default = 1000) to find the intermedi-
ate correlation; the correction loop stops when either the iteration number passes
maxit or epsilon is reached
Spearman if TRUE, Spearman’s correlations are used (and support is not required); if
FALSE (default) Pearson’s correlations are used
Value

A list with the following components:

SigmaC the intermediate MVN correlation matrix

rho@ the calculated final correlation matrix generated from SigmaC

rho the target final correlation matrix

niter a matrix containing the number of iterations required for each variable pair

maxerr the maximum final error between the final and target correlation matrices

plot_simpdf_theory 51

References

Barbiero A, Ferrari PA (2015). Simulation of correlated Poisson variables. Applied Stochastic
Models in Business and Industry, 31:669-80. doi: 10.1002/asmb.2072.

Barbiero A, Ferrari PA (2015). GenOrd: Simulation of Discrete Random Variables with Given
Correlation Matrix and Marginal Distributions. R package version 1.4.0.
https://CRAN.R-project.org/package=GenOrd

Ferrari PA, Barbiero A (2012). Simulating ordinal data, Multivariate Behavioral Research, 47(4):566-
589. doi: 10.1080/00273171.2012.692630.

See Also

corrvar, corrvar2, norm_ord, intercorr, intercorr2

plot_simpdf_theory Plot Simulated Probability Density Function and Target PDF by Dis-
tribution Name or Function for Continuous or Count Variables

Description

This plots the PDF of simulated continuous or count (regular or zero-inflated, Poisson or Negative
Binomial) data and overlays the target PDF (if overlay = TRUE), which is specified by distribution
name (plus up to 4 parameters) or PDF function fx (plus support bounds). If a continuous target
distribution is provided (cont_var = TRUE), the simulated data y is scaled and then transformed
(i.e. y = sigma * scale(y) + mu) so that it has the same mean (mu) and variance (sigma?) as
the target distribution. The PDF’s of continuous variables are shown as lines (using geom_density
and ggplot2::geom_line). It works for valid or invalid power method PDF’s. The PMF’s of
count variables are shown as vertical bar graphs (using ggplot2: : geom_col). The function returns
a ggplot2-package object so the user can save it or modify it as necessary. The graph param-
eters (i.e. title, sim_color, sim_lty, sim_size, target_color, target_lty, target_size,
legend.position, legend. justification, legend.text.size, title.text.size, axis.text.size,
and axis.title.size) are inputs to the ggplot2-package functions so information about valid
inputs can be obtained from that package’s documentation.

Usage

plot_simpdf_theory(sim_y, title = "Simulated Probability Density Function”,
ylower = NULL, yupper = NULL, sim_color = "dark blue”, sim_lty = 1,
sim_size = 1, col_width = 0.5, overlay = TRUE, cont_var = TRUE,
target_color = "dark green"”, target_lty = 2, target_size =1,
Dist = c("Benini”, "Beta"”, "Beta-Normal”, "Birnbaum-Saunders”, "Chisq",
"Dagum”, "Exponential”, "Exp-Geometric”, "Exp-Logarithmic”, "Exp-Poisson”,
"F", "Fisk", "Frechet"”, "Gamma", "Gaussian”, "Gompertz", "Gumbel”,
"Kumaraswamy”, "Laplace”, "Lindley"”, "Logistic"”, "Loggamma", "Lognormal”,
"Lomax", "Makeham”, "Maxwell"”, "Nakagami”, "Paralogistic”, "Pareto”, "Perks”,
"Rayleigh”, "Rice"”, "Singh-Maddala", "Skewnormal”, "t", "Topp-Leone”,
"Triangular”, "Uniform”, "Weibull”, "Poisson”, "Negative_Binomial"),

http://doi.org/10.1002/asmb.2072
https://CRAN.R-project.org/package=GenOrd
http://doi.org/10.1080/00273171.2012.692630

52

plot_simpdf_theory

params = NULL, fx = NULL, lower = NULL, upper = NULL,
legend.position = c(0.975, 0.9), legend.justification = c(1, 1),
legend. text.size = 10, title.text.size = 15, axis.text.size = 10,
axis.title.size = 13)

Arguments

sim_y
title

ylower

yupper

sim_color

sim_1lty
sim_size
col_width

overlay

cont_var

target_color

target_lty
target_size
Dist

params

fx

lower

upper

a vector of simulated data
the title for the graph (default = "Simulated Probability Density Function")

the lower y value to use in the plot (default = NULL, uses minimum simulated
y value) on the x-axis

the upper y value (default = NULL, uses maximum simulated y value) on the
X-axis

the line color for the simulated PDF (or column fill color in the case of Dist =
"Poisson" or "Negative_Binomial")

the line type for the simulated PDF (default = 1, solid line)
the line width for the simulated PDF
width of column for simulated/target PMF of count variables (default = 0.5)

if TRUE (default), the target distribution is also plotted given either a distribution
name (and parameters) or PDF function fx (with bounds = ylower, yupper)

TRUE (default) for continuous variables, FALSE for count variables

the line color for the target PDF (or column fill color in the case of Dist =
"Poisson" or "Negative_Binomial")

the line type for the target PDF (default = 2, dashed line)
the line width for the target PDF

name of the distribution. The possible values are: "Benini", "Beta", "Beta-
Normal", "Birnbaum-Saunders", "Chisq", "Exponential", "Exp-Geometric", "Exp-
Logarithmic", "Exp-Poisson", "F", "Fisk", "Frechet", "Gamma", "Gaussian",
"Gompertz", "Gumbel", "Kumaraswamy", "Laplace", "Lindley", "Logistic",
"Loggamma", "Lognormal”, "Lomax", "Makeham", "Maxwell", "Nakagami",
"Paralogistic", "Pareto", "Perks", "Rayleigh", "Rice", "Singh-Maddala",
"Skewnormal", "t", "Topp-Leone", "Triangular", "Uniform", "Weibull", "Pois-
son", and "Negative_Binomial". Please refer to the documentation for each
package (either stats-package, VGAM-package, or triangle) for information

on appropriate parameter inputs.

a vector of parameters (up to 4) for the desired distribution (keep NULL if fx
supplied instead); for Poisson variables, must be lambda (mean) and the prob-
ability of a structural zero (use O for regular Poisson variables); for Negative
Binomial variables, must be size, mean and the probability of a structural zero
(use O for regular NB variables)

a PDF input as a function of x only, i.e. fx =function(x) 0.5* (x - 1)"2;
must return a scalar (keep NULL if Dist supplied instead)

the lower support bound for fx

the upper support bound for fx

plot_simpdf_theory

legend.position

the position of the legend
legend. justification

the justification of the legend
legend. text.size

the size of the legend labels
title.text.size

the size of the plot title

axis.text.size the size of the axes text (tick labels)
axis.title.size
the size of the axes titles

Value

A ggplot2-package object.

References

Please see the references for plot_simtheory.

See Also

calc_theory, ggplot

Examples

Using normal mixture variable from contmixvarl example

Nmix <- contmixvarl(n = 1000, "Polynomial"”, means = @, vars = 1,
mix_pis = c(0.4, 0.6), mix_mus = c(-2, 2), mix_sigmas = c(1, 1),
mix_skews = c(@, @), mix_skurts = c(@, 0), mix_fifths = c(0, 0),
mix_sixths = c(0, 0))

plot_simpdf_theory(Nmix$Y_mix[, 17,
title = "Mixture of Normal Distributions”,
fx = function(x) ©.4 * dnorm(x, -2, 1) + 0.6 * dnorm(x, 2, 1),
lower = -5, upper = 5)

Not run:

Mixture of Beta(6, 3), Beta(4, 1.5), and Beta(10, 20)

Stcuml <- calc_theory("Beta”, c(6, 3))

Stcum2 <- calc_theory("Beta”, c(4, 1.5))

Stcum3 <- calc_theory("Beta”, c(10, 20))

mix_pis <- c(0.5, 0.2, 0.3)

mix_mus <- c(Stcum1[1], Stcum2[1], Stcum3[1])

mix_sigmas <- c(Stcum1[2], Stcum2[2], Stcum3[2])

mix_skews <- c(Stcum1[3], Stcum2[3], Stcum3[3])

mix_skurts <- c(Stcum1[4], Stcum2[4], Stcum3[4])

mix_fifths <- c(Stcum1[5], Stcum2[5], Stcum3[5])

mix_sixths <- c(Stcum1[6], Stcum2[6], Stcum3[6])

mix_Six <- list(seq(@.01, 10, 0.01), c(0.01, 0.02, 0.03),
seq(0.01, 10, 0.01))

Bstcum <- calc_mixmoments(mix_pis, mix_mus, mix_sigmas, mix_skews,
mix_skurts, mix_fifths, mix_sixths)

53

54

plot_simtheory

Bmix <- contmixvari(n = 10000, "Polynomial”, Bstcum[1], Bstcum[2]"2,
mix_pis, mix_mus, mix_sigmas, mix_skews, mix_skurts, mix_fifths,
mix_sixths, mix_Six)

plot_simpdf_theory(Bmix$Y_mix[, 1], title = "Mixture of Beta Distributions”,
fx = function(x) mix_pis[1] * dbeta(x, 6, 3) + mix_pis[2] *

dbeta(x, 4, 1.5) + mix_pis[3] * dbeta(x, 10, 20), lower = @, upper = 1)

End(Not run)

plot_simtheory Plot Simulated Data and Target Distribution Data by Name or Func-
tion for Continuous or Count Variables

Description

This plots simulated continuous or count (regular or zero-inflated, Poisson or Negative Binomial)
data and overlays data (if overlay = TRUE) generated from the target distribution. The target
is specified by name (plus up to 4 parameters) or PDF function fx (plus support bounds). Due
to the integration involved in finding the CDF from the PDF supplied by fx, only continuous
fx may be supplied. Both are plotted as histograms (using geom_histogram). If a continuous
target distribution is specified (cont_var = TRUE), the simulated data y is scaled and then trans-
formed (i.e. y = sigma * scale(y) + mu) so that it has the same mean (mu) and variance
(sigma?) as the target distribution. It works for valid or invalid power method PDF’s. It re-
turns a ggplot2-package object so the user can save it or modify it as necessary. The graph
parameters (i.e. title, sim_color, target_color, legend.position, legend. justification,
legend.text.size, title.text.size, axis.text.size, and axis.title.size) are inputs to
the ggplot2-package functions so information about valid inputs can be obtained from that pack-
age’s documentation.

Usage

plot_simtheory(sim_y, title = "Simulated Data Values”, ylower = NULL,
yupper = NULL, sim_color = "dark blue", overlay = TRUE,
cont_var = TRUE, target_color = "dark green"”, binwidth = NULL,

nbins = 100, Dist = c("Benini”, "Beta", "Beta-Normal",

"Birnbaum-Saunders”, "Chisq"”, "Dagum”, "Exponential”, "Exp-Geometric",
"Exp-Logarithmic"”, "Exp-Poisson”, "F", "Fisk", "Frechet”, "Gamma", "Gaussian",
"Gompertz"”, "Gumbel”, "Kumaraswamy”, "Laplace”, "Lindley", "Logistic",
"Loggamma", "Lognormal”, "Lomax", "Makeham”, "Maxwell”, "Nakagami”,
"Paralogistic”, "Pareto”, "Perks"”, "Rayleigh”, "Rice”, "Singh-Maddala",
"Skewnormal”, "t", "Topp-Leone”, "Triangular”, "Uniform”, "Weibull",

"Poisson”, "Negative_Binomial”), params = NULL, fx = NULL, lower = NULL,
upper = NULL, seed = 1234, sub = 1000, legend.position = c(0.975,

0.9), legend.justification = c(1, 1), legend.text.size = 10,
title.text.size = 15, axis.text.size = 10, axis.title.size = 13)

plot_simtheory

Arguments

sim_y
title

ylower

yupper

sim_color

overlay

cont_var
target_color
binwidth

nbins

Dist

params

fx

lower

upper

seed

sub

legend.position

55

a vector of simulated data
the title for the graph (default = "Simulated Data Values")

the lower y value to use in the plot (default = NULL, uses minimum simulated
y value) on the y-axis

the upper y value (default = NULL, uses maximum simulated y value) on the
y-axis
the histogram fill color for the simulated variable (default = "dark blue")

if TRUE (default), the target distribution is also plotted given either a distribution
name (and parameters) or PDF function fx (with support bounds = lower, upper)

TRUE (default) for continuous variables, FALSE for count variables
the histogram fill color for the target distribution (default = "dark green")
the width of bins to use when creating the histograms (default = NULL)

the number of bins to use when creating the histograms (default = 100); overrid-
den by binwidth

name of the distribution. The possible values are: "Benini", "Beta", "Beta-
Normal", "Birnbaum-Saunders", "Chisq", "Exponential", "Exp-Geometric", "Exp-
Logarithmic", "Exp-Poisson", "F", "Fisk", "Frechet", "Gamma", "Gaussian",
"Gompertz", "Gumbel", "Kumaraswamy", "Laplace", "Lindley", "Logistic",
"Loggamma", "Lognormal”, "Lomax", "Makeham", "Maxwell", "Nakagami",
"Paralogistic", "Pareto", "Perks", "Rayleigh", "Rice", "Singh-Maddala",
"Skewnormal", "t", "Topp-Leone", "Triangular", "Uniform", "Weibull", "Pois-
son", and "Negative_Binomial". Please refer to the documentation for each
package (either stats-package, VGAM-package, or triangle) for information

on appropriate parameter inputs.

a vector of parameters (up to 4) for the desired distribution (keep NULL if fx
supplied instead); for Poisson variables, must be lambda (mean) and the prob-
ability of a structural zero (use O for regular Poisson variables); for Negative
Binomial variables, must be size, mean and the probability of a structural zero
(use O for regular NB variables)

a PDF input as a function of x only, i.e. fx =function(x) @.5* (x - 1)"2;
must return a scalar (keep NULL if Dist supplied instead)

the lower support bound for a supplied fx, else keep NULL (note: if an error is
thrown from uniroot, try a slightly higher lower bound; i.e., 0.0001 instead of
0)

the upper support bound for a supplied fx, else keep NULL (note: if an error is
thrown from uniroot, try a lower upper bound; i.e., 100000 instead of Inf)

the seed value for random number generation (default = 1234)

the number of subdivisions to use in the integration to calculate the CDF from
fx; if no result, try increasing sub (requires longer computation time; default =
1000)

the position of the legend

56

plot_simtheory

legend. justification

the justification of the legend
legend. text.size

the size of the legend labels
title.text.size

the size of the plot title

axis.text.size the size of the axes text (tick labels)
axis.title.size
the size of the axes titles

Value

A ggplot2-package object.

References

Carnell R (2017). triangle: Provides the Standard Distribution Functions for the Triangle Distribu-
tion. R package version 0.11. https://CRAN.R-project.org/package=triangle.

Fialkowski AC (2018). SimMultiCorrData: Simulation of Correlated Data with Multiple Variable
Types. R package version 0.2.2. https://CRAN.R-project.org/package=SimMultiCorrData.

Headrick TC, Sheng Y, & Hodis FA (2007). Numerical Computing and Graphics for the Power
Method Transformation Using Mathematica. Journal of Statistical Software, 19(3):1-17.
doi: 10.18637/jss.v019.103.

Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.

Yee TW (2018). VGAM: Vector Generalized Linear and Additive Models. R package version 1.0-5.
https://CRAN.R-project.org/package=VGAM.

See Also

calc_theory, ggplot, geom_histogram

Examples

Using normal mixture variable from contmixvarl example

Nmix <- contmixvar1(n = 1000, "Polynomial”, means = @, vars = 1,
mix_pis = c(0.4, 0.6), mix_mus = c(-2, 2), mix_sigmas = c(1, 1),
mix_skews = c(@, @), mix_skurts = c(@, 0), mix_fifths = c(0, 0),
mix_sixths = c(0, 0))

plot_simtheory(Nmix$Y_mix[, 1], title = "Mixture of Normal Distributions”,
fx = function(x) 0.4 x dnorm(x, -2, 1) + 0.6 * dnorm(x, 2, 1),
lower = -5, upper = 5)

Not run:

Mixture of Beta(6, 3), Beta(4, 1.5), and Beta(10, 20)

Stcuml <- calc_theory("Beta”, c(6, 3))

Stcum2 <- calc_theory("Beta”, c(4, 1.5))

Stcum3 <- calc_theory("Beta”, c(10, 20))

mix_pis <- c(0.5, 0.2, 0.3)

mix_mus <- c(Stcum1[1], Stcum2[1], Stcum3[1])

mix_sigmas <- c(Stcum1[2], Stcum2[2], Stcum3[2])

https://CRAN.R-project.org/package=triangle
https://CRAN.R-project.org/package=SimMultiCorrData
http://doi.org/10.18637/jss.v019.i03
https://CRAN.R-project.org/package=VGAM

rho_MIM?2 57

mix_skews <- c(Stcum1[3], Stcum2[3], Stcum3[3])

mix_skurts <- c(Stcum1[4], Stcum2[4], Stcum3[4])

mix_fifths <- c(Stcum1[5], Stcum2[5], Stcum3[5])

mix_sixths <- c(Stcum1[6], Stcum2[6], Stcum3[6])

mix_Six <- list(seq(@.01, 10, 0.01), c(0.01, 0.02, 0.03),
seq(0.01, 10, 0.01))

Bstcum <- calc_mixmoments(mix_pis, mix_mus, mix_sigmas, mix_skews,
mix_skurts, mix_fifths, mix_sixths)

Bmix <- contmixvarl(n = 10000, "Polynomial”, Bstcum[1], Bstcum[2]"2,
mix_pis, mix_mus, mix_sigmas, mix_skews, mix_skurts, mix_fifths,
mix_sixths, mix_Six)

plot_simtheory(Bmix$Y_mix[, 1], title = "Mixture of Beta Distributions”
fx = function(x) mix_pis[1] * dbeta(x, 6, 3) + mix_pis[2] *

dbeta(x, 4, 1.5) + mix_pis[3] * dbeta(x, 10, 20), lower = @, upper = 1)

End(Not run)

rho_M1M2 Approximate Correlation between Two Continuous Mixture Variables
M1 and M2

Description

This function approximates the expected correlation between two continuous mixture variables M 1
and M 2 based on their mixing proportions, component means, component standard deviations, and
correlations between components across variables. The equations can be found in the Expected
Cumulants and Correlations for Continuous Mixture Variables vignette. This function can be
used to see what combination of component correlations gives a desired correlation between M1

and M2.
Usage

rho_MIM2(mix_pis = list(), mix_mus = list(), mix_sigmas = list(),
p_M1M2 = NULL)

Arguments

mix_pis a list of length 2 with 1st component a vector of mixing probabilities that sum to
1 for component distributions of M1 and likewise for 2nd component and M2

mix_mus a list of length 2 with 1st component a vector of means for component distribu-
tions of M1 and likewise for 2nd component and M2

mix_sigmas a list of length 2 with 1st component a vector of standard deviations for compo-
nent distributions of M1 and likewise for 2nd component and M 2

p_M1M2 a matrix of correlations with rows corresponding to A/1 and columns corre-

sponding to M?2; i.e., p_MIM2[1, 2] is the correlation between the 1st compo-
nent of M1 and the 2nd component of M2

58 rho_M1Y

Value

the expected correlation between M1 and M2

References

Davenport JW, Bezder JC, & Hathaway RJ (1988). Parameter Estimation for Finite Mixture Distri-
butions. Computers & Mathematics with Applications, 15(10):819-28.

Pearson RK (2011). Exploring Data in Engineering, the Sciences, and Medicine. In. New York:
Oxford University Press.

See Also
rho_M1Y
Examples
M1 is mixture of N(-2, 1) and N(2, 1);
M2 is mixture of Logistic(@, 1), Chisq(4), and Beta(4, 1.5)
pairwise correlation between components across M1 and M2 set to 0.35
L <- calc_theory("Logistic”, c(@, 1))
C <- calc_theory("Chisq"”, 4)
B <- calc_theory("Beta”, c(4, 1.5))

rho_M1M2(mix_pis = list(c(0.4, 0.6), c(0.3, 0.2, 0.5)),
mix_mus = list(c(-2, 2), c(L[1], C[1]1, B[11)),
mix_sigmas = list(c(1, 1), c(L[2], C[2]1, B[2])),
p_M1M2 = matrix(@.35, 2, 3))

rho_M1Y Approximate Correlation between Continuous Mixture Variable M1
and Random Variable Y

Description

This function approximates the expected correlation between a continuous mixture variables M 1
and another random variable Y based on the mixing proportions, component means, and component
standard deviations of M1 and correlations between components of M1 and Y. The equations
can be found in the Expected Cumulants and Correlations for Continuous Mixture Variables
vignette. This function can be used to see what combination of correlations between components
of M1 andY gives a desired correlation between M1 and Y.

Usage

rho_M1Y(mix_pis = NULL, mix_mus = NULL, mix_sigmas = NULL, p_M1Y = NULL)

SimCorrMix 59

Arguments
mix_pis a vector of mixing probabilities that sum to 1 for component distributions of M 1
mix_mus a vector of means for component distributions of M1
mix_sigmas a vector of standard deviations for component distributions of M1
p_M1Y a vector of correlations between the components of M1 and Y'; i.e., p_M1Y[1]
is the correlation between the 1st component of M1 and Y
Value

the expected correlation between M1 and Y

References

Please see references for rho_M1M2.

See Also

rho_M1Y

Examples

M1 is mixture of N(-2, 1) and N(2, 1); pairwise correlation set to 0.35
rho_M1Y(mix_pis = c(0.4, 0.6), mix_mus = c(-2, 2), mix_sigmas = c(1, 1),
p_M1Y = c(0.35, 0.35))

SimCorrMix Simulation of Correlated Data with Multiple Variable Types Including
Continuous and Count Mixture Distributions

Description

SimCorrMix generates continuous (normal, non-normal, or mixture distributions), binary, ordi-
nal, and count (Poisson or Negative Binomial, regular or zero-inflated) variables with a specified
correlation matrix, or one continuous variable with a mixture distribution. This package can be
used to simulate data sets that mimic real-world clinical or genetic data sets (i.e. plasmodes, as
in Vaughan et al., 2009, doi: 10.1016/j.csda.2008.02.032). The methods extend those found in the
SimMultiCorrData package. Standard normal variables with an imposed intermediate correla-
tion matrix are transformed to generate the desired distributions. Continuous variables are sim-
ulated using either Fleishman’s third-order (doi: 10.1007/BF02293811) or Headrick’s fifth-order
(doi: 10.1016/S01679473(02)000725) power method transformation (PMT). Non-mixture distribu-
tions require the user to specify mean, variance, skewness, standardized kurtosis, and standardized
fifth and sixth cumulants. Mixture distributions require these inputs for the component distributions
plus the mixing probabilities. Simulation occurs at the component-level for continuous mixture
distributions. The target correlation matrix is specified in terms of correlations with components
of continuous mixture variables. These components are transformed into the desired mixture vari-
ables using random multinomial variables based on the mixing probabilities. However, the package

http://doi.org/10.1016/j.csda.2008.02.032
http://doi.org/10.1007/BF02293811
http://doi.org/10.1016/S0167-9473(02)00072-5

60 SimCorrMix

provides functions to approximate expected correlations with continuous mixture variables given
target correlations with the components. Binary and ordinal variables are simulated using a modifi-
cation of GenOrd-package’s ordsample function. Count variables are simulated using the inverse
CDF method. There are two simulation pathways which calculate intermediate correlations involv-
ing count variables differently. Correlation Method 1 adapts Yahav and Shmueli’s 2012 method
(doi: 10.1002/asmb.901) and performs best with large count variable means and positive correla-
tions or small means and negative correlations. Correlation Method 2 adapts Barbiero and Fer-
rari’s 2015 modification of GenOrd-package (doi: 10.1002/asmb.2072) and performs best under
the opposite scenarios. The optional error loop may be used to improve the accuracy of the final
correlation matrix. The package also provides functions to calculate the standardized cumulants of
continuous mixture distributions, check parameter inputs, calculate feasible correlation boundaries,
and summarize and plot simulated variables.

Vignettes

There are several vignettes which accompany this package to help the user understand the simula-
tion and analysis methods.

1) Comparison of Correlation Methods 1 and 2 describes the two simulation pathways that can
be followed for generation of correlated data.

2) Continuous Mixture Distributions demonstrates how to simulate one continuous mixture vari-
able using contmixvar1 and gives a step-by-step guideline for comparing a simulated distribution
to the target distribution.

3) Expected Cumulants and Correlations for Continuous Mixture Variables derives the equa-
tions used by the function calc_mixmoments to find the mean, standard deviation, skew, standard-
ized kurtosis, and standardized fifth and sixth cumulants for a continuous mixture variable. The
vignette also explains how the functions rho_M1M2 and rho_M1Y approximate the expected correla-
tions with continuous mixture variables based on the target correlations with the components.

4) Overall Workflow for Generation of Correlated Data gives a step-by-step guideline to follow
with an example containing continuous non-mixture and mixture, ordinal, zero-inflated Poisson,
and zero-inflated Negative Binomial variables. It executes both correlated data simulation functions
with and without the error loop.

5) Variable Types describes the different types of variables that can be simulated in SimCorrMix,
details the algorithm involved in the optional error loop that helps to minimize correlation errors,
and explains how the feasible correlation boundaries are calculated for each of the two simulation
pathways.

Functions

This package contains 3 simulation functions:
contmixvar1l, corrvar, and corrvar?2

4 data description (summary) function:
calc_mixmoments, summary_var, rho_M1M2, rho_M1Y
2 graphing functions:

plot_simpdf_theory, plot_simtheory

3 support functions:

http://doi.org/10.1002/asmb.901
http://doi.org/10.1002/asmb.2072

SimCorrMix 61

validpar, validcorr, validcorr2

and 16 auxiliary functions (should not normally be called by the user, but are called by other func-
tions):

corr_error, intercorr, intercorr2, intercorr_cat_nb, intercorr_cat_pois,
intercorr_cont_nb, intercorr_cont_nb2, intercorr_cont_pois, intercorr_cont_pois2,
intercorr_cont, intercorr_nb, intercorr_pois, intercorr_pois_nb, maxcount_support,
ord_norm, norm_ord

References

Amatya A & Demirtas H (2015). Simultaneous generation of multivariate mixed data with Pois-
son and normal marginals. Journal of Statistical Computation and Simulation, 85(15):3129-39.
doi: 10.1080/00949655.2014.953534.

Barbiero A & Ferrari PA (2015). Simulation of correlated Poisson variables. Applied Stochastic
Models in Business and Industry, 31:669-80. doi: 10.1002/asmb.2072.

Barbiero A & Ferrari PA (2015). GenOrd: Simulation of Discrete Random Variables with Given
Correlation Matrix and Marginal Distributions. R package version 1.4.0.
https://CRAN.R-project.org/package=GenOrd

Carnell R (2017). triangle: Provides the Standard Distribution Functions for the Triangle Distribu-
tion. R package version 0.11. https://CRAN.R-project.org/package=triangle.

Davenport JW, Bezder JC, & Hathaway RJ (1988). Parameter Estimation for Finite Mixture Distri-
butions. Computers & Mathematics with Applications, 15(10):819-28.

Demirtas H (2006). A method for multivariate ordinal data generation given marginal distributions
and correlations. Journal of Statistical Computation and Simulation, 76(11):1017-1025.
doi: 10.1080/10629360600569246.

Demirtas H (2014). Joint Generation of Binary and Nonnormal Continuous Data. Biometrics &
Biostatistics, S12.

Demirtas H & Hedeker D (2011). A practical way for computing approximate lower and upper
correlation bounds. American Statistician, 65(2):104-109. doi: 10.1198/tast.2011.10090.

Demirtas H, Hedeker D, & Mermelstein RJ (2012). Simulation of massive public health data by
power polynomials. Statistics in Medicine, 31(27):3337-3346. doi: 10.1002/sim.5362.

Emrich LJ & Piedmonte MR (1991). A Method for Generating High-Dimensional Multivariate Bi-
nary Variables. The American Statistician, 45(4): 302-4. doi: 10.1080/00031305.1991.10475828.

Everitt BS (1996). An Introduction to Finite Mixture Distributions. Statistical Methods in Medical
Research, 5(2):107-127. doi: 10.1177/096228029600500202.

Ferrari PA & Barbiero A (2012). Simulating ordinal data. Multivariate Behavioral Research, 47(4):
566-589. doi: 10.1080/00273171.2012.692630.

Fialkowski AC (2018). SimMultiCorrData: Simulation of Correlated Data with Multiple Variable
Types. R package version 0.2.2. https://CRAN.R-project.org/package=SimMultiCorrData.

Fleishman AI (1978). A Method for Simulating Non-normal Distributions. Psychometrika, 43:521-
532. doi: 10.1007/BF02293811.

Frechet M (1951). Sur les tableaux de correlation dont les marges sont donnees. Ann. 1I’Univ. Lyon
SectA, 14:53-77.

http://doi.org/10.1080/00949655.2014.953534
http://doi.org/10.1002/asmb.2072
https://CRAN.R-project.org/package=GenOrd
https://CRAN.R-project.org/package=triangle
http://doi.org/10.1080/10629360600569246
http://doi.org/10.1198/tast.2011.10090
http://doi.org/10.1002/sim.5362
http://doi.org/10.1080/00031305.1991.10475828
http://doi.org/10.1177/096228029600500202
http://doi.org/10.1080/00273171.2012.692630
https://CRAN.R-project.org/package=SimMultiCorrData
http://doi.org/10.1007/BF02293811

62

SimCorrMix

Hasselman B (2018). nlegslv: Solve Systems of Nonlinear Equations. R package version 3.3.2.
https://CRAN.R-project.org/package=nleqslv

Headrick TC (2002). Fast Fifth-order Polynomial Transforms for Generating Univariate and Mul-
tivariate Non-normal Distributions. Computational Statistics & Data Analysis, 40(4):685-711.
doi: 10.1016/S01679473(02)000725. (ScienceDirect)

Headrick TC, Kowalchuk RK (2007). The Power Method Transformation: Its Probability Den-
sity Function, Distribution Function, and Its Further Use for Fitting Data. Journal of Statistical
Computation and Simulation, 77:229-249. doi: 10.1080/10629360600605065.

Headrick TC, Sawilowsky SS (1999). Simulating Correlated Non-normal Distributions: Extending
the Fleishman Power Method. Psychometrika, 64:25-35. doi: 10.1007/BF02294317.

Headrick TC, Sheng Y, & Hodis FA (2007). Numerical Computing and Graphics for the Power
Method Transformation Using Mathematica. Journal of Statistical Software, 19(3):1 - 17.
doi: 10.18637/jss.v019.103.

Higham N (2002). Computing the nearest correlation matrix - a problem from finance; IMA Journal
of Numerical Analysis 22:329-343.

Hoeffding W. Scale-invariant correlation theory. In: Fisher NI, Sen PK, editors. The collected
works of Wassily Hoeffding. New York: Springer-Verlag; 1994. p. 57-107.

Ismail N & Zamani H (2013). Estimation of Claim Count Data Using Negative Binomial, Gener-
alized Poisson, Zero-Inflated Negative Binomial and Zero-Inflated Generalized Poisson Regression
Models. Casualty Actuarial Society E-Forum 41(20):1-28.

Kendall M & Stuart A (1977). The Advanced Theory of Statistics, 4th Edition. Macmillan, New
York.

Lambert D (1992). Zero-Inflated Poisson Regression, with an Application to Defects in Manufac-
turing. Technometrics 34(1):1-14.

Olsson U, Drasgow F, & Dorans NJ (1982). The Polyserial Correlation Coefficient. Psychometrika,
47(3):337-47. doi: 10.1007/BF02294164.

Pearson RK (2011). Exploring Data in Engineering, the Sciences, and Medicine. In. New York:
Oxford University Press.

Schork NIJ, Allison DB, & Thiel B (1996). Mixture Distributions in Human Genetics Research.
Statistical Methods in Medical Research, 5:155-178. doi: 10.1177/096228029600500204.

Vale CD & Maurelli VA (1983). Simulating Multivariate Nonnormal Distributions. Psychometrika,
48:465-471. doi: 10.1007/BF02293687.

Vaughan LK, Divers J, Padilla M, Redden DT, Tiwari HK, Pomp D, Allison DB (2009). The use of
plasmodes as a supplement to simulations: A simple example evaluating individual admixture esti-
mation methodologies. Comput Stat Data Anal, 53(5):1755-66. doi: 10.1016/j.csda.2008.02.032.

Yahav I & Shmueli G (2012). On Generating Multivariate Poisson Data in Management Science
Applications. Applied Stochastic Models in Business and Industry, 28(1):91-102. doi: 10.1002/
asmb.901.

Yee TW (2018). VGAM: Vector Generalized Linear and Additive Models. R package version 1.0-5.
https://CRAN.R-project.org/package=VGAM.

Zhang X, Mallick H, & Yi N (2016). Zero-Inflated Negative Binomial Regression for Differential
Abundance Testing in Microbiome Studies. Journal of Bioinformatics and Genomics 2(2):1-9.
doi: 10.18454/jbg.2016.2.2.1.

https://CRAN.R-project.org/package=nleqslv
http://doi.org/10.1016/S0167-9473(02)00072-5
http://www.sciencedirect.com/science/article/pii/S0167947302000725
http://doi.org/10.1080/10629360600605065
http://doi.org/10.1007/BF02294317
http://doi.org/10.18637/jss.v019.i03
http://doi.org/10.1007/BF02294164
http://doi.org/10.1177/096228029600500204
http://doi.org/10.1007/BF02293687
http://doi.org/10.1016/j.csda.2008.02.032
http://doi.org/10.1002/asmb.901
http://doi.org/10.1002/asmb.901
https://CRAN.R-project.org/package=VGAM
http://doi.org/10.18454/jbg.2016.2.2.1

summary_var 63

See Also
Useful link: https://github.com/AFialkowski/SimMultiCorrData, https://github.com/AFialkowski/
SimCorrMix
summary_var Summary of Simulated Variables
Description

This function summarizes the results of contmixvar1, corrvar, or corrvar?2. The inputs are either
the simulated variables or inputs for those functions. See their documentation for more information.
If summarizing result from contmixvar1, mixture parameters may be entered as vectors instead of
lists.

Usage

summary_var(Y_cat = NULL, Y_cont = NULL, Y_comp = NULL, Y_mix = NULL,
Y_pois = NULL, Y_nb = NULL, means = NULL, vars = NULL, skews = NULL,
skurts = NULL, fifths = NULL, sixths = NULL, mix_pis = list(),
mix_mus = list(), mix_sigmas = list(), mix_skews = list(),
mix_skurts = list(), mix_fifths = list(), mix_sixths = list(),
marginal = list(), lam = NULL, p_zip = @, size = NULL, prob = NULL,
mu = NULL, p_zinb = @, rho = NULL)

Arguments

Y_cat a matrix of ordinal variables

Y_cont a matrix of continuous non-mixture variables

Y_comp a matrix of components of continuous mixture variables

Y_mix a matrix of continuous mixture variables

Y_pois a matrix of Poisson variables

Y_nb a matrix of Negative Binomial variables

means a vector of means for the k_cont non-mixture and k_mix mixture continuous
variables (i.e. rep(@, (k_cont + k_mix)))

vars a vector of variances for the k_cont non-mixture and k_mix mixture continuous
variables (i.e. rep(1, (k_cont +k_mix)))

skews a vector of skewness values for the k_cont non-mixture continuous variables

skurts a vector of standardized kurtoses (kurtosis - 3, so that normal variables have a
value of 0) for the k_cont non-mixture continuous variables

fifths a vector of standardized fifth cumulants for the k_cont non-mixture continuous
variables (not necessary for method = "Fleishman")

sixths a vector of standardized sixth cumulants for the k_cont non-mixture continuous

variables (not necessary for method = "Fleishman")

https://github.com/AFialkowski/SimMultiCorrData
https://github.com/AFialkowski/SimCorrMix
https://github.com/AFialkowski/SimCorrMix

summary_var

mix_pis a list of length k_mix with i-th component a vector of mixing probabilities that
sum to 1 for component distributions of Yz,

mix_mus a list of length k_mix with i-th component a vector of means for component
distributions of Yy,

mix_sigmas a list of length k_mix with i-th component a vector of standard deviations for
component distributions of ;...

mix_skews a list of length k_mix with i-th component a vector of skew values for component
distributions of Yy,

mix_skurts a list of length k_mix with i-th component a vector of standardized kurtoses for
component distributions of Y;,,;2,

mix_fifths a list of length k_mix with i-th component a vector of standardized fifth cumu-
lants for component distributions of Y;,,;,, (not necessary for method = "Fleish-
man"

mix_sixths a list of length k_mix with i-th component a vector of standardized sixth cumu-
lants for component distributions of Y,,,;., (not necessary for method = "Fleish-
man"

marginal a list of length equal to k_cat; the i-th element is a vector of the cumulative

probabilities defining the marginal distribution of the i-th variable; if the variable
can take r values, the vector will contain r - 1 probabilities (the r-th is assumed to
be 1); for binary variables, these should be input the same as for ordinal variables
with more than 2 categories (i.e. the user-specified probability is the probability
of the 1st category, which has the smaller support value)

lam a vector of lambda (mean > 0) constants for the Poisson variables (see stats: :dpois);
the order should be 1st regular Poisson variables, 2nd zero-inflated Poisson vari-
ables

p_zip a vector of probabilities of structural zeros (not including zeros from the Pois-

son distribution) for the zero-inflated Poisson variables (see VGAM: : dzipois); if
p_zip = 0, Y}, has a regular Poisson distribution; if p_zip is in (0, 1), Y
has a zero-inflated Poisson distribution; if p_zipisin (-(exp(lam) - 1)*(-1),
0), Y,is has a zero-deflated Poisson distribution and p_zip is not a probabil-
ity; if p_zip = -(exp(lam) - 1)*(-1), Y}, has a positive-Poisson distribution
(see VGAM: :dpospois); if length(p_zip) < length(lam), the missing values
are set to O (and ordered 1st)

size a vector of size parameters for the Negative Binomial variables (see stats: :dnbinom);
the order should be 1st regular NB variables, 2nd zero-inflated NB variables

prob a vector of success probability parameters for the NB variables; order the same
asin size

mu a vector of mean parameters for the NB variables (*Note: either prob or mu

should be supplied for all Negative Binomial variables, not a mixture; default =
NULL); order the same as in size; for zero-inflated NB this refers to the mean
of the NB distribution (see VGAM: : dzinegbin)

p_zinb a vector of probabilities of structural zeros (not including zeros from the NB dis-
tribution) for the zero-inflated NB variables (see VGAM: : dzinegbin); if p_zinb
= 0, Y,; has a regular NB distribution; if p_zinb is in (-prob*size/(1 -
prob*size), 0), Y,; has a zero-deflated NB distribution and p_zinb is not a

sumimary_var

rho

Value

65

probability; if p_zinb = -prob*size/ (1 - prob*size), Y,,; has a positive-NB
distribution (see VGAM: : dposnegbin); if length(p_zinb) < length(size), the
missing values are set to O (and ordered 1st)

the target correlation matrix which must be ordered Ist ordinal, 2nd continu-
ous non-mixture, 3rd components of continuous mixtures, 4th regular Poisson,
Sth zero-inflated Poisson, 6th regular NB, 7th zero-inflated NB; note that rho is
specified in terms of the components of Y., ;.

A list whose components vary based on the type of simulated variables.

If ordinal variables are produced:

ord_sum a list, where the i-th element contains a data.frame with target and simulated cumulative
probabilities for ordinal variable Y_i

If continuous variables are produced:

cont_sum a data.frame summarizing Y_cont and Y_comp,

target_sum a data.frame with the target distributions for Y_cont and Y_comp,

mix_sum a data.frame summarizing Y_mix,

target_mix a data.frame with the target distributions for Y_mix,

If Poisson variables are produced:

pois_sum a data.frame summarizing Y_pois

If Negative Binomial variables are produced:

nb_sum a data.frame summarizing Y_nb

Additionally, the following elements:

rho_calc the final correlation matrix for Y_cat, Y_cont, Y_comp, Y_pois, and Y_nb

rho_mix the final correlation matrix for Y_cat, Y_cont, Y_mix, Y_pois, and Y_nb

maxerr the maximum final correlation error of rho_calc from the target rho.

References

See references for SimCorrMix.

See Also

contmixvarl, corrvar, corrvar2

Examples

Using normal mixture variable from contmixvarl example

Nmix <- contmixvar1(n = 1000, "Polynomial”, means = @, vars = 1

mix_pis
mix_skews = c(@
mix_sixths = c(0, @))

Nsum <- summary_var(Y_comp = Nmix$Y_comp, Y_mix = Nmix$Y_mix,

means

= c(0.4

@, vars

)

, 0.6), mix_mus = c(-2, 2), mix_sigmas = c(1, 1),
, @), mix_skurts = c(0, 0), mix_fifths = c(0, @),

=1, mix_pis = c(0.4, 0.6), mix_mus = c(-2, 2),

66

mix_sigmas = c(1, 1), mix_skews = c(@, @), mix_skurts = c(0, 0),
mix_fifths = c(@, @), mix_sixths = c(0, @))

Not run:

2 continuous mixture, 1 binary, 1 zero-inflated Poisson, and
1 zero-inflated NB variable

n <- 10000

seed <- 1234

Mixture variables: Normal mixture with 2 components;
mixture of Logistic(@, 1), Chisq(4), Beta(4, 1.5)
Find cumulants of components of 2nd mixture variable
<- calc_theory("Logistic”, c(@, 1))

<- calc_theory("Chisq", 4)

<- calc_theory("Beta”, c(4, 1.5))

o o # HF H&

skews <- skurts <- fifths <- sixths <- NULL

Six <- list()

mix_pis <- list(c(0.4, 0.6), c(0.3, 0.2, 0.5))

mix_mus <- list(c(-2, 2), c(L[11, C[1]1, B[11))

mix_sigmas <- list(c(1, 1), c(L[2], C[2]1, B[2]1))
mix_skews <- list(rep(@, 2), c(L[3]1, C[3], B[31))
mix_skurts <- list(rep(@, 2), c(L[4], C[4]1, B[41))
mix_fifths <- list(rep(@, 2), c(L[5], C[5], B[5]1))
mix_sixths <- list(rep(@, 2), c(L[6]1, C[61, B[6]1))
mix_Six <- list(list(NULL, NULL), list(1.75, NULL, 0.03))

Nstcum <- calc_mixmoments(mix_pis[[1]], mix_mus[[1]], mix_sigmas[[1]],
mix_skews[[1]1, mix_skurts[[11], mix_fifths[[1]1], mix_sixths[[1]]1)
Mstcum <- calc_mixmoments(mix_pis[[2]], mix_mus[[2]], mix_sigmas[[2]],
mix_skews[[2]], mix_skurts[[2]], mix_fifths[[2]], mix_sixths[[2]])

means <- c(Nstcum[1], Mstcum[1])
vars <- c(Nstcum[2]*2, Mstcum[2]*2)

marginal <- 1ist(0.3)
support <- list(c(Q, 1))
lam <- 0.5

p_zip <- 0.1

size <- 2

prob <- 0.75

p_zinb <- 0.2

k_cat <- k_pois <- k_nb <- 1

k_cont <- @

k_mix <- 2

Rey <- matrix(@.39, 8, 8)

diag(Rey) <- 1

rownames(Rey) <- colnames(Rey) <- c("01", "M1_1", "M1_2", "M2_1", "M2_2",
"M2_3", "P1", "NB1")

set correlation between components of the same mixture variable to @
Rey["M1_1", "M1_2"] <- Rey["M1_2", "M1_1"] <- @
Rey["M2_1", "M2_2"] <- Rey["M2_2", "M2_1"] <- Rey["M2_1", "M2_3"] <- 0

summary_var

validcorr 67

Rey["M2_3", "M2_1"] <- Rey["M2_2", "M2_3"] <- Rey["M2_3", "M2_2"] <- 0@

check parameter inputs

validpar(k_cat, k_cont, k_mix, k_pois, k_nb, "Polynomial”, means,
vars, skews, skurts, fifths, sixths, Six, mix_pis, mix_mus, mix_sigmas,
mix_skews, mix_skurts, mix_fifths, mix_sixths, mix_Six, marginal, support,
lam, p_zip, size, prob, mu = NULL, p_zinb, rho = Rey)

check to make sure Rey is within the feasible correlation boundaries
validcorr(n, k_cat, k_cont, k_mix, k_pois, k_nb, "Polynomial”, means,
vars, skews, skurts, fifths, sixths, Six, mix_pis, mix_mus, mix_sigmas,
mix_skews, mix_skurts, mix_fifths, mix_sixths, mix_Six, marginal,
lam, p_zip, size, prob, mu = NULL, p_zinb, Rey, seed)

simulate without the error loop

Sim1 <- corrvar(n, k_cat, k_cont, k_mix, k_pois, k_nb, "Polynomial”, means,
vars, skews, skurts, fifths, sixths, Six, mix_pis, mix_mus, mix_sigmas,
mix_skews, mix_skurts, mix_fifths, mix_sixths, mix_Six, marginal, support,
lam, p_zip, size, prob, mu = NULL, p_zinb, Rey, seed, epsilon = 0.01)

Summ1 <- summary_var(Sim1$Y_cat, Y_cont = NULL, Sim1$Y_comp, Sim1$Y_mix,
Sim1$Y_pois, Sim1$Y_nb, means, vars, skews, skurts, fifths, sixths,
mix_pis, mix_mus, mix_sigmas, mix_skews, mix_skurts, mix_fifths,
mix_sixths, marginal, lam, p_zip, size, prob, mu = NULL, p_zinb, Rey)

Siml_error <- abs(Rey - Summl$rho_calc)
summary(as.numeric(Siml_error))

End(Not run)

validcorr Determine Correlation Bounds for Ordinal, Continuous, Poisson,
and/or Negative Binomial Variables: Correlation Method 1

Description

This function calculates the lower and upper correlation bounds for the given distributions and
checks if a given target correlation matrix rho is within the bounds. It should be used before sim-
ulation with corrvar. However, even if all pairwise correlations fall within the bounds, it is still
possible that the desired correlation matrix is not feasible. This is particularly true when ordinal
variables (r > 2 categories) are generated or negative correlations are desired. Therefore, this
function should be used as a general check to eliminate pairwise correlations that are obviously
not reproducible. It will help prevent errors when executing the simulation. The ordering of the
variables in rho must be 1st ordinal, 2nd continuous non-mixture, 3rd components of continuous
mixture, 4th regular Poisson, 5th zero-inflated Poisson, 6th regular NB, and 7th zero-inflated NB.
Note that it is possible for k_cat, k_cont, k_mix, k_pois, and/or k_nb to be 0. The target corre-
lations are specified with respect to the components of the continuous mixture variables. There are

68 validcorr

no parameter input checks in order to decrease simulation time. All inputs should be checked prior
to simulation with validpar.

Please see the Comparison of Correlation Methods 1 and 2 vignette for the differences between
the two correlation methods, and the Variable Types vignette for a detailed explanation of how the
correlation boundaries are calculated.

Usage

validcorr(n = 10000, k_cat = @, k_cont = @, k_mix = @, k_pois = 0,
k_nb = @, method = c("Fleishman", "Polynomial"”), means = NULL,
vars = NULL, skews = NULL, skurts = NULL, fifths = NULL,
sixths = NULL, Six = list(), mix_pis = list(), mix_mus = list(),
mix_sigmas = list(), mix_skews = list(), mix_skurts = list(),
mix_fifths = list(), mix_sixths = list(), mix_Six = list(),
marginal = list(), lam = NULL, p_zip = @, size = NULL, prob = NULL,
mu = NULL, p_zinb = @, rho = NULL, seed = 1234, use.nearPD = TRUE,
quiet = FALSE)

Arguments

n the sample size (i.e. the length of each simulated variable; default = 10000)

k_cat the number of ordinal (r >= 2 categories) variables (default = 0)

k_cont the number of continuous non-mixture variables (default = 0)

k_mix the number of continuous mixture variables (default = Q)

k_pois the number of regular Poisson and zero-inflated Poisson variables (default = 0)

k_nb the number of regular Negative Binomial and zero-inflated Negative Binomial
variables (default = 0)

method the method used to generate the k_cont non-mixture and k_mix mixture contin-
uous variables. "Fleishman" uses Fleishman’s third-order polynomial transfor-
mation and "Polynomial" uses Headrick’s fifth-order transformation.

means a vector of means for the k_cont non-mixture and k_mix mixture continuous
variables (i.e. rep(@, (k_cont +k_mix)))

vars a vector of variances for the k_cont non-mixture and k_mix mixture continuous
variables (i.e. rep(1, (k_cont +k_mix)))

skews a vector of skewness values for the k_cont non-mixture continuous variables

skurts a vector of standardized kurtoses (kurtosis - 3, so that normal variables have a
value of 0) for the k_cont non-mixture continuous variables

fifths a vector of standardized fifth cumulants for the k_cont non-mixture continuous
variables (not necessary for method = "Fleishman")

sixths a vector of standardized sixth cumulants for the k_cont non-mixture continuous
variables (not necessary for method = "Fleishman")

Six a list of vectors of sixth cumulant correction values for the k_cont non-mixture

continuous variables if no valid PDF constants are found,
ex: Six=1ist(seq(0.01, 2, 0.01), seq(1, 10, 0.5)); if no correction is
desired for variable Y,,:,, set set the i-th list component equal to NULL; if no

validcorr 69

correction is desired for any of the Y.+ keep as Six = 1list() (not necessary
for method = "Fleishman")

mix_pis a list of length k_mix with i-th component a vector of mixing probabilities that
sum to 1 for component distributions of Yz,

mix_mus a list of length k_mix with i-th component a vector of means for component
distributions of Yy,

mix_sigmas a list of length k_mix with i-th component a vector of standard deviations for
component distributions of Y;,,;z,

mix_skews alist of length k_mix with i-th component a vector of skew values for component
distributions of Yy,

mix_skurts a list of length k_mix with i-th component a vector of standardized kurtoses for
component distributions of Y7,

mix_fifths a list of length k_mix with i-th component a vector of standardized fifth cumu-
lants for component distributions of Y;,,;,, (not necessary for method = "Fleish-
man")

mix_sixths a list of length k_mix with i-th component a vector of standardized sixth cumu-
lants for component distributions of Y;,,;,, (not necessary for method = "Fleish-
man")

mix_Six a list of length k_mix with i-th component a list of vectors of sixth cumulant

correction values for component distributions of Y,,,;., ; use NULL if no correction
is desired for a given component or mixture variable; if no correction is desired
for any of the Y,,;, keep as mix_Six = list() (not necessary for method =
"Fleishman")

marginal a list of length equal to k_cat; the i-th element is a vector of the cumulative
probabilities defining the marginal distribution of the i-th variable; if the variable
can take r values, the vector will contain r - 1 probabilities (the r-th is assumed to
be 1); for binary variables, these should be input the same as for ordinal variables
with more than 2 categories (i.e. the user-specified probability is the probability
of the 1st category, which has the smaller support value)

lam a vector of lambda (> 0) constants for the Poisson variables (see stats: :dpois);
the order should be 1st regular Poisson variables, 2nd zero-inflated Poisson vari-
ables

p_zip a vector of probabilities of structural zeros (not including zeros from the Pois-

son distribution) for the zero-inflated Poisson variables (see VGAM: : dzipois); if
p_zip =0, Y, has a regular Poisson distribution; if p_zip is in (0, 1), Y4
has a zero-inflated Poisson distribution; if p_zipisin (-(exp(lam) - 1)*(-1),
9), Y,0is has a zero-deflated Poisson distribution and p_zip is not a probabil-
ity; if p_zip = -(exp(lam) - 1)*(-1), Y, has a positive-Poisson distribution
(see VGAM: :dpospois); if length(p_zip) < length(lam), the missing values
are set to O (and ordered 1st)

size a vector of size parameters for the Negative Binomial variables (see stats: :dnbinom);
the order should be 1st regular NB variables, 2nd zero-inflated NB variables

prob a vector of success probability parameters for the NB variables; order the same
asin size

70

validcorr

mu a vector of mean parameters for the NB variables (*Note: either prob or mu
should be supplied for all Negative Binomial variables, not a mixture; default =
NULL); order the same as in size; for zero-inflated NB this refers to the mean
of the NB distribution (see VGAM: : dzinegbin)

p_zinb a vector of probabilities of structural zeros (not including zeros from the NB dis-
tribution) for the zero-inflated NB variables (see VGAM: : dzinegbin); if p_zinb
= 0, Y, has a regular NB distribution; if p_zinb is in (-prob*size/(1 -
prob*size), 0), Y,; has a zero-deflated NB distribution and p_zinb is not a
probability; if p_zinb = -prob*size/(1 - prob*size), Y,,; has a positive-NB
distribution (see VGAM: : dposnegbin); if length(p_zinb) < length(size), the
missing values are set to O (and ordered 1st)

rho the target correlation matrix which must be ordered Ist ordinal, 2nd continu-
ous non-mixture, 3rd components of continuous mixtures, 4th regular Poisson,
Sth zero-inflated Poisson, 6th regular NB, 7th zero-inflated NB; note that rho is
specified in terms of the components of Y,,,;..

seed the seed value for random number generation (default = 1234)

use.nearPD TRUE to convert rho to the nearest positive definite matrix with Matrix: :nearPD
if necessary

quiet if FALSE prints messages, if TRUE suppresses message printing

Value

A list with components:

rho the target correlation matrix, which will differ from the supplied matrix (if provided) if it was
converted to the nearest positive-definite matrix

L_rho the lower correlation bound

U_rho the upper correlation bound

If continuous variables are desired, additional components are:
constants the calculated constants

sixth_correction a vector of the sixth cumulant correction values

valid.pdf a vector with i-th component equal to "TRUE" if variable Y_i has a valid power method
PDF, else "FALSE"

If a target correlation matrix rho is provided, each pairwise correlation is checked to see if it is
within the lower and upper bounds. If the correlation is outside the bounds, the indices of the
variable pair are given.

valid.rho TRUE if all entries of rho are within the bounds, else FALSE

Reasons for Function Errors

1) The most likely cause for function errors is that no solutions to fleish or poly converged
when using find_constants. If this happens, the function will stop. It may help to first use
find_constants for each continuous variable to determine if a sixth cumulant correction value is
needed. If the standardized cumulants are obtained from calc_theory, the user may need to use
rounded values as inputs (i.e. skews = round(skews, 8)). For example, in order to ensure that
skew is exactly O for symmetric distributions.

validcorr 71

2) The kurtosis may be outside the region of possible values. There is an associated lower boundary
for kurtosis associated with a given skew (for Fleishman’s method) or skew and fifth and sixth
cumulants (for Headrick’s method). Use calc_lower_skurt to determine the boundary for a given
set of cumulants.

References

Please see references for SimCorrMix.

See Also

find_constants, corrvar, validpar

Examples

validcorr(n = 1000, k_cat = 1, k_cont = 1, method = "Polynomial”,
means = @, vars = 1, skews = 0, skurts = @, fifths = @, sixths = 0,
marginal = list(c(1/3, 2/3)), rho = matrix(c(1, 0.4, 0.4, 1), 2, 2),
quiet = TRUE)

Not run:

2 continuous mixture, 1 binary, 1 zero-inflated Poisson, and
1 zero-inflated NB variable

n <- 10000

seed <- 1234

Mixture variables: Normal mixture with 2 components;
mixture of Logistic(@, 1), Chisq(4), Beta(4, 1.5)

Find cumulants of components of 2nd mixture variable
L <- calc_theory("Logistic", c(@, 1))

C <- calc_theory("Chisq", 4)

B <- calc_theory("Beta”, c(4, 1.5))

skews <- skurts <- fifths <- sixths <- NULL

Six <- list()

mix_pis <- list(c(0.4, 0.6), c(0.3, 0.2, 0.5))

mix_mus <- list(c(-2, 2), c(L[1]1, C[1], B[11))

mix_sigmas <- list(c(1, 1), c(L[2], C[2]1, B[2]1))
mix_skews <- list(rep(@, 2), c(L[3], C[3], B[31))
mix_skurts <- list(rep(@, 2), c(L[4]1, C[4]1, B[4]1))
mix_fifths <- list(rep(@, 2), c(L[5], C[51, B[5]1))
mix_sixths <- list(rep(@, 2), c(L[6]1, C[61, B[6]1))
mix_Six <- list(list(NULL, NULL), list(1.75, NULL, ©.03))

Nstcum <- calc_mixmoments(mix_pis[[1]], mix_mus[[1]], mix_sigmas[[1]],
mix_skews[[1]], mix_skurts[[11], mix_fifths[[1]], mix_sixths[[1]]1)
Mstcum <- calc_mixmoments(mix_pis[[2]], mix_mus[[2]], mix_sigmas[[2]],
mix_skews[[2]], mix_skurts[[2]], mix_fifths[[2]], mix_sixths[[2]])

means <- c(Nstcum[1], Mstcum[1])
vars <- c(Nstcum[2]72, Mstcum[2]"2)

marginal <- 1ist(0.3)
support <- list(c(@, 1))

72 validcorr2

lam <- 0.5

p_zip <- 0.1

size <- 2

prob <- 0.75

p_zinb <- 0.2

k_cat <- k_pois <- k_nb <- 1

k_cont <- @

k_mix <- 2

Rey <- matrix(@.39, 8, 8)

diag(Rey) <- 1

rownames(Rey) <- colnames(Rey) <- c("01", "M1_1", "M1_2", "M2_1", "M2_2",
IIM2_3H’ HP1 H’ IINB-I Il)

set correlation between components of the same mixture variable to @

Rey["M1_1", "M1_2"] <- Rey["M1_2", "M1_1"] <- 0

Rey["M2_1", "M2_2"] <- Rey["M2_2", "M2_1"1 <- Rey["M2_1", "M2_3"] <- @

Rey["M2_3", "M2_1"] <- Rey["M2_2", "M2_3"] <- Rey["M2_3", "M2_2"] <- @

check parameter inputs

validpar(k_cat, k_cont, k_mix, k_pois, k_nb, "Polynomial”, means,
vars, skews, skurts, fifths, sixths, Six, mix_pis, mix_mus, mix_sigmas,
mix_skews, mix_skurts, mix_fifths, mix_sixths, mix_Six, marginal, support,
lam, p_zip, size, prob, mu = NULL, rho = Rey)

check to make sure Rey is within the feasible correlation boundaries

validcorr(n, k_cat, k_cont, k_mix, k_pois, k_nb, "Polynomial”, means,
vars, skews, skurts, fifths, sixths, Six, mix_pis, mix_mus, mix_sigmas,
mix_skews, mix_skurts, mix_fifths, mix_sixths, mix_Six, marginal,
lam, p_zip, size, prob, mu = NULL, p_zinb, Rey, seed)

End(Not run)

validcorr2 Determine Correlation Bounds for Ordinal, Continuous, Poisson,
and/or Negative Binomial Variables: Correlation Method 2
Description

This function calculates the lower and upper correlation bounds for the given distributions and
checks if a given target correlation matrix rho is within the bounds. It should be used before sim-
ulation with corrvar2. However, even if all pairwise correlations fall within the bounds, it is still
possible that the desired correlation matrix is not feasible. This is particularly true when ordinal
variables (r > 2 categories) are generated or negative correlations are desired. Therefore, this
function should be used as a general check to eliminate pairwise correlations that are obviously
not reproducible. It will help prevent errors when executing the simulation. The ordering of the
variables in rho must be 1st ordinal, 2nd continuous non-mixture, 3rd components of continuous
mixture, 4th regular Poisson, 5th zero-inflated Poisson, 6th regular NB, and 7th zero-inflated NB.
Note that it is possible for k_cat, k_cont, k_mix, k_pois, and/or k_nb to be 0. The target corre-
lations are specified with respect to the components of the continuous mixture variables. There are

validcorr2

73

no parameter input checks in order to decrease simulation time. All inputs should be checked prior
to simulation with validpar.

Please see the Comparison of Correlation Methods 1 and 2 vignette for the differences between
the two correlation methods, and the Variable Types vignette for a detailed explanation of how the
correlation boundaries are calculated.

Usage

validcor
k_nb =
vars =
sixths
mix_si
mix_fi
margin
mu = N
rho =

Arguments

n
k_cat
k_cont
k_mix
k_pois
k_nb

method

means

vars

skews

skurts

fifths

sixths

Six

r2(n = 10000, k_cat = @, k_cont = @0, k_mix = @, k_pois = 0,
0, method = c("Fleishman”, "Polynomial”), means = NULL,
NULL, skews = NULL, skurts = NULL, fifths = NULL,
= NULL, Six = list(), mix_pis = list(), mix_mus = list(),

gmas = list(), mix_skews = list(), mix_skurts = list(),

fths = list(), mix_sixths = list(), mix_Six = list(),

al = list(), lam = NULL, p_zip = @, size = NULL, prob = NULL,

ULL, p_zinb = @, pois_eps = 0.0001, nb_eps = 0.0001,

NULL, seed = 1234, use.nearPD = TRUE, quiet = FALSE)

the sample size (i.e. the length of each simulated variable; default = 10000)

the number of ordinal (r >= 2 categories) variables (default = 0)
the number of continuous non-mixture variables (default = 0)

the number of continuous mixture variables (default = Q)

the number of regular Poisson and zero-inflated Poisson variables (default = 0)

the number of regular Negative Binomial and zero-inflated Negative Binomial

variables (default = 0)

the method used to generate the k_cont non-mixture and k_mix mixture contin-
uous variables. "Fleishman" uses Fleishman’s third-order polynomial transfor-

mation and "Polynomial" uses Headrick’s fifth-order transformation.

a vector of means for the k_cont non-mixture and k_mix mixture continuous

variables (i.e. rep(@, (k_cont +k_mix)))

a vector of variances for the k_cont non-mixture and k_mix mixture continuous

variables (i.e. rep(1, (k_cont +k_mix)))

a vector of skewness values for the k_cont non-mixture continuous variables

a vector of standardized kurtoses (kurtosis - 3, so that normal variables have a

value of 0) for the k_cont non-mixture continuous variables

a vector of standardized fifth cumulants for the k_cont non-mixture continuous

variables (not necessary for method = "Fleishman")

a vector of standardized sixth cumulants for the k_cont non-mixture continuous

variables (not necessary for method = "Fleishman")

a list of vectors of sixth cumulant correction values for the k_cont non-mixture

continuous variables if no valid PDF constants are found,

ex: Six=1ist(seq(0.01, 2, 0.01), seq(1, 10, 0.5)); if no correction is
desired for variable Y,,:,, set set the i-th list component equal to NULL; if no

74

mix_pis

mix_mus

mix_sigmas

mix_skews

mix_skurts

mix_fifths

mix_sixths

mix_Six

marginal

lam

p_zip

size

prob

validcorr2

correction is desired for any of the Y.+ keep as Six = 1list() (not necessary
for method = "Fleishman")

a list of length k_mix with i-th component a vector of mixing probabilities that
sum to 1 for component distributions of Yz,

a list of length k_mix with i-th component a vector of means for component
distributions of Yy,

a list of length k_mix with i-th component a vector of standard deviations for
component distributions of Y;,,;z,

alist of length k_mix with i-th component a vector of skew values for component
distributions of Yy,

a list of length k_mix with i-th component a vector of standardized kurtoses for
component distributions of Y7,

a list of length k_mix with i-th component a vector of standardized fifth cumu-
lants for component distributions of Y;,,;,, (not necessary for method = "Fleish-
man")

a list of length k_mix with i-th component a vector of standardized sixth cumu-
lants for component distributions of Y;,,;,, (not necessary for method = "Fleish-
man")

a list of length k_mix with i-th component a list of vectors of sixth cumulant
correction values for component distributions of Y,,,;., ; use NULL if no correction
is desired for a given component or mixture variable; if no correction is desired
for any of the Y,,;, keep as mix_Six = list() (not necessary for method =
"Fleishman")

a list of length equal to k_cat; the i-th element is a vector of the cumulative
probabilities defining the marginal distribution of the i-th variable; if the variable
can take r values, the vector will contain r - 1 probabilities (the r-th is assumed to
be 1); for binary variables, these should be input the same as for ordinal variables
with more than 2 categories (i.e. the user-specified probability is the probability
of the 1st category, which has the smaller support value)

a vector of lambda (> 0) constants for the Poisson variables (see stats: :dpois);
the order should be 1st regular Poisson variables, 2nd zero-inflated Poisson vari-
ables

a vector of probabilities of structural zeros (not including zeros from the Pois-
son distribution) for the zero-inflated Poisson variables (see VGAM: : dzipois); if
p_zip =0, Y, has a regular Poisson distribution; if p_zip is in (0, 1), Y4
has a zero-inflated Poisson distribution; if p_zipisin (-(exp(lam) - 1)*(-1),
9), Y,0is has a zero-deflated Poisson distribution and p_zip is not a probabil-
ity; if p_zip = -(exp(lam) - 1)*(-1), Y, has a positive-Poisson distribution
(see VGAM: :dpospois); if length(p_zip) < length(lam), the missing values
are set to O (and ordered 1st)

a vector of size parameters for the Negative Binomial variables (see stats: :dnbinom);

the order should be 1st regular NB variables, 2nd zero-inflated NB variables

a vector of success probability parameters for the NB variables; order the same
asin size

validcorr2 75

mu a vector of mean parameters for the NB variables (*Note: either prob or mu
should be supplied for all Negative Binomial variables, not a mixture; default =
NULL); order the same as in size; for zero-inflated NB this refers to the mean
of the NB distribution (see VGAM: : dzinegbin)

p_zinb a vector of probabilities of structural zeros (not including zeros from the NB dis-
tribution) for the zero-inflated NB variables (see VGAM: : dzinegbin); if p_zinb
= 0, Y, has a regular NB distribution; if p_zinb is in (-prob*size/(1 -
prob*size), 0), Y,; has a zero-deflated NB distribution and p_zinb is not a
probability; if p_zinb = -prob*size/(1 - prob*size), Y,,; has a positive-NB
distribution (see VGAM: : dposnegbin); if length(p_zinb) < length(size), the
missing values are set to 0 (and ordered 1st)

pois_eps a vector of length k_pois containing total cumulative probability truncation val-
ues; if none are provided, the default is 0.0001 for each variable

nb_eps a vector of length k_nb containing total cumulative probability truncation val-
ues; if none are provided, the default is 0.0001 for each variable

rho the target correlation matrix which must be ordered /st ordinal, 2nd continu-
ous non-mixture, 3rd components of continuous mixtures, 4th regular Poisson,
Sth zero-inflated Poisson, 6th regular NB, 7th zero-inflated NB; note that rho is
specified in terms of the components of Y.

seed the seed value for random number generation (default = 1234)
use.nearPD TRUE to convert rho to the nearest positive definite matrix with Matrix: :nearPD
if necessary
quiet if FALSE prints messages, if TRUE suppresses message printing
Value

A list with components:

rho the target correlation matrix, which will differ from the supplied matrix (if provided) if it was
converted to the nearest positive-definite matrix

L_rho the lower correlation bound

U_rho the upper correlation bound

If continuous variables are desired, additional components are:
constants the calculated constants

sixth_correction a vector of the sixth cumulant correction values

valid.pdf a vector with i-th component equal to "TRUE" if variable Y_i has a valid power method
PDF, else "FALSE"

If a target correlation matrix rho is provided, each pairwise correlation is checked to see if it is
within the lower and upper bounds. If the correlation is outside the bounds, the indices of the
variable pair are given.

valid.rho TRUE if all entries of rho are within the bounds, else FALSE

76 validcorr2

Reasons for Function Errors

1) The most likely cause for function errors is that no solutions to fleish or poly converged
when using find_constants. If this happens, the function will stop. It may help to first use
find_constants for each continuous variable to determine if a sixth cumulant correction value is
needed. If the standardized cumulants are obtained from calc_theory, the user may need to use
rounded values as inputs (i.e. skews = round(skews, 8)). For example, in order to ensure that
skew is exactly O for symmetric distributions.

2) The kurtosis may be outside the region of possible values. There is an associated lower boundary
for kurtosis associated with a given skew (for Fleishman’s method) or skew and fifth and sixth
cumulants (for Headrick’s method). Use calc_lower_skurt to determine the boundary for a given
set of cumulants.

References

Please see references for SimCorrMix.

See Also

find_constants, corrvar2, validpar

Examples

validcorr2(n = 1000, k_cat = 1, k_cont = 1, method = "Polynomial”,
means = @, vars = 1, skews = 0, skurts = 0, fifths = 0, sixths = 0,
marginal = list(c(1/3, 2/3)), rho = matrix(c(1, 0.4, 0.4, 1), 2, 2),
quiet = TRUE)

Not run:

2 continuous mixture, 1 binary, 1 zero-inflated Poisson, and
1 zero-inflated NB variable

n <- 10000

seed <- 1234

Mixture variables: Normal mixture with 2 components;
mixture of Logistic(@, 1), Chisq(4), Beta(4, 1.5)

Find cumulants of components of 2nd mixture variable
L <- calc_theory("Logistic", c(@, 1))

C <- calc_theory("Chisq"”, 4)

B <- calc_theory("Beta”, c(4, 1.5))

skews <- skurts <- fifths <- sixths <- NULL

Six <- list()

mix_pis <- list(c(0.4, 0.6), c(0.3, 0.2, 0.5))

mix_mus <- list(c(-2, 2), c(L[1]1, C[1], B[11))

mix_sigmas <- list(c(1, 1), c(L[2], C[2]1, B[2]))
mix_skews <- list(rep(@, 2), c(L[3]1, C[3], B[31))
mix_skurts <- list(rep(@, 2), c(L[4]1, C[4]1, B[41))
mix_fifths <- list(rep(@, 2), c(L[5]1, C[5]1, B[51))
mix_sixths <- list(rep(@, 2), c(L[6], C[6]1, B[6]1))
mix_Six <- list(list(NULL, NULL), list(1.75, NULL, ©.03))
Nstcum <- calc_mixmoments(mix_pis[[1]1], mix_mus[[1]1], mix_sigmas[[1]],

validpar 77

mix_skews[[1]], mix_skurts[[1]], mix_fifths[[1]], mix_sixths[[1]]1)
Mstcum <- calc_mixmoments(mix_pis[[2]]1, mix_mus[[2]], mix_sigmas[[2]],
mix_skews[[2]], mix_skurts[[2]], mix_fifths[[2]], mix_sixths[[2]])
means <- c(Nstcum[1], Mstcum[1])
vars <- c(Nstcum[2]%2, Mstcum[2]*2)

marginal <- 1list(0.3)
support <- list(c(Q, 1))
lam <- 0.5

p_zip <- 0.1

pois_eps <- 0.0001

size <- 2

prob <- 0.75

p_zinb <- 0.2

nb_eps <- 0.0001

k_cat <- k_pois <- k_nb <- 1

k_cont <- 0

k_mix <- 2

Rey <- matrix(0.39, 8, 8)

diag(Rey) <- 1

rownames (Rey) <- colnames(Rey) <- c("01", "M1_1", "M1_2", "M2_1", "M2_2",
"M2_3", "P1", "NB1")

set correlation between components of the same mixture variable to @
Rey["M1_1", "M1_2"] <- Rey["M1_2", "M1_1"] <- @

Rey["M2_1", "M2_2"] <- Rey[”M2_2", "M2_1"1 <- Rey["M2_1", "M2_3"1 <
Rey["M2_3", "M2_1"] <- Rey["M2_2", "M2_3"] <- Rey["M2_3", "M2_2"] <-

check parameter inputs

validpar(k_cat, k_cont, k_mix, k_pois, k_nb, "Polynomial”, means,
vars, skews, skurts, fifths, sixths, Six, mix_pis, mix_mus, mix_sigmas,
mix_skews, mix_skurts, mix_fifths, mix_sixths, mix_Six, marginal, support,
lam, p_zip, size, prob, mu = NULL, p_zinb, pois_eps, nb_eps, Rey)

check to make sure Rey is within the feasible correlation boundaries
validcorr2(n, k_cat, k_cont, k_mix, k_pois, k_nb, "Polynomial”, means,
vars, skews, skurts, fifths, sixths, Six, mix_pis, mix_mus, mix_sigmas,
mix_skews, mix_skurts, mix_fifths, mix_sixths, mix_Six, marginal,
lam, p_zip, size, prob, mu = NULL, p_zinb, pois_eps, nb_eps, Rey, seed)

End(Not run)

validpar Parameter Check for Simulation or Correlation Validation Functions

Description

This function checks the parameter inputs to the simulation functions contmixvar1, corrvar, and
corrvar2 and to the correlation validation functions validcorr and validcorr2. It should be used

78 validpar

prior to execution of these functions to ensure all inputs are of the correct format. Those functions
do not contain parameter checks in order to decrease simulation time. This would be important if
the user is running several simulation repetitions so that the inputs only have to be checked once.
Note that the inputs do not include all of the inputs to the simulation functions. See the appropriate
function documentation for more details about parameter inputs.

Usage

validpar(k_cat = @, k_cont = @, k_mix = @, k_pois = @, k_nb
method = c("Fleishman”, "Polynomial”), means = NULL, vars
skews = NULL, skurts = NULL, fifths = NULL, sixths = NULL,
Six = list(), mix_pis = list(), mix_mus = list(), mix_sigmas = list(),
mix_skews = list(), mix_skurts = list(), mix_fifths = list(),
mix_sixths = list(), mix_Six = list(), marginal = list(),
support = list(), lam = NULL, p_zip = @, size = NULL, prob = NULL,
mu = NULL, p_zinb = @, pois_eps = 0.0001, nb_eps = 0.0001,
rho = NULL, Sigma = NULL, cstart = list(), quiet = FALSE)

o,
NULL,

Arguments

k_cat the number of ordinal (r >= 2 categories) variables (default = 0)

k_cont the number of continuous non-mixture variables (default = 0)

k_mix the number of continuous mixture variables (default = 0)

k_pois the number of regular Poisson and zero-inflated Poisson variables (default = 0)

k_nb the number of regular Negative Binomial and zero-inflated Negative Binomial
variables (default = 0)

method the method used to generate the k_cont non-mixture and k_mix mixture contin-
uous variables. "Fleishman" uses Fleishman’s third-order polynomial transfor-
mation and "Polynomial" uses Headrick’s fifth-order transformation.

means a vector of means for the k_cont non-mixture and k_mix mixture continuous
variables (i.e. rep(@, (k_cont +k_mix)))

vars a vector of variances for the k_cont non-mixture and k_mix mixture continuous
variables (i.e. rep(1, (k_cont + k_mix)))

skews a vector of skewness values for the k_cont non-mixture continuous variables

skurts a vector of standardized kurtoses (kurtosis - 3, so that normal variables have a
value of 0) for the k_cont non-mixture continuous variables

fifths a vector of standardized fifth cumulants for the k_cont non-mixture continuous
variables (not necessary for method = "Fleishman")

sixths a vector of standardized sixth cumulants for the k_cont non-mixture continuous
variables (not necessary for method = "Fleishman")

Six a list of vectors of sixth cumulant correction values for the k_cont non-mixture

continuous variables if no valid PDF constants are found,

ex: Six=1ist(seq(@.01, 2, 0.01), seq(1, 10, 0.5)); if no correction is
desired for variable Y,,,:,, set set the i-th list component equal to NULL; if no
correction is desired for any of the Y., keep as Six = 1ist() (not necessary
for method = "Fleishman")

validpar 79

mix_pis a vector if using contmixvar? or a list of length k_mix with i-th component
a vector of mixing probabilities that sum to 1 for component distributions of
Ymiam

mix_mus a vector if using contmixvar1 or a list of length k_mix with i-th component a

vector of means for component distributions of Y;,,;2,

mix_sigmas a vector if using contmixvar1 or a list of length k_mix with i-th component a
vector of standard deviations for component distributions of Y, iz,

mix_skews a vector if using contmixvar1 or a list of length k_mix with i-th component a
vector of skew values for component distributions of Y;,,;2,

mix_skurts a vector if using contmixvar1 or a list of length k_mix with i-th component a
vector of standardized kurtoses for component distributions of Y,

mix_fifths a vector if using contmixvar1 or a list of length k_mix with i-th component a
vector of standardized fifth cuamulants for component distributions of Y,,;,., (not
necessary for method = "Fleishman")

mix_sixths a vector if using contmixvar? or a list of length k_mix with i-th component
a vector of standardized sixth cumulants for component distributions of Yy,
(not necessary for method = "Fleishman")

mix_Six if using contmixvari, a list of vectors of sixth cumulant corrections for the
components of the continuous mixture variable; else a list of length k_mix with
i-th component a list of vectors of sixth cumulant correction values for com-
ponent distributions of Y},,;,,; use NULL if no correction is desired for a given
component or mixture variable; if no correction is desired for any of the Y,,,;,
keep as mix_Six = 1ist() (not necessary for method = "Fleishman")

marginal a list of length equal to k_cat; the i-th element is a vector of the cumulative
probabilities defining the marginal distribution of the i-th variable; if the variable
can take r values, the vector will contain r - 1 probabilities (the r-th is assumed to
be 1; default = list()); for binary variables, these should be input the same as for
ordinal variables with more than 2 categories (i.e. the user-specified probability
is the probability of the 1st category, which has the smaller support value)

support a list of length equal to k_cat; the i-th element is a vector containing the r
ordered support values; if not provided (i.e. support =1ist()), the default is
for the i-th element to be the vector 1, ..., r

lam a vector of lambda (mean > 0) constants for the Poisson variables (see stats: :dpois);
the order should be 1st regular Poisson variables, 2nd zero-inflated Poisson vari-
ables

p_zip a vector of probabilities of structural zeros (not including zeros from the Pois-

son distribution) for the zero-inflated Poisson variables (see VGAM: : dzipois); if
p_zip =0, Y, has a regular Poisson distribution; if p_zip is in (0, 1), Y4
has a zero-inflated Poisson distribution; if p_zipisin (-(exp(lam) - 1)*(-1),
0), Y,0is has a zero-deflated Poisson distribution and p_zip is not a probabil-
ity; if p_zip = -(exp(lam) - 1)*(-1), Y}0is has a positive-Poisson distribution
(see VGAM: :dpospois); if length(p_zip) < length(lam), the missing values
are set to O (and ordered 1st)

size a vector of size parameters for the Negative Binomial variables (see stats: : dnbinom);
the order should be 1st regular NB variables, 2nd zero-inflated NB variables

80

prob

mu

p_zinb

pois_eps

nb_eps

rho

Sigma

cstart

quiet

Value

validpar

a vector of success probability parameters for the NB variables; order the same
asin size

a vector of mean parameters for the NB variables (*Note: either prob or mu
should be supplied for all Negative Binomial variables, not a mixture; default =
NULL); order the same as in size; for zero-inflated NB this refers to the mean
of the NB distribution (see VGAM: :dzinegbin)

a vector of probabilities of structural zeros (not including zeros from the NB dis-
tribution) for the zero-inflated NB variables (see VGAM: :dzinegbin); if p_zinb
= 0, Y, has a regular NB distribution; if p_zinb is in (-prob*size/(1 -
prob*size), 0), Y,; has a zero-deflated NB distribution and p_zinb is not a
probability; if p_zinb = -prob*size/(1 - prob*size), Y,,; has a positive-NB
distribution (see VGAM: :dposnegbin); if length(p_zinb) < length(size), the
missing values are set to O (and ordered 1st)

a vector of length k_pois containing total cumulative probability truncation val-
ues; if none are provided, the default is 0.0001 for each variable

a vector of length k_nb containing total cumulative probability truncation val-
ues; if none are provided, the default is 0.0001 for each variable

the target correlation matrix which must be ordered /st ordinal, 2nd continu-
ous non-mixture, 3rd components of continuous mixtures, 4th regular Poisson,
Sth zero-inflated Poisson, 6th regular NB, 7th zero-inflated NB; note that rho is
specified in terms of the components of Y;,,;,

an intermediate correlation matrix to use if the user wants to provide one, else it
is calculated within by intercorr

a list of length equal to k_cont + the total number of mixture components con-
taining initial values for root-solving algorithm used in find_constants. If user
specified, each list element must be input as a matrix. For method = "Fleish-
man", each should have 3 columns for cl, ¢2, ¢3; for method = "Polynomial”,
each should have 5 columns for cl, ¢2, ¢3, c4, c5. If no starting values are spec-
ified for a given component, that list element should be NULL.

if FALSE prints messages, if TRUE suppresses message printing

TRUE if all inputs are correct, else it will stop with a correction message

See Also

contmixvarl, corrvar, corrvar2, validcorr, validcorr2

Examples

validpar(k_cat =
vars = 1, skews
marginal = list
quiet = TRUE)

Not run:

2 continuous mi

1, k_cont = 1, method = "Polynomial”, means = 0,
= 0, skurts = 0, fifths = @, sixths = 0,
(c(1/3, 2/3)), rho = matrix(c(1, 0.4, 0.4, 1), 2, 2),

xture, 1 binary, 1 zero-inflated Poisson, and

validpar

1 zero-inflated NB variable

Mixture variables: Normal mixture with 2 components;
mixture of Logistic(@, 1), Chisq(4), Beta(4, 1.5)
Find cumulants of components of 2nd mixture variable
<- calc_theory("Logistic”, c(@, 1))

<- calc_theory("Chisq”, 4)

<- calc_theory("Beta", c(4, 1.5))

o # HF H

skews <- skurts <- fifths <- sixths <- NULL

Six <- list()

mix_pis <- list(c(0.4, 0.6), c(0.3, 0.2, 0.5))

mix_mus <- list(c(-2, 2), c(L[1], C[1]1, B[1D))

mix_sigmas <- list(c(1, 1), c(L[2], C[2]1, B[2]))
mix_skews <- list(rep(@, 2), c(L[3]1, C[3], B[31))
mix_skurts <- list(rep(@, 2), c(L[4], C[4]1, B[4]))
mix_fifths <- list(rep(@, 2), c(L[51, C[51, B[51))
mix_sixths <- list(rep(@, 2), c(L[6]1, C[6]1, B[6]1))
mix_Six <- list(list(NULL, NULL), list(1.75, NULL, ©.03))

Nstcum <- calc_mixmoments(mix_pis[[1]1]1, mix_mus[[1]1], mix_sigmas[[1]],
mix_skews[[1]], mix_skurts[[1]1], mix_fifths[[1]1], mix_sixths[[1]]1)
Mstcum <- calc_mixmoments(mix_pis[[2]], mix_mus[[2]], mix_sigmas[[2]],
mix_skews[[2]], mix_skurts[[2]1], mix_fifths[[2]], mix_sixths[[2]]1)

means <- c(Nstcum[1], Mstcum[1])
vars <- c(Nstcum[2]%2, Mstcum[2]*2)

marginal <- 1ist(0@.3)
support <- list(c(@, 1))
lam <- 0.5

p_zip <- 0.1

size <- 2

prob <- 0.75

p_zinb <- 0.2

k_cat <- k_pois <- k_nb <- 1

k_cont <- @

k_mix <- 2

Rey <- matrix(0.39, 8, 8)

diag(Rey) <- 1

rownames (Rey) <- colnames(Rey) <- c("01", "M1_1", "M1_2", "M2_1", "M2_2",
"M2_3", "P1", "NB1")

set correlation between components of the same mixture variable to 0@
Rey["M1_1", "M1_2"] <- Rey["M1_2", "M1_1"] <- @

Rey["M2_1", "M2_2"] <- Rey["M2_2", "M2_1"] <- Rey["M2_1", "M2_3"] <- @
Rey["M2_3", "M2_1"] <- Rey["M2_2", "M2_3"] <- Rey["M2_3", "M2_2"] <- 0@
use before contmixvarl with 1st mixture variable:

change mix_pis to not sum to 1

checkl <- validpar(k_mix = 1, method = "Polynomial”, means = Nstcum[1],

vars = Nstcum[2]*2, mix_pis = C(@0.4, 0.5), mix_mus = mix_mus[[1]],
mix_sigmas = mix_sigmas[[1]], mix_skews = mix_skews[[1]1],

81

82 validpar

mix_skurts = mix_skurts[[1]], mix_fifths = mix_fifths[[1]1],
mix_sixths = mix_sixths[[1]])

use before validcorr: should return TRUE

check2 <- validpar(k_cat, k_cont, k_mix, k_pois, k_nb, "Polynomial”, means,
vars, skews, skurts, fifths, sixths, Six, mix_pis, mix_mus, mix_sigmas,
mix_skews, mix_skurts, mix_fifths, mix_sixths, mix_Six, marginal, support,
lam, p_zip, size, prob, mu = NULL, p_zinb, rho = Rey)

End(Not run)

Index

+ Fleishman,
intercorr_cont, 35

x Fleishman
contmixvari, 4
corrvar, 7
corrvar2, 15

+ Headrick
contmixvari, 4
corrvar, 7
corrvar2, 15
intercorr_cont, 35

* NegativeBinomial
corrvar, 7
corrvar2, 15
intercorr_cat_nb, 32
intercorr_cont_nb, 36

intercorr_cont_nb2, 37

intercorr_nb, 42
intercorr_pois_nb, 45
maxcount_support, 47
+x ParameterCheck
validpar, 77
* Poisson
corrvar, 7
corrvar2, 15

intercorr_cat_pois, 33
intercorr_cont_pois, 39
intercorr_cont_pois2, 41

intercorr_pois, 44
intercorr_pois_nb, 45
maxcount_support, 47

* bounds
validcorr, 67
validcorr2, 72

* continuous,
intercorr_cont, 35

* continuous
contmixvarl, 4
corrvar, 7

83

corrvarz, 15
intercorr_cont_nb, 36
intercorr_cont_nb2, 37
intercorr_cont_pois, 39
intercorr_cont_pois2, 41
norm_ord, 48

* correlation,

intercorr_cont, 35

* correlation

corr_error, 23
intercorr, 26
intercorr2, 29
intercorr_cat_nb, 32
intercorr_cat_pois, 33
intercorr_cont_nb, 36
intercorr_cont_nb2, 37
intercorr_cont_pois, 39
intercorr_cont_pois2, 41
intercorr_nb, 42
intercorr_pois, 44
intercorr_pois_nb, 45
norm_ord, 48
ord_norm, 49
rho_M1M2, 57

rho_M1Y, 58
validcorr, 67
validcorr2, 72

* cumulants

calc_mixmoments, 3

* error

corr_error, 23

* method1

corrvar, 7

intercorr, 26
intercorr_cat_nb, 32
intercorr_cat_pois, 33
intercorr_cont_nb, 36
intercorr_cont_pois, 39
intercorr_nb, 42

84

intercorr_pois, 44
intercorr_pois_nb, 45
validcorr, 67

+ method2
corrvar2, 15
intercorr2, 29
intercorr_cont_nb2, 37
intercorr_cont_pois2, 41
maxcount_support, 47
validcorr2, 72

* mixture
calc_mixmoments, 3
contmixvarl, 4
corrvar, 7
corrvarz2, 15
rho_M1M2, 57
rho_M1Y, 58

x ordinal
corrvar, 7
corrvar2, 15
intercorr_cat_nb, 32
intercorr_cat_pois, 33
norm_ord, 48
ord_norm, 49

+ plot
plot_simpdf_theory, 51
plot_simtheory, 54

+ simulation
contmixvaril, 4
corrvar, 7
corrvarz2, 15

* summary
summary_var, 63

calc_lower_skurt, 6, 12, 13, 20,71, 76
calc_mixmoments, 3, 60
calc_theory, 53, 56
contmixvardl, 3,4, 60, 63, 65,77, 79, 80
contord, 48
corr_error, 11,13, 18, 22,23,25,61
corrvar, 3,7, 24-26, 28, 32, 33, 35-37, 39,
40, 43-45,47, 50, 51, 60, 63, 65, 67,
71,77,80
corrvar2, 3, 15, 24, 25, 29, 31, 38, 39, 41, 42,
47-51, 60, 63, 65, 72, 76, 77, 80

find_constants, 3-6, 8, 11-13, 15, 18, 20,
22,24, 26,29, 35-40,42, 70, 71, 76,
80

INDEX

findintercorr_cont_cat, 37, 41
fleish, 6, 12, 20, 70, 76

geom_density, 51
geom_histogram, 54, 56
ggplot, 53, 56

intercorr, 7,11, 13,26, 29, 32, 33, 35-37,
39, 40, 43-45,47,51, 61, 80
intercorr2, 15, 18, 22, 26, 29, 35, 36, 38, 39,
41, 42,47, 48, 51, 61
intercorr_cat_nb, 32, 61
intercorr_cat_pois, 33, 33, 61
intercorr_cont, 35, 61
intercorr_cont_nb, 36, 61
intercorr_cont_nb2, 37, 61
intercorr_cont_pois, 37,39, 42,61
intercorr_cont_pois2, 39,41, 61
intercorr_nb, 42, 45,47, 61
intercorr_pois, 43, 44, 46, 47, 61
intercorr_pois_nb, 43,45, 45, 61

maxcount_support, 38, 41, 42,47, 61

nearPD, 50
nlegsly, 35, 36
norm_ord, 48, 50, 51, 61

ord_norm, 11, 18, 19, 27, 30, 48, 49, 49, 61
ordcont, 24, 49, 50
ordsample, 60

plot_simpdf_theory, 51, 60
plot_simtheory, 53, 54, 60
pmvnorm, 48

poly, 6, 12, 20, 70, 76
power_norm_corr, 39, 40, 42

rho_M1M2, 57, 59, 60
rho_M1Y, 58, 58, 59, 60

SimCorrMix, 3, 6, 13, 25, 28, 31, 35, 59, 65,
71,76

SimCorrMix-package (SimCorrMix), 59

SimMultiCorrData, 37, 41

summary_var, 4,6, 8, 13, 15, 22, 60, 63

triangle, 52, 55

validcorr, 8, 13,61, 67,77, 80

validcorr2, 15, 20, 22,61,72,77, 80

validpar, 4,6, 8, 13, 15, 22, 26, 29, 61, 68,
71,73,76,71

	calc_mixmoments
	contmixvar1
	corrvar
	corrvar2
	corr_error
	intercorr
	intercorr2
	intercorr_cat_nb
	intercorr_cat_pois
	intercorr_cont
	intercorr_cont_nb
	intercorr_cont_nb2
	intercorr_cont_pois
	intercorr_cont_pois2
	intercorr_nb
	intercorr_pois
	intercorr_pois_nb
	maxcount_support
	norm_ord
	ord_norm
	plot_simpdf_theory
	plot_simtheory
	rho_M1M2
	rho_M1Y
	SimCorrMix
	summary_var
	validcorr
	validcorr2
	validpar
	Index

