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RobLox-package Optimally robust influence curves and estimators for location and
scale
Description

Functions for the determination of optimally robust influence curves and estimators in case of nor-
mal location and/or scale (see Chapter 8 in Kohl (2005) <https://epub.uni-bayreuth.de/839/2/DissMKohl.pdf>).
Package versions

Note: The first two numbers of package versions do not necessarily reflect package-individual
development, but rather are chosen for the RobAStXXX family as a whole in order to ease updating
"depends" information.

Author(s)

Matthias Kohl <matthias.kohl@stamats.de>
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References

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl. pdf.

H. Rieder (1994): Robust Asymptotic Statistics. Springer. doi:10.1007/9781468406245

H. Rieder, M. Kohl, and P. Ruckdeschel (2008). The Costs of Not Knowing the Radius. Statistical
Methods and Applications /7(1): 13-40. doi:10.1007/s1026000700477 M. Kohl, P. Ruckdeschel,
and H. Rieder (2010). Infinitesimally Robust Estimation in General Smoothly Parametrized Models.
Statistical Methods and Applications 79(3): 333-354. doi:10.1007/s1026001001330.

M. Kohl and H.P. Deigner (2010). Preprocessing of gene expression data by optimally robust esti-
mators. BMC Bioinformatics 77, 583. doi:10.1186/1471210511583.

M. Kohl (2012). Bounded influence estimation for regression and scale. Statistics, 46(4): 437-488.
doi:10.1080/02331888.2010.540668

See Also

RobAStBase-package

Examples

library(RobLox)

ind <- rbinom(100, size=1, prob=0.05)

X <= rnorm(100, mean=ind*3, sd=(1-ind) + indx*9)
roblox(x)

res <- roblox(x, eps.lower = .01, eps.upper = 0.1, returnIC = TRUE)
estimate(res)

confint(res)

confint(res, method = symmetricBias())

pIC(res)

## don't run to reduce check time on CRAN

## Not run:

checkIC(pIC(res))

Risks(pIC(res))

Infos(pIC(res))

plot(pIC(res))

infoPlot(pIC(res))

## End(Not run)

## row-wise application

ind <- rbinom(200, size=1, prob=0.05)

X <- matrix(rnorm(200, mean=ind*3, sd=(1-ind) + ind*9), nrow = 2)
rowRoblox (X)

finiteSampleCorrection
Function to compute finite-sample corrected radii



https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf
https://doi.org/10.1007/978-1-4684-0624-5
https://doi.org/10.1007/s10260-007-0047-7
https://doi.org/10.1007/s10260-010-0133-0
https://doi.org/10.1186/1471-2105-11-583
https://doi.org/10.1080/02331888.2010.540668
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Description

Given some radius and some sample size the function computes the corresponding finite-sample
corrected radius.

Usage
finiteSampleCorrection(r, n, model = "locsc")
Arguments
r asymptotic radius (non-negative numeric)
n sample size
model has to be "locsc” (for location and scale), "loc” (for location) or "sc” (for
scale), respectively.
Details

The finite-sample correction is based on empirical results obtained via simulation studies.

Given some radius of a shrinking contamination neighborhood which leads to an asymptotically
optimal robust estimator, the finite-sample empirical MSE based on contaminated samples was
minimized for this class of asymptotically optimal estimators and the corresponding finite-sample
radius determined and saved.

The computation is based on the saved results of these Monte-Carlo simulations.

Value

Finite-sample corrected radius.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.
H. Rieder (1994): Robust Asymptotic Statistics. Springer. doi:10.1007/9781468406245

M. Kohl and H.P. Deigner (2010). Preprocessing of gene expression data by optimally robust esti-
mators. BMC Bioinformatics 117, 583. doi:10.1186/1471210511583.

See Also

roblox, rowRoblox, colRoblox

Examples
finiteSampleCorrection(n = 3, r = 0.001, model = "locsc")
finiteSampleCorrection(n = 10, r = 0.02, model = "loc")

finiteSampleCorrection(n = 250, r = 0.15, model = "sc")


https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf
https://doi.org/10.1007/978-1-4684-0624-5
https://doi.org/10.1186/1471-2105-11-583
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rloptIC Computation of the optimally robust IC for AL estimators

Description

The function r10ptIC computes the optimally robust IC for AL estimators in case of normal loca-
tion and (convex) contamination neighborhoods. The definition of these estimators can be found in
Rieder (1994) or Kohl (2005), respectively.

Usage

r1OptIC(r, mean = @, sd = 1, bUp = 1000, computeIC = TRUE)

Arguments
r non-negative real: neighborhood radius.
mean specified mean.
sd specified standard deviation.
bUp positive real: the upper end point of the interval to be searched for the clipping
bound b.
computeIC logical: should IC be computed. See details below.
Details

If ’computelC’ is 'FALSE’ only the Lagrange multipliers *A’, ’a’, and ’b’ contained in the optimally
robust IC are computed.

Value

If *computelC’ is "TRUE’ an object of class "ContIC” is returned, otherwise a list of Lagrange

multipliers
A standardizing constant
a centering constant; always "= 0’ is this symmetric setup
b optimal clipping bound
Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.

H. Rieder (1994): Robust Asymptotic Statistics. Springer. doi:10.1007/9781468406245

M. Kohl, P. Ruckdeschel, and H. Rieder (2010). Infinitesimally Robust Estimation in General
Smoothly Parametrized Models. Statistical Methods and Applications 79(3): 333-354. doi:10.1007/
$1026001001330.


https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf
https://doi.org/10.1007/978-1-4684-0624-5
https://doi.org/10.1007/s10260-010-0133-0
https://doi.org/10.1007/s10260-010-0133-0
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See Also

ContIC-class, roblox

Examples

IC1 <- rlOptIC(r = 0.1)

distrExOptions("ErelativeTolerance” = 1e-12)

checkIC(IC1)

distrExOptions("ErelativeTolerance” = .Machine$double.eps”@.25) # default
Risks(IC1)

cent(IC1)

clip(IC1)

stand(IC1)

plot(IC1)

rlsOptIC.AL Computation of the optimally robust IC for AL estimators

Description

The function r1sOptIC.AL computes the optimally robust IC for AL estimators in case of normal
location with unknown scale and (convex) contamination neighborhoods. The definition of these
estimators can be found in Section 8.2 of Kohl (2005).

Usage

rlsOptIC.AL(r, mean = @, sd = 1, A.loc.start = 1, a.sc.start = 0,
A.sc.start = 0.5, bUp = 1000, delta = 1e-6, itmax = 100,
check = FALSE, computeIC = TRUE)

Arguments
r non-negative real: neighborhood radius.
mean specified mean.
sd specified standard deviation.
A.loc.start positive real: starting value for the standardizing constant of the location part.
a.sc.start real: starting value for centering constant of the scale part.
A.sc.start positive real: starting value for the standardizing constant of the scale part.
bUp positive real: the upper end point of the interval to be searched for the clipping
bound b.
delta the desired accuracy (convergence tolerance).
itmax the maximum number of iterations.
check logical: should constraints be checked.

computeIC logical: should IC be computed. See details below.
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Details

The Lagrange multipliers contained in the expression of the optimally robust IC can be accessed
via the accessor functions cent, clip and stand. If ’computelC’ is 'FALSE’ only the Lagrange
multipliers *A’, ’a’, and ’b’ contained in the optimally robust IC are computed.

Value

If *computelC’ is "TRUE’ an object of class "ContIC” is returned, otherwise a list of Lagrange

multipliers

A standardizing matrix

a centering vector

b optimal clipping bound
Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.

H. Rieder (1994): Robust Asymptotic Statistics. Springer. doi:10.1007/9781468406245

M. Kohl, P. Ruckdeschel, and H. Rieder (2010). Infinitesimally Robust Estimation in General
Smoothly Parametrized Models. Statistical Methods and Applications 79(3): 333-354. doi:10.1007/
$1026001001330.

See Also

ContIC-class, roblox

Examples

IC1 <- rlsOptIC.AL(r = 0.1, check = TRUE)
distreExOptions("ErelativeTolerance” = 1e-12)

checkIC(IC1)

distrExOptions("ErelativeTolerance” = .Machine$double.eps”@.25) # default
Risks(IC1)

cent(IC1)

clip(IC1)

stand(IC1)

## don't run to reduce check time on CRAN
## Not run:

plot(IC1)

infoPlot(IC1)

## k-step estimation
## better use function roblox (see ?roblox)


https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf
https://doi.org/10.1007/978-1-4684-0624-5
https://doi.org/10.1007/s10260-010-0133-0
https://doi.org/10.1007/s10260-010-0133-0
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## 1. data: random sample

ind <- rbinom(100, size=1, prob=0.05)

X <= rnorm(100, mean=0, sd=(1-ind) + indx*9)
mean(x)

sd(x)

median(x)

mad(x)

## 2. Kolmogorov(-Smirnov) minimum distance estimator (default)
## -> we use it as initial estimate for one-step construction
(est@ <- MDEstimator(x, ParamFamily = NormLocationScaleFamily()))

## 3.1 one-step estimation: radius known
IC1 <- rlsOptIC.AL(r = ©0.5, mean = estimate(est@)[1], sd = estimate(est@)[2])
(est1 <- oneStepEstimator(x, IC1, est0))

## 3.2 k-step estimation: radius known
## Choose k = 3
(est2 <- kStepEstimator(x, IC1, est@, steps = 3L))

## 4.1 one-step estimation: radius unknown

## take least favorable radius r = 0.579

## cf. Table 8.1 in Kohl(2005)

IC2 <- rlsOptIC.AL(r = 0.579, mean = estimate(est@)[1], sd = estimate(est@)[2])
(est3 <- oneStepEstimator(x, IC2, est@))

## 4.2 k-step estimation: radius unknown

## take least favorable radius r = 0.579

## cf. Table 8.1 in Kohl(2005)

## choose k = 3

(est4 <- kStepEstimator(x, IC2, est@, steps = 3L))

## End(Not run)

rlsOptIC.An1 Computation of the optimally robust IC for Anl estimators

Description

The function r1sOptIC.An1 computes the optimally robust IC for Anl estimators in case of normal
location with unknown scale and (convex) contamination neighborhoods. The definition of these
estimators can be found in Subsection 8.5.3 of Kohl (2005).

Usage

rlsOptIC.An1(r, aUp = 2.5, delta = 1e-06)
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Arguments
r non-negative real: neighborhood radius.
aUp positive real: the upper end point of the interval to be searched for a.
delta the desired accuracy (convergence tolerance).

Details

The optimal value of the tuning constant a can be read off from the slot Infos of the resulting IC.

Value

Object of class "IC"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Andrews, D.F., Bickel, PJ., Hampel, F.R., Huber, PJ., Rogers, W.H. and Tukey, J.W. (1972) Robust
estimates of location. Princeton University Press.

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl. pdf.

See Also

IC-class

Examples

IC1 <- rlsOptIC.An1(r = 0.1)

checkIC(IC1)

Risks(IC1)

Infos(IC1)

## don't run to reduce check time on CRAN
## Not run:

plot(IC1)

infoPlot (IC1)

## End(Not run)


https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf
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rlsOptIC.An2 Computation of the optimally robust IC for An2 estimators

Description

The function r1sOptIC.An2 computes the optimally robust IC for An2 estimators in case of normal
location with unknown scale and (convex) contamination neighborhoods. The definition of these
estimators can be found in Subsection 8.5.3 of Kohl (2005).

Usage

rlsOptIC.An2(r, a.start = 1.5, k.start = 1.5, delta = 1e-06, MAX = 100)

Arguments

r non-negative real: neighborhood radius.

a.start positive real: starting value for a.

k.start positive real: starting value for k.

delta the desired accuracy (convergence tolerance).

MAX if a or k are beyond the admitted values, MAX is returned.
Details

The computation of the optimally robust IC for An2 estimators is based on optim where MAX is used
to control the constraints on a and k. The optimal values of the tuning constants a and k can be read
off from the slot Infos of the resulting IC.

Value

Object of class "IC"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Andrews, D.F., Bickel, PJ., Hampel, F.R., Huber, PJ., Rogers, W.H. and Tukey, J.W. (1972) Robust
estimates of location. Princeton University Press.

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.

See Also

IC-class


https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf
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Examples

ICT <- rlsOptIC.An2(r = 0.1)
checkIC(IC1)

Risks(IC1)

Infos(IC1)

plot(IC1)

infoPlot(IC1)

rlsOptIC.AnMad Computation of the optimally robust IC for AnMad estimators

Description

The function r1sOptIC.AnMad computes the optimally robust IC for AnMad estimators in case of
normal location with unknown scale and (convex) contamination neighborhoods. These estimators
were considered in Andrews et al. (1972). A definition of these estimators can also be found in
Subsection 8.5.3 of Kohl (2005).

Usage
rlsOptIC.AnMad(r, aUp = 2.5, delta = 1e-06)

Arguments
r non-negative real: neighborhood radius.
aUp positive real: the upper end point of the interval to be searched for a.
delta the desired accuracy (convergence tolerance).

Details

The optimal value of the tuning constant a can be read off from the slot Infos of the resulting IC.

Value

Object of class "IC"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References
Andrews, D.F., Bickel, P.J., Hampel, ER., Huber, PJ., Rogers, W.H. and Tukey, J.W. (1972) Robust
estimates of location. Princeton University Press.

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.


https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf
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See Also

IC-class

Examples

IC1 <- rlsOptIC.AnMad(r = 0.1)
checkIC(IC1)

Risks(IC1)

Infos(IC1)

plot(IC1)

infoPlot(IC1)

rlsOptIC.BM Computation of the optimally robust IC for BM estimators

Description

The function r1sOptIC.BM computes the optimally robust IC for BM estimators in case of normal
location with unknown scale and (convex) contamination neighborhoods. These estimators were
proposed by Bednarski and Mueller (2001). A definition of these estimators can also be found in
Section 8.4 of Kohl (2005).

Usage
rlsOptIC.BM(r, bL.start = 2, bS.start = 1.5, delta = 1e-06, MAX = 100)

Arguments

r non-negative real: neighborhood radius.

bL.start positive real: starting value for by.

bS.start positive real: starting value for by o.

delta the desired accuracy (convergence tolerance).

MAX if bioc Or bsc o are beyond the admitted values, MAX is returned.
Details

The computation of the optimally robust IC for BM estimators is based on optim where MAX is used
to control the constraints on bjo. and by o. The optimal values of the tuning constants bigc, bsc,0,
and +y can be read off from the slot Infos of the resulting IC.

Value

Object of class "IC"

Author(s)
Matthias Kohl <Matthias.Kohl@stamats.de>
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References

Bednarski, T and Mueller, C.H. (2001) Optimal bounded influence regression and scale M-estimators
in the context of experimental design. Statistics, 35(4): 349-369.

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.

M. Kohl (2012). Bounded influence estimation for regression and scale. Statistics, 46(4): 437-488.
doi:10.1080/02331888.2010.540668

See Also

IC-class

Examples

IC1 <- rlsOptIC.BM(r = 0.1)
checkIC(IC1)

Risks(IC1)

Infos(IC1)

plot(IC1)

infoPlot(IC1)

rlsOptIC.Ha3 Computation of the optimally robust IC for Ha3 estimators

Description

The function r1sOptIC.Ha3 computes the optimally robust IC for Ha3 estimators in case of normal
location with unknown scale and (convex) contamination neighborhoods. The definition of these
estimators can be found in Subsection 8.5.2 of Kohl (2005).

Usage

rlsOptIC.Ha3(r, a.start = 0.25, b.start = 2.5, c.start = 5,
delta = 1e-06, MAX = 100)

Arguments
r non-negative real: neighborhood radius.
a.start positive real: starting value for a.
b.start positive real: starting value for b.
c.start positive real: starting value for c.
delta the desired accuracy (convergence tolerance).

MAX if a or b or c are beyond the admitted values, MAX is returned.


https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf
https://doi.org/10.1080/02331888.2010.540668
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Details

The computation of the optimally robust IC for Ha3 estimators is based on optim where MAX is used
to control the constraints on a, b and c. The optimal values of the tuning constants a, b and c can be
read off from the slot Infos of the resulting IC.

Value

Object of class "IC"

Author(s)
Matthias Kohl <Matthias.Kohl@stamats.de>

References

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.

See Also

IC-class

Examples

IC1 <- rlsOptIC.Ha3(r = 0.1)

checkIC(IC1)

Risks(IC1)

Infos(IC1)

## don't run to reduce check time on CRAN
## Not run:

plot(IC1)

infoPlot (IC1)

## End(Not run)

rlsOptIC.Ha4 Computation of the optimally robust IC for Ha4 estimators

Description

The function r1sOptIC.Ha4 computes the optimally robust IC for Ha4 estimators in case of normal
location with unknown scale and (convex) contamination neighborhoods. The definition of these
estimators can be found in Subsection 8.5.2 of Kohl (2005).

Usage

rlsOptIC.Ha4(r, a.start = 0.25, b.start = 2.5, c.start = 5,
k.start = 1, delta = 1e-06, MAX = 100)


https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf

rIsOptIC.Ha4

Arguments

r
a.start
b.start
c.start
k.start
delta
MAX

Details

15

non-negative real: neighborhood radius.
positive real: starting value for a.

positive real: starting value for b.

positive real: starting value for c.

positive real: starting value for k.

the desired accuracy (convergence tolerance).

if a or b or c or k are beyond the admitted values, MAX is returned.

The computation of the optimally robust IC for Ha4 estimators is based on optim where MAX is used
to control the constraints on a, b, ¢ and k. The optimal values of the tuning constants a, b, ¢ and k
can be read off from the slot Infos of the resulting IC.

Value

Object of class "IC"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Marazzi, A. (1993) Algorithms, routines, and S functions for robust statistics. Wadsworth and

Brooks / Cole.

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.

See Also

IC-class

Examples

ICT <- rlsOptIC.Ha4(r = 0.1)

checkIC(IC1)
Risks(IC1)
Infos(IC1)
plot(IC1)
infoPlot(IC1)


https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf
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rlsOptIC.HaMad Computation of the optimally robust IC for HuMad estimators

Description

The function r1sOptIC.HuMad computes the optimally robust IC for HuMad estimators in case of
normal location with unknown scale and (convex) contamination neighborhoods. These estimators
were considered in Andrews et al. (1972). A definition of these estimators can also be found in
Subsection 8.5.2 of Kohl (2005).

Usage

rlsOptIC.HaMad(r, a.start = 0.25, b.start = 2.5, c.start = 5,
delta = 1e-06, MAX = 100)

Arguments

r non-negative real: neighborhood radius.

a.start positive real: starting value for a.

b.start positive real: starting value for b.

c.start positive real: starting value for c.

delta the desired accuracy (convergence tolerance).

MAX if a or b or c are beyond the admitted values, MAX is returned.
Details

The computation of the optimally robust IC for HaMad estimators is based on optim where MAX is
used to control the constraints on a, b and c. The optimal values of the tuning constants a, b, and ¢
can be read off from the slot Infos of the resulting IC.

Value

Object of class "IC"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Andrews, D.F., Bickel, P.J., Hampel, F.R., Huber, PJ., Rogers, W.H. and Tukey, J.W. (1972) Robust
estimates of location. Princeton University Press.

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.


https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf
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See Also

IC-class

Examples

IC1 <- rlsOptIC.HaMad(r = 0.1)
checkIC(IC1)

Risks(IC1)

Infos(IC1)

plot(IC1)

infoPlot(IC1)

rlsOptIC.Hu1l Computation of the optimally robust IC for Hul estimators

Description

The function r1sOptIC.Hul computes the optimally robust IC for Hul estimators in case of nor-
mal location with unknown scale and (convex) contamination neighborhoods. These estimators
were proposed by Huber (1964), Proposal 2. A definition of these estimators can also be found in
Subsection 8.5.1 of Kohl (2005).

Usage
rlsOptIC.Hul(r, kUp = 2.5, delta = 1e-06)

Arguments
r non-negative real: neighborhood radius.
kUp positive real: the upper end point of the interval to be searched for k.
delta the desired accuracy (convergence tolerance).

Details

The optimal value of the tuning constant k can be read off from the slot Infos of the resulting IC.

Value

Object of class "IC"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Huber, P.J. (1964) Robust estimation of a location parameter. Ann. Math. Stat. 35: 73-101.

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.
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See Also

IC-class

Examples

IC1 <- rlsOptIC.Hul(r = 0.1)
checkIC(IC1)

Risks(IC1)

Infos(IC1)

plot(IC1)

infoPlot (IC1)

rlsOptIC.Hu2 Computation of the optimally robust IC for Hu2 estimators

Description

The function r1sOptIC.Hu2 computes the optimally robust IC for Hu2 estimators in case of normal
location with unknown scale and (convex) contamination neighborhoods. These estimators were
proposed in Example 6.4.1 of Huber (1981). A definition of these estimators can also be found in
Subsection 8.5.1 of Kohl (2005).

Usage
rlsOptIC.Hu2(r, k.start = 1.5, c.start = 1.5, delta = 1e-06, MAX = 100)

Arguments

r non-negative real: neighborhood radius.

k.start positive real: starting value for k.

c.start positive real: starting value for c.

delta the desired accuracy (convergence tolerance).

MAX if k1 or k2 are beyond the admitted values, MAX is returned.
Details

The computation of the optimally robust IC for Hu2 estimators is based on optim where MAX is used
to control the constraints on k and c. The optimal values of the tuning constants k and c can be read
off from the slot Infos of the resulting IC.

Value

Object of class "IC"

Author(s)
Matthias Kohl <Matthias.Kohl@stamats.de>
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References

Huber, PJ. (1981) Robust Statistics. New York: Wiley.

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.

See Also

IC-class

Examples

IC1 <- rlsOptIC.Hu2(r = 0.1)
checkIC(IC1)

Risks(IC1)

Infos(IC1)

plot(IC1)

infoPlot(IC1)

rlsOptIC.Hu2a Computation of the optimally robust IC for Hu2a estimators

Description

The function rlsOptIC.Hu2a computes the optimally robust IC for Hu2a estimators in case of
normal location with unknown scale and (convex) contamination neighborhoods. These estimators
are a simple modification of Huber (1964), Proposal 2 where we, in addition, admit a clipping from
below. The definition of these estimators can be found in Subsection 8.5.1 of Kohl (2005).

Usage
rlsOptIC.Hu2a(r, kl.start = 0.25, k2.start = 2.5, delta = 1e-06, MAX = 100)

Arguments

r non-negative real: neighborhood radius.

k1.start positive real: starting value for k1.

k2.start positive real: starting value for k2.

delta the desired accuracy (convergence tolerance).

MAX if k1 or k2 are beyond the admitted values, MAX is returned.
Details

The computation of the optimally robust IC for Hu2a estimators is based on optim where MAX is
used to control the constraints on k1 and k2. The optimal values of the tuning constants k1 and k2
can be read off from the slot Infos of the resulting IC.
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Value

Object of class "IC"

Author(s)
Matthias Kohl <Matthias.Kohl@stamats.de>

References

Huber, PJ. (1964) Robust estimation of a location parameter. Ann. Math. Stat. 35: 73-101.

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.

See Also

IC-class

Examples

IC1 <- rlsOptIC.Hu2a(r = 0.1)
checkIC(IC1)

Risks(IC1)

Infos(IC1)

plot(IC1)

infoPlot (IC1)

rlsOptIC.Hu3 Computation of the optimally robust IC for Hu3 estimators

Description

The function r1sOptIC.Hu3 computes the optimally robust IC for Hu3 estimators in case of normal
location with unknown scale and (convex) contamination neighborhoods. The definition of these
estimators can be found in Subsection 8.5.1 of Kohl (2005).

Usage

rlsOptIC.Hu3(r, k.start = 1, cl.start = 0.1, c2.start = 0.5,
delta = 1e-06, MAX = 100)

Arguments
r non-negative real: neighborhood radius.
k.start positive real: starting value for k.
cl.start positive real: starting value for c1.
c2.start positive real: starting value for c2.
delta the desired accuracy (convergence tolerance).

MAX if k or cl or c2 are beyond the admitted values, MAX is returned.
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Details

The computation of the optimally robust IC for Hu2 estimators is based on optim where MAX is used
to control the constraints on k, c1 and c2. The optimal values of the tuning constants k, cl and c2
can be read off from the slot Infos of the resulting IC.

Value

Object of class "IC"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Huber, PJ. (1981) Robust Statistics. New York: Wiley.

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.

See Also

IC-class

Examples

IC1 <- rlsOptIC.Hu3(r = 0.1)
checkIC(IC1)

Risks(IC1)

Infos(IC1)

plot(IC1)

infoPlot (IC1)

rlsOptIC.HuMad Computation of the optimally robust IC for HuMad estimators

Description

The function r1sOptIC.HuMad computes the optimally robust IC for HuMad estimators in case of
normal location with unknown scale and (convex) contamination neighborhoods. These estimators
were proposed by Andrews et al. (1972), p. 12. A definition of these estimators can also be found
in Subsection 8.5.1 of Kohl (2005).

Usage

r1sOptIC.HuMad(r, kUp = 2.5, delta = 1e-06)
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Arguments
r non-negative real: neighborhood radius.
kUp positive real: the upper end point of the interval to be searched for k.
delta the desired accuracy (convergence tolerance).

Details

The optimal value of the tuning constant k can be read off from the slot Infos of the resulting IC.

Value

Object of class "IC"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Andrews, D.F., Bickel, P.J., Hampel, ER., Huber, PJ., Rogers, W.H. and Tukey, J.W. (1972) Robust
estimates of location. Princeton University Press.

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.

See Also

IC-class

Examples

IC1 <- rlsOptIC.HuMad(r = 0.1)
checkIC(IC1)

Risks(IC1)

Infos(IC1)

plot(IC1)

infoPlot(IC1)

rlsOptIC.M Computation of the optimally robust IC for M estimators

Description

The function r1sOptIC.M computes the optimally robust IC for M estimators in case of normal
location with unknown scale and (convex) contamination neighborhoods. The definition of these
estimators can be found in Section 8.3 of Kohl (2005).
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rlsOptIC.M(r, gglo = 0.5, ggUp = 1.5, al.start = 0.75, a3.start = 0.25,

Arguments

r
gelo
ggUp
al.start
a3.start

bUp

delta
itmax

check

Details

bUp = 1000, delta = 1e-05, itmax = 100, check = FALSE)

non-negative real: neighborhood radius.

non-negative real: the lower end point of the interval to be searched for ~.
positive real: the upper end point of the interval to be searched for ~.
real: starting value for oy .

real: starting value for .

positive real: upper bound used in the computation of the optimal clipping bound
b.

the desired accuracy (convergence tolerance).
the maximum number of iterations.

logical. Should constraints be checked.

The optimal values of the tuning constants a1, g, b and v can be read off from the slot Infos of

the resulting IC.

Value

Object of class "IC"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Huber, PJ. (1981) Robust Statistics. New York: Wiley.

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.

See Also

IC-class
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Examples

ICT <- rlsOptIC.M(r = 0.1, check = TRUE)
distrExOptions("ErelativeTolerance” = 1e-12)

checkIC(IC1, NormLocationScaleFamily())
distrExOptions("ErelativeTolerance” = .Machine$double.eps”0.25)
Risks(IC1)

Infos(IC1)

plot(IC1)

infoPlot(IC1)

rlsOptIC.MM2 Computation of the optimally robust IC for MM?2 estimators

Description

The function r1sOptIC.MM2 computes the optimally robust IC for MM2 estimators in case of nor-
mal location with unknown scale and (convex) contamination neighborhoods. These estimators are
based on a proposal of Fraiman et al. (2001), p. 206. A definition of these estimators can also be
found in Section 8.6 of Kohl (2005).

Usage
rlsOptIC.MM2(r, c.start = 1.5, d.start = 2, delta = 1e-06, MAX = 100)

Arguments

r non-negative real: neighborhood radius.

c.start positive real: starting value for c.

d.start positive real: starting value for d.

delta the desired accuracy (convergence tolerance).

MAX if a or k are beyond the admitted values, MAX is returned.
Details

The computation of the optimally robust IC for MM2 estimators is based on optim where MAX is
used to control the constraints on ¢ and d. The optimal values of the tuning constants ¢ and d can
be read off from the slot Infos of the resulting IC.

Value

Object of class "IC"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>
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References

Fraiman, R., Yohai, V.J. and Zamar, R.H. (2001) Optimal robust M-estimates of location. Ann.
Stat. 29(1): 194-223.

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl. pdf.

See Also

IC-class

Examples

IC1 <- rlsOptIC.MM2(r = 0.1)
checkIC(IC1)

Risks(IC1)

Infos(IC1)

plot(IC1)

infoPlot (IC1)

rlsOptIC.Tul Computation of the optimally robust IC for Tul estimators

Description

The function r1sOptIC.Tul computes the optimally robust IC for Tul estimators in case of normal
location with unknown scale and (convex) contamination neighborhoods. The definition of these
estimators can be found in Subsection 8.5.4 of Kohl (2005).

Usage
rlsOptIC.Tul(r, aUp = 10, delta = 1e-06)

Arguments
r non-negative real: neighborhood radius.
aUp positive real: the upper end point of the interval to be searched for a.
delta the desired accuracy (convergence tolerance).

Details

The optimal value of the tuning constant a can be read off from the slot Infos of the resulting IC.

Value

Object of class "IC"
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Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Beaton, A.E. and Tukey, J.W. (1974) The fitting of power series, meaning polynomials, illustrated
on band-spectroscopic data. Discussions. Technometrics 16: 147-185.

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl. pdf.

See Also

IC-class

Examples

IC1 <- rlsOptIC.Tul(r = 0.1)
checkIC(IC1)

Risks(IC1)

Infos(IC1)

plot(IC1)

infoPlot (IC1)

rlsOptIC.Tu2 Computation of the optimally robust IC for Tu2 estimators

Description

The function r1sOptIC. Tu2 computes the optimally robust IC for Tu2 estimators in case of normal
location with unknown scale and (convex) contamination neighborhoods. The definition of these
estimators can be found in Subsection 8.5.4 of Kohl (2005).

Usage

rlsOptIC.Tu2(r, a.start = 5, k.start = 1.5, delta = 1e-06, MAX = 100)

Arguments
r non-negative real: neighborhood radius.
a.start positive real: starting value for a.
k.start positive real: starting value for k.
delta the desired accuracy (convergence tolerance).

MAX if a or k are beyond the admitted values, MAX is returned.
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Details

The computation of the optimally robust IC for Tu2 estimators is based on optim where MAX is used
to control the constraints on a and k. The optimal values of the tuning constant a and k can be read
off from the slot Infos of the resulting IC.

Value

Object of class "IC"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Beaton, A.E. and Tukey, J.W. (1974) The fitting of power series, meaning polynomials, illustrated
on band-spectroscopic data. Discussions. Technometrics 16: 147-185.

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.

See Also

IC-class

Examples

IC1 <- rlsOptIC.Tu2(r = 0.1)
checkIC(IC1)

Risks(IC1)

Infos(IC1)

plot(IC1)

infoPlot (IC1)

rlsOptIC.TuMad Computation of the optimally robust IC for TuMad estimators

Description

The function r1sOptIC.TuMad computes the optimally robust IC for TuMad estimators in case of
normal location with unknown scale and (convex) contamination neighborhoods. The definition of
these estimators can be found in Subsection 8.5.4 of Kohl (2005).

Usage

r1sOptIC.TuMad(r, aUp = 10, delta = 1e-06)
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Arguments
r non-negative real: neighborhood radius.
aUp positive real: the upper end point of the interval to be searched for a.
delta the desired accuracy (convergence tolerance).

Details

The optimal value of the tuning constant a can be read off from the slot Infos of the resulting IC.

Value

Object of class "IC"

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Beaton, A.E. and Tukey, J.W. (1974) The fitting of power series, meaning polynomials, illustrated
on band-spectroscopic data. Discussions. Technometrics 16: 147-185.

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.

See Also

IC-class

Examples

IC1 <- rlsOptIC.TuMad(r = 0.1)
checkIC(IC1)

Risks(IC1)

Infos(IC1)

plot(IC1)

infoPlot(IC1)

roblox Optimally robust estimator for location and/or scale

Description

The function roblox computes the optimally robust estimator and corresponding IC for normal
location und/or scale and (convex) contamination neighborhoods. The definition of these estimators
can be found in Rieder (1994) or Kohl (2005), respectively.
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Usage

roblox(x, mean, sd, eps, eps.lower, eps.upper, initial.est, k = 1L,
fsCor = TRUE, returnIC = FALSE, mad@ = le-4, na.rm = TRUE)

Arguments
X vector x of data values, may also be a matrix or data.frame with one row, respec-
tively one column/(numeric) variable.
mean specified mean.
sd specified standard deviation which has to be positive.
eps positive real (0 < eps <= 0.5): amount of gross errors. See details below.
eps.lower positive real (0 <= eps. lower <= eps.upper): lower bound for the amount of
gross errors. See details below.
eps.upper positive real (eps.lower <= eps.upper <= 0.5): upper bound for the amount
of gross errors. See details below.
initial.est initial estimate for mean and/or sd. If missing median and/or MAD are used.
k positive integer. k-step is used to compute the optimally robust estimator.
fsCor logical: perform finite-sample correction. See function finiteSampleCorrection.
returnIC logical: should IC be returned. See details below.
mad@ scale estimate used if computed MAD is equal to zero
na.rm logical: if TRUE, the estimator is evaluated at complete.cases(x).
Details

Computes the optimally robust estimator for location with scale specified, scale with location spec-
ified, or both if neither is specified. The computation uses a k-step construction with an appropriate
initial estimate for location or scale or location and scale, respectively. Valid candidates are e.g.
median and/or MAD (default) as well as Kolmogorov(-Smirnov) or von Mises minimum distance
estimators; cf. Rieder (1994) and Kohl (2005).

If the amount of gross errors (contamination) is known, it can be specified by eps. The radius of
the corresponding infinitesimal contamination neighborhood is obtained by multiplying eps by the
square root of the sample size.

If the amount of gross errors (contamination) is unknown, try to find a rough estimate for the amount
of gross errors, such that it lies between eps. lower and eps. upper.

In case eps. lower is specified and eps . upper is missing, eps. upper is set to 0.5. In case eps . upper
is specified and eps. lower is missing, eps. lower is set to 0.

If neither eps nor eps. lower and/or eps. upper is specified, eps. lower and eps.upper are set to
0 and 0.5, respectively.

If eps is missing, the radius-minimax estimator in sense of Rieder et al. (2008), respectively Section
2.2 of Kohl (2005) is returned.

In case of location, respectively scale one additionally has to specify sd, respectively mean where
sd and mean have to be a single number.

For sample size <= 2, median and/or MAD are used for estimation.

If eps = @, mean and/or sd are computed. In this situation it’s better to use function MLEstimator.
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Value

Object of class "kStepEstimate”.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl. pdf.

H. Rieder (1994): Robust Asymptotic Statistics. Springer. doi:10.1007/9781468406245

H. Rieder, M. Kohl, and P. Ruckdeschel (2008). The Costs of Not Knowing the Radius. Statistical
Methods and Applications /7(1): 13-40. doi:10.1007/s1026000700477

M. Kohl, P. Ruckdeschel, and H. Rieder (2010). Infinitesimally Robust Estimation in General
Smoothly Parametrized Models. Statistical Methods and Applications 7/9(3): 333-354. doi:10.1007/
$1026001001330.

M. Kohl and H.P. Deigner (2010). Preprocessing of gene expression data by optimally robust esti-
mators. BMC Bioinformatics 77, 583. doi:10.1186/1471210511583.

See Also

ContIC-class, r10ptIC, rsOptIC, rlsOptIC.AL, kStepEstimate-class, roptest

Examples

ind <- rbinom(100, size=1, prob=0.05)
X <= rnorm(100, mean=ind*3, sd=(1-ind) + indx*9)

## amount of gross errors known

resl <- roblox(x, eps = 0.05, returnIC = TRUE)
estimate(res1)

## don't run to reduce check time on CRAN
## Not run:

confint(res1)

confint(res1, method = symmetricBias())
pIC(res1)

checkIC(pIC(res1))

Risks(pIC(res1))

Infos(pIC(res1))

plot(pIC(res1))

infoPlot(pIC(res1))

## End(Not run)

## amount of gross errors unknown

res2 <- roblox(x, eps.lower = 0.01, eps.upper = 0.1, returnIC = TRUE)
estimate(res2)

## don't run to reduce check time on CRAN


https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf
https://doi.org/10.1007/978-1-4684-0624-5
https://doi.org/10.1007/s10260-007-0047-7
https://doi.org/10.1007/s10260-010-0133-0
https://doi.org/10.1007/s10260-010-0133-0
https://doi.org/10.1186/1471-2105-11-583
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## Not run:

confint(res2)

confint(res2, method = symmetricBias())
pIC(res2)

checkIC(pIC(res2))

Risks(pIC(res2))

Infos(pIC(res2))

plot(pIC(res2))

infoPlot(pIC(res2))

## End(Not run)
## estimator comparison
# classical optimal (non-robust)

c(mean(x), sd(x))

# most robust
c(median(x), mad(x))

# optimally robust (amount of gross errors known)
estimate(res1)

# optimally robust (amount of gross errors unknown)
estimate(res2)

# Kolmogorov(-Smirnov) minimum distance estimator (robust)
(ks.est <- MDEstimator(x, ParamFamily = NormLocationScaleFamily()))

# optimally robust (amount of gross errors known)
roblox(x, eps = 0.05, initial.est = estimate(ks.est))

# Cramer von Mises minimum distance estimator (robust)
(CvM.est <- MDEstimator(x, ParamFamily = NormLocationScaleFamily(), distance = CvMDist))

# optimally robust (amount of gross errors known)
roblox(x, eps = 0.05, initial.est = estimate(CvM.est))

rowRoblox and colRoblox
Optimally robust estimation for location and/or scale

Description

The functions rowRoblox and colRoblox compute optimally robust estimates for normal location
und/or scale and (convex) contamination neighborhoods. The definition of these estimators can be
found in Rieder (1994) or Kohl (2005), respectively.

Usage

rowRoblox(x, mean, sd, eps, eps.lower, eps.upper, initial.est, k = 1L,
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fsCor = TRUE, mad® = le-4, na.rm = TRUE)
colRoblox(x, mean, sd, eps, eps.lower, eps.upper, initial.est, k = 1L,
fsCor = TRUE, mad@® = le-4, na.rm = TRUE)

Arguments
X matrix or data.frame of (numeric) data values.
mean specified mean. See details below.
sd specified standard deviation which has to be positive. See also details below.
eps positive real (0 < eps <= 0.5): amount of gross errors. See details below.
eps.lower positive real (0 <= eps. lower <= eps.upper): lower bound for the amount of
gross errors. See details below.
eps.upper positive real (eps.lower <= eps.upper <= 0.5): upper bound for the amount
of gross errors. See details below.
initial.est initial estimate for mean and/or sd. If missing median and/or MAD are used.
k positive integer. k-step is used to compute the optimally robust estimator.
fsCor logical: perform finite-sample correction. See function finiteSampleCorrection.
mad@ scale estimate used if computed MAD is equal to zero
na.rm logical: if TRUE, the estimator is evaluated at complete.cases(x).
Details

Computes the optimally robust estimator for location with scale specified, scale with location spec-
ified, or both if neither is specified. The computation uses a k-step construction with an appropriate
initial estimate for location or scale or location and scale, respectively. Valid candidates are e.g.
median and/or MAD (default) as well as Kolmogorov(-Smirnov) or Cram\’er von Mises minimum
distance estimators; cf. Rieder (1994) and Kohl (2005). In case package Biobase from Bioconduc-
tor is installed as is suggested, median and/or MAD are computed using function rowMedians.

These functions are optimized for the situation where one has a matrix and wants to compute the
optimally robust estimator for every row, respectively column of this matrix. In particular, the
amount of cross errors is assumed to be constant for all rows, respectively columns.

If the amount of gross errors (contamination) is known, it can be specified by eps. The radius of
the corresponding infinitesimal contamination neighborhood is obtained by multiplying eps by the
square root of the sample size.

If the amount of gross errors (contamination) is unknown, try to find a rough estimate for the amount
of gross errors, such that it lies between eps. lower and eps. upper.

In case eps. lower is specified and eps . upper is missing, eps. upper is set to 0.5. In case eps . upper
is specified and eps. lower is missing, eps. lower is set to 0.

If neither eps nor eps. lower and/or eps. upper is specified, eps. lower and eps.upper are set to
0 and 0.5, respectively.

If eps is missing, the radius-minimax estimator in sense of Rieder et al. (2008), respectively Section
2.2 of Kohl (2005) is returned.
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In case of location, respectively scale one additionally has to specify sd, respectively mean where
sd and mean can be a single number, i.e., identical for all rows, respectively columns, or a vector
with length identical to the number of rows, respectively columns.

For sample size <= 2, median and/or MAD are used for estimation.

If eps = @, mean and/or sd are computed.

Value

Object of class "kStepEstimate”.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl. pdf.

H. Rieder (1994): Robust Asymptotic Statistics. Springer. doi:10.1007/9781468406245

H. Rieder, M. Kohl, and P. Ruckdeschel (2008). The Costs of Not Knowing the Radius. Statistical
Methods and Applications /7(1): 13-40. doi:10.1007/s1026000700477

M. Kohl, P. Ruckdeschel, and H. Rieder (2010). Infinitesimally Robust Estimation in General
Smoothly Parametrized Models. Statistical Methods and Applications 79(3): 333-354. doi:10.1007/
$1026001001330.

M. Kohl and H.P. Deigner (2010). Preprocessing of gene expression data by optimally robust esti-
mators. BMC Bioinformatics 77, 583. doi:10.1186/1471210511583.

See Also

roblox, kStepEstimate-class

Examples

ind <- rbinom(200, size=1, prob=0.05)

X <- matrix(rnorm(200, mean=ind*3, sd=(1-ind) + ind*9), nrow = 2)
rowRoblox (X)

rowRoblox(X, k = 3)

rowRoblox (X, eps = 0.05)

rowRoblox(X, eps = 0.05, k = 3)

X1 <= t(X)

colRoblox(X1)

colRoblox (X1, k = 3)
colRoblox(X1, eps = 0.05)

colRoblox(X1, eps = 0.05, k = 3)

X2 <- rbind(rnorm(100, mean = -2, sd = 3), rnorm(100, mean = -1, sd = 4))
rowRoblox (X2, sd = c(3, 4))
rowRoblox (X2, eps = 0.03, sd = c(3, 4))


https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf
https://doi.org/10.1007/978-1-4684-0624-5
https://doi.org/10.1007/s10260-007-0047-7
https://doi.org/10.1007/s10260-010-0133-0
https://doi.org/10.1007/s10260-010-0133-0
https://doi.org/10.1186/1471-2105-11-583
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rowRoblox (X2, sd = c(3, 4), k = 4)
rowRoblox (X2, eps = 0.03, sd = c(3, 4), k = 4)

X3 <- cbind(rnorm(10@, mean = -2, sd = 3), rnorm(100, mean = 1, sd = 2))
colRoblox (X3, mean = c(-2, 1))
colRoblox (X3, eps = .02, mean
colRoblox(X3, mean = c(-2, 1),
colRoblox (X3, eps = .02, mean

c(-2, 1)
= 4)
-2, 1), Kk = 4)

n x nu

rsOptIC Computation of the optimally robust IC for AL estimators

Description

The function rsOptIC computes the optimally robust IC for AL estimators in case of normal scale
and (convex) contamination neighborhoods. The definition of these estimators can be found in
Rieder (1994) or Kohl (2005), respectively.

Usage

rsOptIC(r, mean =0, sd =1, bUp = 1000, delta = 1e-06, itmax = 100, computeIC = TRUE)

Arguments
r non-negative real: neighborhood radius.
mean specified mean.
sd specified standard deviation.
bUp positive real: the upper end point of the interval to be searched for the clipping
bound b.
delta the desired accuracy (convergence tolerance).
itmax the maximum number of iterations.
computelC logical: should IC be computed. See details below.
Details

If ’computelC’ is 'FALSE’ only the Lagrange multipliers *A’, ’a’, and ’b’ contained in the optimally
robust IC are computed.

Value

If "computelC’ is *"TRUE’ an object of class "ContIC" is returned, otherwise a list of Lagrange

multipliers
A standardizing constant
a centering constant

b optimal clipping bound
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Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl. pdf.

See Also

ContIC-class, roblox

Examples

IC1 <- rsOptIC(r = 0.1)

distrExOptions("ErelativeTolerance” = 1e-12)

checkIC(IC1)

distrExOptions("ErelativeTolerance” = .Machine$double.eps”*@.25) # default
Risks(IC1)

cent(IC1)

clip(IC1)

stand(IC1)

plot(IC1)

showdown Estimator Showdown by Monte-Carlo Study.

Description

The function showdown can be used to perform Monte-Carlo studies comparing a competitor with
rmx estimators in case of normal location and scale. In addition, maximum likelihood (ML) estima-
tors (mean and sd) and median and MAD are computed. The comparison is based on the empirical
MSE.

Usage

showdown(n, M, eps, contD, seed = 123, estfun, estMean, estSd,
eps.lower = @, eps.upper = 0.05, steps = 3L, fsCor = TRUE,
plot1 = FALSE, plot2 = FALSE, plot3 = FALSE)

Arguments
n integer; sample size, should be at least 3.
M integer; Monte-Carlo replications.
eps amount of contamination in [0, 0.5].

contD object of class "UnivariateDistribution”; contaminating distribution.


https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf
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seed random seed.
estfun function to compute location and scale estimator; see details below.
estMean function to compute location estimator; see details below.
estSd function to compute scale estimator; see details below.
eps. lower used by rmx estimator.
eps.upper used by rmx estimator.
steps integer; steps used for estimator construction.
fsCor logical; use finite-sample correction.
plot1i logical; plot cdf of ideal and real distribution.
plot2 logical; plot 20 (or M if M < 20) randomly selected samples.
plot3 logical; generate boxplots of the results.
Details

Normal location and scale with mean = 0 and sd = 1 is used as ideal model (without restriction due
to equivariance).

Since there is no estimator which yields reliable results if 50 percent or more of the observations are
contaminated, we use a modification where we re-simulate all samples including at least 50 percent
contaminated data.

If estfun is specified it has to compute and return a location and scale estimate (vector of length
2). One can also specify the location and scale estimator separately by using estMean and estSd
where estMean computes and returns the location estimate and estSd the scale estimate.

We use funtion rowRoblox for the computation of the rmx estimator.

Value

Data.frame including empirical MSE (standardized by sample size n) and reIMSE with respect to
the rmx estimator.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References
M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation.
University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.
H. Rieder (1994): Robust Asymptotic Statistics. Springer. doi:10.1007/9781468406245

H. Rieder, M. Kohl, and P. Ruckdeschel (2008). The Costs of Not Knowing the Radius. Statistical
Methods and Applications /7(1): 13-40. doi:10.1007/s1026000700477

M. Kohl, P. Ruckdeschel, and H. Rieder (2010). Infinitesimally Robust Estimation in General
Smoothly Parametrized Models. Statistical Methods and Applications 79(3): 333-354. doi:10.1007/
$1026001001330.

M. Kohl and H.P. Deigner (2010). Preprocessing of gene expression data by optimally robust esti-
mators. BMC Bioinformatics 77, 583. doi:10.1186/1471210511583.
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https://doi.org/10.1007/s10260-007-0047-7
https://doi.org/10.1007/s10260-010-0133-0
https://doi.org/10.1007/s10260-010-0133-0
https://doi.org/10.1186/1471-2105-11-583
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See Also

rowRoblox

Examples

library(MASS)

## compare with Huber's Proposal 2

showdown(n = 20, M = 100, eps = 0.02, contD = Norm(mean
estfun = function(x){ unlist(hubers(x)) },
plot1 = TRUE, plot2 = TRUE, plot3 = TRUE)
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## compare with Huber M estimator with MAD scale

showdown(n = 20, M = 100, eps = 0.02, contD = Norm(mean = 3, sd = 3),
estfun = function(x){ unlist(huber(x)) 3},
plot1 = TRUE, plot2 = TRUE, plot3 = TRUE)



Index

+x Monte-Carlo study
showdown, 35

* finite-sample correction
finiteSampleCorrection, 3

+ influence curve
rloptIC, 5

rlsOptIC.
rlsOptIC.
rlsOptIC.
rlsOptIC.
rlsOptIC.
rlsoptIC.
rlsoptIC.
rlsoptIC.
rlsOptIC.
rlsOptIC.
rlsoptIC.
rlsoptIC.
rlsoptIC.
rlsoptIC.
rlsOptIC.
rlsoptIC.
rlsoptIC.
rlsoptIC.

AL, 6
An1, 8
An2, 10
AnMad, 11
BM, 12
Ha3, 13
Ha4, 14
HaMad, 16
Hul, 17
Hu2, 18
Hu2a, 19
Hu3, 20
HuMad, 21
M, 22
MM2, 24
Tul, 25
Tu2, 26
TuMad, 27

roblox, 28
rowRoblox and colRoblox, 31

rsOptIC, 34
x normal location and scale
finiteSampleCorrection, 3

rlsoptIC.
rlsoptIC.
rlsoptIC.
rlsoptIC.
rlsoptIC.
rlsoptIC.
rlsOptIC.
rlsoptIC.
rlsoptIC.
rlsoptIC.

AL, 6
An1, 8
An2, 10
AnMad, 11
BM, 12
Ha3, 13
Ha4, 14
HaMad, 16
Hul, 17
Hu2, 18

38

rlsOptIC.
rlsOptIC.
rlsOptIC.
M, 22

rlsOptIC

rlsOptIC.

Hu2a, 19
Hu3, 20
HuMad, 21

MM2, 24

rlsOptIC.Tul, 25
risOptIC.Tu2, 26
rlsOptIC.TuMad, 27
roblox, 28
rowRoblox and colRoblox, 31
+ normal location
finiteSampleCorrection, 3
rloptIC, 5
roblox, 28
rowRoblox and colRoblox, 31
* normal scale
finiteSampleCorrection, 3
roblox, 28
rowRoblox and colRoblox, 31
rsOptIC, 34
* package
RobLox-package, 2
* robust
finiteSampleCorrection, 3
rloptIC, 5

rlsOptIC.AL, 6

rlsOptIC.
rlsOptIC.
rlsOptIC.
rlsOptIC.
rlsOptIC.
rlsOptIC.
rlsOptIC.
rlsOptIC.
rlsOptIC.
rlsOptIC.
rlsOptIC.
rlsOptIC.
rlsOptIC.

An1, 8
An2, 10
AnMad, 11
BM, 12
Ha3, 13
Ha4, 14
HaMad, 16
Hul, 17
Hu2, 18
Hu2a, 19
Hu3, 20
HuMad, 21
M, 22



INDEX

rlsOptIC.MM2, 24
rlsOptIC.Tul, 25
rlsOptIC.Tu2, 26
rlsOptIC.TuMad, 27
roblox, 28

rowRoblox and colRoblox, 31
rsOptIC, 34

showdown, 35

colRoblox, 4
colRoblox (rowRoblox and colRoblox), 31

finiteSampleCorrection, 3, 29, 32
MLEstimator, 29

rloptIC, 5, 30

rlsoptIC.
rlsoptIC.
rlsOptIC.
rlsOptIC.
rlsOptIC.
rlsOptIC.
rlsoptIC.
rlsoptIC.
rlsOptIC.
rlsOptIC.
rlsOptIC.
rlsoptIC.
rlsOptIC.
rlsoptIC.
rlsOptIC.
rlsOptIC.
rlsOptIC.
rlsoptIC.

AL, 6, 30
An1, 8
An2, 10
AnMad, 11
BM, 12
Ha3, 13
Ha4, 14
HaMad, 16
Hul, 17
Hu2, 18
Hu2a, 19
Hu3, 20
HuMad, 21
M, 22
MM2, 24
Tul, 25
Tu2, 26
TuMad, 27

RobLox (RobLox-package), 2
roblox, 4, 6, 7,28, 33, 35
RobLox-package, 2

roptest, 30

rowRoblox, 4, 36, 37

rowRoblox (rowRoblox and colRoblox), 31
rowRoblox and colRoblox, 31
rsOptIC, 30, 34

showdown, 35

39



	RobLox-package
	finiteSampleCorrection
	rlOptIC
	rlsOptIC.AL
	rlsOptIC.An1
	rlsOptIC.An2
	rlsOptIC.AnMad
	rlsOptIC.BM
	rlsOptIC.Ha3
	rlsOptIC.Ha4
	rlsOptIC.HaMad
	rlsOptIC.Hu1
	rlsOptIC.Hu2
	rlsOptIC.Hu2a
	rlsOptIC.Hu3
	rlsOptIC.HuMad
	rlsOptIC.M
	rlsOptIC.MM2
	rlsOptIC.Tu1
	rlsOptIC.Tu2
	rlsOptIC.TuMad
	roblox
	rowRoblox and colRoblox
	rsOptIC
	showdown
	Index

