
R-package ReacTran : Reactive Transport Modelling

in R

Karline Soetaert

NIOZ-Yerseke
The Netherlands

Filip Meysman

NIOZ-Yerseke
The Netherlands

Abstract

R package ReacTran (Soetaert and Meysman 2012) contains functions for creating
reactive- transport models in R .

Keywords: reactive-transport, diffusion, advection, reaction, porous media, rivers, estuary,
water column, R .

1. General reaction transport equation in one dimension

1.1. The reaction-transport equation

The general 1-D reaction-transport equation in multi-phase environments and for shapes with
variable geometry is:

∂ξC

∂t
= −

1

A
·

∂(A · J)

∂x
+ reac

where

• t is time

• x is space

• C is concentration of a substance in its respective phase (units of e.g. ML−3liquid for
sediment solutes). 1

• ξ is the volume fraction (-), i.e. the fraction of a phase in the bulk volume (see figure).
In many cases, only one phase is considered and ξ = 1; For sediments, ξ would be
porosity (solutes), or 1-porosity (solids).

• A is the (total) surface area (L2).

• J are fluxes, (units of ML−2t−1)

1here we use M for mass, L for length and t for time

2 R-package ReacTran : Reactive Transport Modelling in R

The Fluxes (J), which are estimated per unit of total surface, consist of a dispersive and an
advective component:

J = −ξD ·
∂C

∂x
+ ξu · C

where

• D is the diffusion (or dispersion) coefficient, units of L2t−1

• u is the advection velocity, units of Lt−1

1.2. Boundary conditions in 1-D models

The boundaries (at the extremes of the model domain, e.g. at x=0) can be one of the following
types:

• A concentration boundary, e.g. C|x=0 = C0

• A diffusive + advective flux boundary Jx=0 = J0

• A boundary layer convective exchange flux boundary Jx=0 = abl · (Cbl − C0)

1.3. Numerical approximation

The reaction-transport formula consists of a partial differential equation (PDE).

To solve it, the spatial gradients are approximated using so-called numerical differences (the
method-of-lines, MOL, approach). This converts the partial differential equations into ordi-
nary differential equations (ODE).

This means that the model domain is divided into a number of grid cells, and for each grid
cell i, we write:

dξiCi

dt
= −

1

Ai

·
∆i(A · J)

∆xi

+ reaci

where ∆i denotes that the flux gradient is to be taken over box i, and ∆xi is the thickness of
box i:

∆i(A · J) = Ai,i+1 · Ji,i+1 − Ai−1,i · Ji−1,i

where i,i+1 denotes the interface between box i and i+1.

The fluxes at the box interfaces are discretized as:

Ji−1,i = −ξi−1,iDi−1,i ·
Ci − Ci−1

∆xi−1,i

+ ξi−1,iui−1,i · (ϑi−1,i · Ci−1 + (1 − ϑi−1,i) · Ci)

with ∆xi−1,i the distance between the centre of grid cells i-1 and i, and ϑ the upstream
weighing coefficients for the advective term.

Karline Soetaert, and Filip Meysman 3

bulk phase 1 phase 2

Volume fraction

VF1 VF2

Figure 1: An example of multiple phases in ReacTran , adapted from figure 3.9 from Soetaert
and Herman, 2009

2. one-dimensional finite difference grids and properties in ReacTran

2.1. Generating a spatial discretization grid

The 1-D spatial discretization grid can best be generated with ReacTran function setup.grid.1D.

Function setup.grid.1D creates a grid, which can comprise several zones:

setup.grid.1D <- function(x.up = 0,x.down = NULL, L = NULL, N = NULL,

dx.1 = NULL, p.dx.1 = rep(1,length(L)), max.dx.1 = L,

dx.N = NULL, p.dx.N = rep(1,length(L)), max.dx.N = L)

with the following arguments:

• x.up. The position of the upstream boundary.

• x.down. The positions of the downstream boundaries in each zone.

• L, N, the thickness and the number of grid cells in each zone.

• dx.1, p.dx.1, max.dx.1, the size of the first grid cell, the factor of increase near the
upstream boundary, and maximal grid cell size in the upstream half of each zone.

• dx.N, p.dx.N, max.dx.N, the size of the last grid cell, the factor of increase near the
downstream boundary, and maximal grid cell size in the downstream half of each zone.

It returns an element of class grid.1D that contains the following elements (units L), see
figure 2:

4 R-package ReacTran : Reactive Transport Modelling in R

● x.mid[9] dx[9]

x.int[9]

● x.mid[8] dx[8]

x.int[8]

● x.mid[7] dx[7]

x.int[7]

● x.mid[6] dx[6]

x.int[6]

● x.mid[5] dx[5]

x.int[5]

● x.mid[4] dx[4]

x.int[4]

● x.mid[3] dx[3]

x.int[3]

● x.mid[2] dx[2]

x.int[2]

● x.mid[1] dx[1]

x.int[1]

dx.aux[5]

dx.aux[1]

Spatial discretization in 1D

Figure 2: Nomenclature for the spatial discretization grid in grid.1D

• x.up, x.down. The position of the upstream and downstream boundary.

• x.int, the position of the grid cell interfaces, where the fluxes are specified, a vector of
length N+1.

• x.mid, the position of the grid cell centres, where the concentrations are specified, a
vector of length N.

• dx, the thickness of boxes , i.e. the distance between the grid cell interfaces, a vector of
length N. This is equivalent to ∆xi

• dx.aux, the distance between the points where the concentrations are specified, a vector
of length N+1. This is equivalent to ∆xi−1,i .

For example, to subdivide an estuary, 100 km long into 50 boxes, with the first box of size 1
km, we write 2:

> (grid <- setup.grid.1D(L = 100, dx.1 = 1, N = 50))

$x.up

[1] 0

$x.down

[1] 100

$x.mid

2note that by embracing the statement within brackets, we execute it AND print the result to the screen

Karline Soetaert, and Filip Meysman 5

[1] 0.5001181 1.5132946 2.5526866 3.6189723 4.7128477 5.8350266

[7] 6.9862412 8.1672431 9.3788027 10.6217109 11.8967787 13.2048383

[13] 14.5467433 15.9233695 17.3356152 18.7844020 20.2706755 21.7954056

[19] 23.3595874 24.9642416 26.6104155 28.2991833 30.0316472 31.8089377

[25] 33.6322148 35.5026683 37.4215188 39.3900187 41.4094526 43.4811383

[31] 45.6064279 47.7867083 50.0234025 52.3179700 54.6719083 57.0867537

[37] 59.5640820 62.1055100 64.7126961 67.3873420 70.1311931 72.9460399

[43] 75.8337196 78.7961165 81.8351641 84.9528455 88.1511955 91.4323012

[49] 94.7983039 98.2514003

$x.int

[1] 0.000000 1.000236 2.026353 3.079020 4.158925 5.266771

[7] 6.403282 7.569200 8.765286 9.992320 11.251102 12.542455

[13] 13.867221 15.226265 16.620474 18.050757 19.518047 21.023304

[19] 22.567508 24.151667 25.776816 27.444015 29.154352 30.908943

[25] 32.708933 34.555497 36.449840 38.393198 40.386839 42.432066

[31] 44.530211 46.682645 48.890772 51.156033 53.479907 55.863910

[37] 58.309598 60.818566 63.392454 66.032939 68.741745 71.520641

[43] 74.371439 77.296000 80.296233 83.374095 86.531596 89.770795

[49] 93.093807 96.502801 100.000000

$dx

[1] 1.000236 1.026117 1.052667 1.079904 1.107846 1.136511 1.165918

[8] 1.196086 1.227034 1.258783 1.291353 1.324766 1.359044 1.394208

[15] 1.430283 1.467291 1.505256 1.544204 1.584160 1.625149 1.667199

[22] 1.710337 1.754591 1.799990 1.846564 1.894343 1.943358 1.993642

[29] 2.045226 2.098145 2.152434 2.208127 2.265261 2.323874 2.384003

[36] 2.445688 2.508969 2.573887 2.640485 2.708807 2.778896 2.850798

[43] 2.924561 3.000233 3.077862 3.157501 3.239199 3.323012 3.408993

[50] 3.497199

$dx.aux

[1] 0.5001181 1.0131765 1.0393920 1.0662857 1.0938754 1.1221789 1.1512147

[8] 1.1810018 1.2115597 1.2429082 1.2750678 1.3080596 1.3419050 1.3766261

[15] 1.4122457 1.4487869 1.4862735 1.5247301 1.5641818 1.6046542 1.6461739

[22] 1.6887678 1.7324639 1.7772905 1.8232771 1.8704535 1.9188506 1.9684999

[29] 2.0194339 2.0716857 2.1252896 2.1802804 2.2366941 2.2945675 2.3539383

[36] 2.4148454 2.4773283 2.5414280 2.6071862 2.6746459 2.7438510 2.8148469

[43] 2.8876797 2.9623970 3.0390476 3.1176814 3.1983499 3.2811057 3.3660027

[50] 3.4530964 1.7485997

$N

[1] 50

attr(,"class")

[1] "grid.1D"

6 R-package ReacTran : Reactive Transport Modelling in R

0 10 20 30 40 50

0
40

80

position of cells

index

x

x.int
x.mid

0 10 20 30 40 50

0.
5

2.
0

3.
5

box thickness

index

dx

dx.aux
dx.mid

Figure 3: exponential grid size - see text for R -code

which can be plotted as follows:

> plot(grid)

2.2. Other grid properties

In the 1-D discretization formula, some properties (e.g. concentrations) are defined at the
centre of boxes (Ci), while other properties (transport coefficients) are prescribed at the box
interfaces (ϑ, ξ, D).

These properties can be generated conform a previously defined grid with ReacTran function
setup.prop.1D. Its syntax is:

setup.prop.1D(func = NULL, value = NULL, xy = NULL,

interpolate = "spline", grid, ...)

They can be specified as a function, or as a (constant) value, or as an (x,y) data series, which
is interpolated using a spline or linearly.

The function returns a list of class prop.1D that contains:

• int, the property value at the grid cell interfaces, a vector of length N+1.

• mid, the property value at the middle of grid cells, a vector of length N.

Karline Soetaert, and Filip Meysman 7

A number of commonly used property functions are implemented in ReacTran :

• p.exp for an exponentially decreasing transition

• p.lin for a linearly decreasing transition

• p.sig for a sigmoidally decreasing transition

Below, we demonstrate the use of setup.prop.1D to create the properties for use in a sediment
biogeochemical model.

After defining a grid, we first use utility function p.exp to calculate a bioturbation profile,
assuming there is a constant bioturbation in an upper layer (2 cm), declining exponentially
below this layer.:

> grid <- setup.grid.1D(L = 10, N = 100)

> Db <- setup.prop.1D(func = p.exp, grid = grid,

+ y.0 = 5, y.inf = 0, x.L = 2)

We then define a function (exp.inc) that specifies an exponentially increasing profile to
calculate the volume fraction of solid substances in the sediment. These are represented by 1-
porosity, where the porosity is an exponentially decreasing function, which can be calculated
using p.exp.

> exp.inc <- function(x, y.0 = 1, y.inf = 0.5, x.L = 0, x.att = 1)

+ return(1 - p.exp(x, y.0, y.inf, x.L, x.att))

> VFsolid <- setup.prop.1D(func = exp.inc, grid = grid, y.0 = 0.9, y.inf = 0.7)

A plot method is defined for class prop.1D; to invoke it one has to pass both the property
as the grid on which it is based; xyswap=TRUE swaps the x- and y-axis, which is useful for
plotting vertical profiles.

> par(mfrow = c(1, 2))

> plot(VFsolid, grid, xyswap = TRUE, type = "l", main = "1-porosity")

> plot(Db, grid, xyswap = TRUE, type = "l", main = "Db")

> par(mfrow = c(1, 1))

8 R-package ReacTran : Reactive Transport Modelling in R

0.10 0.20 0.30

10
8

6
4

2
0

1−porosity

prop

x

0 1 2 3 4 5

10
8

6
4

2
0

Db

prop

x

Figure 4: Two exponentially declining properties - see text for R -code

Karline Soetaert, and Filip Meysman 9

3. one-dimensional reactive-transport modelling in ReacTran

Implementing a reactive-transport model in ReacTran proceeds in several steps.

• Setting up a finite difference grid and defining properties attached to this grid (see
previous section)

• Specifying a model function that describes the rate of change of substances due to
transport and reaction. The transport of properties is done with ReacTran function
tran.1D

• Solving the model. Depending on whether a transient or a steady-state solution is
desired, solving the model makes use of functions ode.1D or steady.1D from packages
deSolve and rootSolve.

Below we first explain how to use ReacTran function tran.1D, after which it is used in a
model, which is consequently solved.

3.1. R-function tran.1D

The default input for the tran.1D() function in R is:

tran.1D(C, C.up = C[1], C.down = C[length(C)],

flux.up = NULL, flux.down = NULL,

a.bl.up = NULL, a.bl.down = NULL,

D = 0, v = 0, AFDW = 1, VF = 1, A = 1, dx,

full.check = FALSE, full.output = FALSE)

with the following arguments:

• C, C.up, C.down. The concentrations, per unit of phase volume, in the centre of each
grid cell, a vector of length N (C) and at the upstream or downstream boundary, one
value (C.up, C.down).

• flux.up, flux.down. The fluxes, per unit of total surface, at the upstream and down-
stream boundaries, (ML−2t−1).

• a.bl.up, a.bl.down, the convective transfer coefficients.

• D, the diffusion (dispersion) coefficients, either one value, or a vector (D) or packed as a
grid, (L2t−1).

• v, the advective velocity (Lt−1).

• AFDW the weights used in the finite difference approximation for advection (-).

• VF, the volume fractions (-).

• A the surface areas (L2)

10 R-package ReacTran : Reactive Transport Modelling in R

• dx, the distances between cell interfaces (L), the discretization grid. Must be specified.

• full.check, when TRUE, the consistency of the input is checked.

• full.output, when TRUE full output is returned.

Note that several properties (dx, D, v, AFDW, VF, A) can be passed in different ways:

• a single number, in which case they are assumed constant

• a vector of length N+1, i.e. defined on the grid interfaces

• a list of type grid.1D or of type prop.1D, as created by setup.grid (spatial discretiza-
tion) or by setup.prop.1D (see previous section).

Function reac.1D returns the rate of change of C due to transport, and the fluxes up-and
downstream; if full.output is TRUE then also the advective and dispersive fluxes at all layer
interfaces are returned.

For example:

> tran.1D(C = 1:20, D = 0, flux.up = 1, v = 1, dx = 1)

$dC

[1] 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

$flux.up

[1] 1

$flux.down

[1] 20

> tran.1D(C = 1:20, D = 0, flux.up = 1, v = 1, dx = 1, full.output = TRUE)

$dC

[1] 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

$C.up

[1] 1

$C.down

[1] 20

$dif.flux

[1] 0

$adv.flux

[1] 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Karline Soetaert, and Filip Meysman 11

$flux

[1] 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$flux.up

[1] 1

$flux.down

[1] 20

3.2. A 1-D reaction transport model

Function tran.1D estimates the rate of change of substances as a function of transport pro-
cesses.

If, in addition to transport, reaction terms are added, a 1-D reaction-transport model is
obtained.

In line with the way ordinary differential equations are solved in R , a reaction-transport
model is specified in an R -function that computes the derivatives in the ODE at a certain
time t.

This function will be called by the solution methods as: func(t,y,parms,...) where t is
the current time point, y are the current values of the state variables in the ODE system and
parms are model parameters.

It should return a list whose first element is a vector containing the derivatives of y. (for more
details, see packages deSolve , rootSolve)

For instance, the function representing the following model

∂C

∂t
= −v ·

∂C

∂x
− kC

with boundary condition:

v · C|x=0 = F0

can be implemented in R as:

> parms <- c(F0 = 1, v = 1, k = 0.1, dx = 1)

> advModel <- function(t, C, parms) {

+

+ with (as.list(parms), {

+

+ Tran <- tran.1D(C = C, D = 0, flux.up = F0, v = v, dx = dx)

+ Consumption <- k*C

+ dC <- Tran$dC - Consumption

+

+ return (list(dC = dC, Consumption= Consumption,

+ flux.up = Tran$flux.up, flux.down = Tran$flux.down))

+ })

12 R-package ReacTran : Reactive Transport Modelling in R

+

+ }

Note the use of with (as.list(parms),... which allows to access by name the previously
defined model parameters (parms) within the function.

3.3. Solving a 1-D reaction transport model

In R , 1-D models consisting of ordinary differential equations can be solved in two ways.

• by estimating the steady-state condition, using function steady.1D from R -package
rootSolve (Soetaert 2009).

• by running the model dynamically, using functions ode.1D from R -package deSolve
(Soetaert, Petzoldt, and Setzer 2010).

To solve the above model to steady-state, we invoke steady.1D:

> out <- steady.1D(func = advModel, y = runif(25), parms = parms,

+ nspec = 1, positive = TRUE)

Function steady.1D estimates the steady-state iteratively and requires an initial guess of
the state variables. For most cases, the exact values are not important; the initial guess of
the state variables in the above example consists simply of 25 uniformly distributed random
numbers ([0,1]);

we specify that the model comprises only one species (nspec and that we are interested only
in a solution consisting of positive numbers (positive=TRUE), as negative concentrations do
not exist (in the real environment; they may exist mathematically).

The outcome of this model is a list called out, which contains the steady-state condition
of the state-variables (item y), the consumption rate and the fluxes at the upper and lower
boundary as defined in function advModel. In addition, attribute precis gives a measure of
how far the system is from steady-tate at each iteration of the steady-state solver; only two
iterations were needed.

> out

$y

[1] 0.90909091 0.82644629 0.75131480 0.68301346 0.62092133 0.56447394

[7] 0.51315812 0.46650738 0.42409762 0.38554329 0.35049390 0.31863082

[13] 0.28966438 0.26333126 0.23939205 0.21762914 0.19784467 0.17985879

[19] 0.16350799 0.14864363 0.13513057 0.12284598 0.11167816 0.10152560

[25] 0.09229601

$Consumption

[1] 0.090909091 0.082644629 0.075131480 0.068301346 0.062092133

[6] 0.056447394 0.051315812 0.046650738 0.042409762 0.038554329

[11] 0.035049390 0.031863082 0.028966438 0.026333126 0.023939205

Karline Soetaert, and Filip Meysman 13

5 10 15 20 25

0.
2

0.
4

0.
6

0.
8

advection

x

C
on

c

Figure 5: Solution of the uni-component reactive-transport model in 1-D - see text for R -code

[16] 0.021762914 0.019784467 0.017985879 0.016350799 0.014864363

[21] 0.013513057 0.012284598 0.011167816 0.010152560 0.009229601

$flux.up

[1] 1

$flux.down

[1] 0.09229601

attr(,"precis")

[1] 3.168751e-01 1.415484e-09

attr(,"steady")

[1] TRUE

attr(,"class")

[1] "steady1D" "rootSolve" "list"

attr(,"dimens")

[1] 25

attr(,"nspec")

[1] 1

It can be plotted using rootSolves plot method:

> plot (out, xlab = "x", ylab = "Conc", main = "advection")

It is good modelling practice to test mass conservation of a model, i.e. as a check that mass
is not created or destroyed by numerical means (programming or modelling error).

For this simple example, it is obvious that mass is conserved, but we will test it to exemplify
the procedures.

If mass is conserved and the system is at steady-state, then the net input by transport in
the system should equal the total net consumption. For our model, the net input to the

14 R-package ReacTran : Reactive Transport Modelling in R

system is given by flux.up - flux.down, while the total consumption is simply the sum of
the consumption in each box.

> with (out, print(sum(Consumption)-(flux.up-flux.down)))

[1] 1.44455e-08

The fact that the quantity is not completely zero is due to the small deviation from steady-
state (as is clear from attribute precis).

3.4. example: 1-D transport in a porous spherical body

This, somewhat more complex example models oxygen consumption in a spherical aggregate.
The example is more complex because it assumes that both the surface area (A) and the
volume fraction (VF) (here the "porosity") vary along the spatial axis.

We start by formulating the model function (Aggregate.Model).

> Aggregate.Model <- function(time, O2, pars) {

+

+ tran <- tran.1D(C = O2, C.down = C.ow.O2,

+ D = D.grid, A = A.grid,

+ VF = por.grid, dx = grid)

+

+ reac <- - R.O2*(O2/(Ks+O2))

+ return(list(dCdt = tran$dC + reac, reac = reac,

+ flux.up = tran$flux.up, flux.down = tran$flux.down))

+ }

next the parameters are defined:

> C.ow.O2 <- 0.25 # concentration O2 water [micromol cm-3]

> por <- 0.8 # porosity

> D <- 400 # diffusion coefficient O2 [cm2 yr-1]

> v <- 0 # advective velocity [cm yr-1]

> R.O2 <- 1000000 # O2 consumption rate [micromol cm-3 yr-1]

> Ks <- 0.005 # O2 saturation constant [micromol cm-3]

and the spatial extent of the model discretized (grid definition).

> R <- 0.025 # radius of the agggregate [cm]

> N <- 100 # number of grid layers

> grid <- setup.grid.1D(x.up = 0, L = R, N = N)

We assume that porosity (the volume fraction) and the diffusion coefficient are constant. Both
properties are defined as a grid list.

> por.grid <- setup.prop.1D(value = por, grid = grid)

> D.grid <- setup.prop.1D(value = D, grid = grid)

Karline Soetaert, and Filip Meysman 15

0.000 0.005 0.010 0.015 0.020 0.025

0.
05

0.
10

0.
15

0.
20

0.
25

Diffusion−reaction of O2 in a spherical aggregate

distance from centre, cm

m
m

ol
/m

3

Figure 6: Solution of the aggregate model - see text for R -code

In this model, each "grid cell" is equivalent to a thin spherical region; the further away from
the origin, the larger the surface area of this layer.

To take into account this expanding surface, we define a grid with the surfaces of these
spherical layers. Function sphere.surf calculates the surface of a sphere.

> sphere.surf <- function (x) 4*pi*x^2

> A.grid <- setup.prop.1D(func = sphere.surf, grid = grid)

The model is then solved to steady-state

> O2.agg <- steady.1D (y = runif(N), func = Aggregate.Model, nspec = 1,

+ positive = TRUE, atol = 1e-10)

and the output plotted

> plot(O2.agg, grid = grid$x.mid, xlab = "distance from centre, cm",

+ ylab = "mmol/m3",

+ main = "Diffusion-reaction of O2 in a spherical aggregate")

Note that in this model, we have imposed a zero-flux boundary at the centre of the sphere
(or the "upstream" boundary) (zero-gradient is the default boundary condition). This makes
sense as we assume that the sphere is symmetrical. However, oxygen is dffusing into the
aggregate, at the "downstream" boundary.

The influx, per unit of surface area is in O2.agg$flux.down.

> O2.agg$flux.up

[1] 0

> O2.agg$flux.down

16 R-package ReacTran : Reactive Transport Modelling in R

[1] -6384.782

Calculating the mass conservation for this model is slightly more complex than in previous
example, as we need to take volumetric averages of the rates, AND correct for the porosity
effect.

The volume in each spherical layer is simply equal to the surface at the centre of the layer
(A.grid$mid) times the grid size (grid$dx).

> Volume <- A.grid$mid * grid$dx

> (Consump <- - sum(O2.agg$reac * Volume * por.grid$mid))

[1] 50.14596

The total flux into the aggregate equals the flux per unit surface times the surface area at
the downstream boundary:

> (Fluxin <- - O2.agg$flux.down * A.grid$int[N+1])

[1] 50.14596

The flux equals the total consumption, up to a certain numerical precision, hence mass is
conserved.

> Consump - Fluxin

[1] 2.4869e-13

Karline Soetaert, and Filip Meysman 17

4. volumetric advective-diffusive transport in an aquatic system

The volumetric reaction-transport equation in 1-D is best derived in two steps: first we rewrite
the discretisation over a numerical grid:

dCi

dt
= −

1

A
·

∆i(A · J)

∆xi

+ reaci

as
dCi

dt
= −

∆i(A · J)

∆Vi

+ reaci

where we defined cell-volume as the product of mid-surface and cell thickness

Vi = Ai∆xi

and then redefine the mass fluxes:

A · J = −D · A
∆C

∆x
+ A · u · C

as :

A · J = −E∆C + Q · C

where Q = A·u and E = D·A
∆x

are the flow rate and the bulk dispersion coefficient respectively,
both in units of L3t−1.

Volumetric transport implies the use of total flows (mass per unit of time) rather than fluxes
(mass per unit of area per unit of time) as is done in tran.1D.

tran.volume.1D implements this in ReacTran .

The tran.volume.1D routine is particularly suited for modelling channels (like rivers, estu-
aries) where the cross-sectional area changes, but where this area change is not explicitly
modelled (as a function of time).

4.1. R-function tran.volume.1D

The default input for the tran.volume1D() function in R is:

tran.volume.1D(C, C.up = C[1], C.down = C[length(C)],

C.lat = 0, F.up = NULL, F.down = NULL, F.lat = NULL,

Disp = NULL, flow = 0, flow.lat = NULL, AFDW = 1, V = NULL,

full.check = FALSE, full.output = FALSE)

with the following arguments:

• C, C.up, C.down. The concentrations in the centre of each grid cell, a vector of length
N (C) and at the upstream or downstream boundary, one value (C.up, C.down).

• F.up, F.down. Total input at the upstream and downstream boundaries, (Mt−1).

• F.lat. Total input laterally, defined at the grid cells, (Mt−1).

18 R-package ReacTran : Reactive Transport Modelling in R

• Disp, the bulk dispersion coefficients, (L3t−1).

• Q, the water flow rate, (L3t−1).

• AFDW the weights used in the finite difference approximation for flow (-).

• V, the volume of each grid cell (L3).

• full.check, when TRUE, the consistency of the input is checked.

• full.output, when TRUE full output is returned.

4.2. An estuarine model

Consider the following example that models organic carbon decay in an estuary.

Two scenarios are simulated: the baseline includes only input of organic matter at the up-
stream boundary. The second scenario simulates the input of an important side river halfway
the estuary.

The model is formulated in function river.model

> river.model <- function (t = 0, OC, pars = NULL) {

+

+ tran <- tran.volume.1D(C = OC, F.up = F.OC, F.lat = F.lat,

+ Disp = Disp, flow = flow, V = Volume,

+ full.output = TRUE)

+ reac <- - k*OC

+

+ return(list(dCdt = tran$dC + reac,

+ F.up = tran$F.up, F.down = tran$F.down,

+ F.lat = tran$F.lat))

+ }

The estuary is 100 km long (lengthEstuary; it is subdivided in 500 grid cells (nbox).

> nbox <- 500 # number of grid cells

> lengthEstuary <- 100000 # length of estuary [m]

> BoxLength <- lengthEstuary/nbox # [m]

The estuarine cross-sectional area widens sigmoidally towards the estuarine mouth (CrossArea);
based on this area and the lenght of a box, the volume of each box is easily estimated.

> Distance <- seq(BoxLength/2, by = BoxLength, len = nbox) # [m]

> CrossArea <- 4000 + 72000 * Distance^5 /(Distance^5+50000^5)

> Volume <- CrossArea*BoxLength

The dispersion coefficient (Disp) and the upstream flow rate (flow) are parameters.

> Disp <- 1000 # m3/s, bulk dispersion coefficient

> flow <- 180 # m3/s, mean river flow

Karline Soetaert, and Filip Meysman 19

The organic carbon input on upstream boundary (F.OC), the lateral input of carbon (F.lat.0)
and the decay rate of organic carbon (k) are declared next:

> F.OC <- 180 # input organic carbon [mol s-1]

> F.lat.0 <- F.OC # lateral input organic carbon [mol s-1]

> k <- 10/(365*24*3600) # decay constant organic carbon [s-1]

In the first scenario, the lateral flux of material is zero.

> F.lat <- rep(0, length.out = nbox)

The model is solved using rootSolve function steady.1D which finds the steady-state solution,
given an initial guess, y (here simply 500 random numbers).

> sol <- steady.1D(y = runif(nbox), fun = river.model, nspec = 1,

+ atol = 1e-15, rtol = 1e-15, positive = TRUE)

In the second scenario, there is lateral input of organic carbon:

> F.lat <- F.lat.0*dnorm(x = Distance/lengthEstuary,

+ mean = Distance[nbox/2]/lengthEstuary,

+ sd = 1/20, log = FALSE) /nbox

> sol2 <- steady.1D(y = runif(nbox), fun = river.model, nspec = 1,

+ atol = 1e-15, rtol = 1e-15, positive = TRUE)

We set the tolerances for the steady-state calculation (atol and rtol) to a very small value
so that the mass budget is very tight (see below).

The summary for the outputs shows the ranges, means and standard deviations of all quan-
tities:

> summary(sol)

X1 F.up F.down F.lat

Min. 2.360875e-03 180 0.4249576 0

1st Qu. 3.420194e-02 180 0.4249576 0

Median 3.349115e-01 180 0.4249576 0

Mean 4.175282e-01 180 0.4249576 0

3rd Qu. 8.144084e-01 180 0.4249576 0

Max. 9.909154e-01 180 0.4249576 0

N 5.000000e+02 1 1.0000000 500

sd 3.704839e-01 NA NA 0

> summary(sol2)

X1 F.up F.down F.lat

Min. 8.953834e-03 180 1.61169 5.540111e-22

1st Qu. 1.297139e-01 180 1.61169 1.904032e-12

Median 6.473437e-01 180 1.61169 1.070438e-05

20 R-package ReacTran : Reactive Transport Modelling in R

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Organic carbon decay in an estuary

distance [km]

O
C

 C
on

ce
nt

ra
tio

n
[m

M
]

baseline
with lateral input

Figure 7: Solution of the estuarine model - see text for R -code

Mean 5.288371e-01 180 1.61169 3.600000e-01

3rd Qu. 8.144130e-01 180 1.61169 1.231805e-01

Max. 9.909154e-01 180 1.61169 2.872384e+00

N 5.000000e+02 1 1.00000 5.000000e+02

sd 3.430996e-01 NA NA 7.763989e-01

Finally the output is plotted, using rootSolve’s plot method.

> plot(sol, sol2, grid = Distance/1000, lwd = 2,

+ main = "Organic carbon decay in an estuary",xlab = "distance [km]",

+ ylab = "OC Concentration [mM]")

> legend ("topright", col = 1:2, lwd = 2, c("baseline", "with lateral input"))

and a budget estimated (total input = consumption)

> sum(sol$F.up) + sum(sol$F.lat) - sum(sol$F.down) - sum(sol$y*k*Volume)

[1] 8.526513e-14

Karline Soetaert, and Filip Meysman 21

5. Transport in two dimensions

The function that performs transport in two dimensions is similar to its 1-D equivalent.

Here is its default input

tran.2D (C, C.x.up = C[1,], C.x.down = C[nrow(C),],

C.y.up = C[,1], C.y.down = C[,ncol(C)],

flux.x.up = NULL, flux.x.down = NULL,

flux.y.up = NULL, flux.y.down = NULL,

a.bl.x.up = NULL, a.bl.x.down = NULL,

a.bl.y.up = NULL, a.bl.y.down = NULL,

D.grid = NULL, D.x = NULL, D.y = D.x,

v.grid = NULL, v.x = 0, v.y = 0,

AFDW.grid = NULL, AFDW.x = 1, AFDW.y = AFDW.x,

VF.grid = NULL, VF.x = 1, VF.y = VF.x,

A.grid = NULL, A.x = 1, A.y = 1,

grid = NULL, dx = NULL, dy = NULL,

full.check = FALSE, full.output = FALSE)

}

where

• C, C.x.up, C.x.down, C.y.up, C.y.down are the concentration in the 2-D grid (C)
and the boundary concentrations

• flux.x.up, flux.x.down, ... are the fluxes prescribed at the boundaries,

• a.bl.up, ... are the exchange coefficients for transfer across the various boundary
layers

• D.x, ... are the diffusion coefficients

• v.x, ... are the advective velocities

• AFDW.x, ... are the weights used in the numerical approximation of the advective
component

• VF.x, ... are the volume fractions of the various phases

• A.x, ... are the surface areas

• dx, dy, grid define the discretisation grid

• full.check, full.output whether full output needs writing or the input needs check-
ing

By making clever use of the surface areas, it is possible to describe reactive transport processes
in a 2-D channel with variable surface area, e.g. for widening estuaries that are stratified.

It is also possible to mimic certain 3-D applications, e.g. by assuming cylindrical symmetries.

22 R-package ReacTran : Reactive Transport Modelling in R

5.1. example of transport in 2 dimensions

We model the dynamics of oxygen, on a 2-D grid, and subjected to diffusion in the two
directions, to advection in y-direction, from left to right, first-order consumption and a source
in a central spot (e.g. an animal ventilating its burrow).

At the upper boundary, the concentration is 300 mM, the other boundaries are zero-flux
boundaries.

We start by defining the parameters and the grid

> n <- 100 # number of grid cells

> dy <- dx <- 100/n # grid size

> Dy <- Dx <- 5 # diffusion coeff, X- and Y-direction

> r <- -0.02 # production/consumption rate

> Bc <- 300 # boundary concentration

> irr <- 20 # irrigation rate

> vx <- 1 # advection

As initial concentrations we assume that oxygen is 0 everywhere.

> y <- matrix(nrow = n, ncol = n, 0)

In the model function, the state variables are passed as one vector (y). They are recast as a
matrix first (CONC).

> Diff2D <- function (t, y, parms, N) {

+

+ CONC <- matrix(nrow = N, ncol = N, y)

+ # Transport

+ Tran <-tran.2D(CONC, D.x = Dx, D.y = Dy, C.y.down = Bc,

+ dx = dx, dy = dy, v.x = vx)

+

+ # transport + reaction

+ dCONC <- Tran$dC + r*CONC

+

+ # Bioirrigation in a central spot

+ mid <- N/2

+ dCONC[mid, mid] <- dCONC[mid, mid] + irr*(Bc - CONC[mid, mid])

+

+ return (list(dCONC))

+ }

The model is solved in two ways.

• steady.2D solves the steady-state condition

• ode.2D runs the model dynamically

Karline Soetaert, and Filip Meysman 23

The model consists of 100*100 = 10000 equations. We print the time it takes to obtain these
solutions (in seconds).

Note that for both these methods, we need to pass the dimension of the problem (e.g. the
number of boxes in x and y-direction), and the work- space required (lrw).

> print(system.time(

+ std <- steady.2D(func = Diff2D, y = as.vector(y), time = 0, N = n,

+ parms = NULL, lrw = 1000000, dimens = c(n, n),

+ nout = 0, positive = TRUE)

+))

user system elapsed

0.09 0.06 0.15

We run the model for 200 time units, producing output every 5 units.

> times <- seq(0, 100, 5)

> print(system.time(

+ out2 <- ode.2D(func = Diff2D, y = as.vector(y), times = times, N = n,

+ parms = NULL, lrw = 10000000, dimens = c(n, n))

+))

user system elapsed

0.92 0.32 1.25

We use method select to get the values of O2 after 20 days, and plot the concentrations
using filled.contour

> mat <- matrix(nrow = n, ncol = n, subset(out2, time == 20))

> filled.contour(mat, zlim = c(0, Bc), color = femmecol,

+ main = "after 20 time units")

The same can be done using deSolves image function:

image(out2, subset = time == 20, method = "filled.contour", main = "")

It is simple to plot the steady-state solution:

> image (std, main = "steady-state", legend = TRUE)

6. finally

This vignette was made with Sweave (Leisch 2002).

24 R-package ReacTran : Reactive Transport Modelling in R

0

50

100

150

200

250

300

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

after 20 time units

Figure 8: Solution of the 2-dimensional diffusion and irrigation model, after 20 time units -
see text for R -code

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

steady−state

x

y

0

50

100

150

200

250

Figure 9: Steady-state solution of the 2-dimensional diffusion and irrigation model - see text
for R -code

Karline Soetaert, and Filip Meysman 25

References

Leisch F (2002). “Sweave: Dynamic Generation of Statistical Reports Using Literate Data
Analysis.” In W Härdle, B Rönz (eds.), Compstat 2002 - Proceedings in Computational

Statistics, pp. 575–580. Physica Verlag, Heidelberg. ISBN 3-7908-1517-9, URL http://

www.stat.uni-muenchen.de/~leisch/Sweave.

Soetaert K (2009). rootSolve: Nonlinear root finding, equilibrium and steady-state analysis of

ordinary differential equations. R package version 1.6.

Soetaert K, Meysman F (2012). “Reactive transport in aquatic ecosystems: Rapid model
prototyping in the open source software R.” Environmental Modelling and Software, 32,
49–60.

Soetaert K, Petzoldt T, Setzer RW (2010). “Solving Differential Equations in R: Package
deSolve.” Journal of Statistical Software, 33(9), 1–25. ISSN 1548-7660. URL http://www.

jstatsoft.org/v33/i09.

Affiliation:

Karline Soetaert
Centre for Estuarine and Marine Ecology (CEME)
Royal Netherlands Institute of Sea Research (NIOZ)
4401 NT Yerseke, Netherlands
E-mail: karline.soetaert@nioz.nl

URL: http://www.nioz.nl

Filip Meysman
Royal Netherlands Institute of Sea Research (NIOZ)
4401 NT Yerseke, Netherlands
E-mail: filip.meysman@nioz.nl

URL: http://www.nioz.nl

http://www.stat.uni-muenchen.de/~leisch/Sweave
http://www.stat.uni-muenchen.de/~leisch/Sweave
http://www.jstatsoft.org/v33/i09
http://www.jstatsoft.org/v33/i09
mailto:karline.soetaert@nioz.nl
http://www.nioz.nl
mailto:filip.meysman@nioz.nl
http://www.nioz.nl

	General reaction transport equation in one dimension
	The reaction-transport equation
	Boundary conditions in 1-D models
	Numerical approximation

	one-dimensional finite difference grids and properties in ReacTran
	Generating a spatial discretization grid
	Other grid properties

	one-dimensional reactive-transport modelling in ReacTran
	R-function tran.1D
	A 1-D reaction transport model
	Solving a 1-D reaction transport model
	example: 1-D transport in a porous spherical body

	volumetric advective-diffusive transport in an aquatic system
	R-function tran.volume.1D
	An estuarine model

	Transport in two dimensions
	example of transport in 2 dimensions

	finally

