
Solving partial differential equations, using R

package ReacTran

Karline Soetaert and Filip Meysman

Royal Netherlands Institute of Sea Research (NIOZ)

Yerseke

The Netherlands

Abstract

R -package ReacTran (Soetaert and Meysman 2012) contains functions to solve reactive-
transport equations, as used e.g. in the environmental sciences.

Essentially, it

1. Provides functions that subdivide the spatial extent into a number of discrete grid
cells.

2. Approximates the advective-diffusive transport term by finite differences or finite
volumes.

The main package vignette (Soetaert and Meysman 2010) explains how ReacTran can be
used to model reaction-transport phenomena.

However, the functions from ReacTran can be use to solve more general types of
partial differential equations (≤ order 2).

In this vignette, show how the package can be used to solve partial differential equa-
tions of the parabolic, hyperbolic and elliptic type, providing one example each.

Keywords: Partial Differential Equations, hyperbolic, parabolic, elliptic, R .

1. Partial differential equations

In partial differential equations (PDE), the function has several independent variables
(e.g. time and depth) and contains their partial derivatives.

A first step to solve partial differential equations (PDE), is to discretise one or more of the
independent variables.

Usually, the independent variable “time” is not discretised, while other variables (e.g. spatial
axes) are discetised, so that a set of ODE is obtained, which can be solved with appropri-
ate initial values solvers from package deSolve (Soetaert, Petzoldt, and Setzer 2010). This
technique, the method-of-lines, applies to hyperbolic and parabolic PDEs.

For time-invariant problems, usually all independent variables are discretised, and the result-
ing algebraic equations solved with root-solving functions from package rootSolve (Soetaert
2009).

Functions tran.1D, tran.2D, and tran.3D from R package ReacTran implement finite dif-
ference approximations of the general diffusive-advective transport equation, which for 1-D

2 Solving partial differential equations, using R package ReacTran

is:

−
1

Axξx

· (
∂

∂x
Ax · (−D ·

∂ξxC

∂x
) −

∂

∂x
(Ax · v · ξxC))

Here D is the "diffusion coefficient", v is the "advection rate", and Ax and ξ are the surface
area and volume fraction respectively.

Assuming that A, ξ, D and v are constant along x, we can rewrite this in a more general
form:

D
∂2C

∂x2
− u

∂C

∂x

In which the first term is a second-order, the second term a first-order derivative.

R -function tran.1D is defined as (simplified):

tran.1D <- function (C, C.up = C[1], C.down = C[length(C)], flux.up = NULL,

flux.down = NULL, a.bl.up = NULL, a.bl.down = NULL, D = 0,

v = 0, AFDW = 1, VF = 1, A = 1, dx, ...)

where C.up and C.down are the upstream and downstream boundary values, flux.up and
flux.down are the upstream and downstream fluxes, v and D are the advection and diffusion
coefficient respectively, A is the surface area, x contains the grid, and VF is the volume fraction
(ξ). For the other arguments, see the help file of tran.1D.

A suitable grid can be generated with functions setup.grid.1D and setup.grid.2D (there
is no corresponding 3D function), while a property can be added to this grid using functions
setup.prop.1D, and setup.prop.2D. These latter two functions are useful to have the vari-
able surface areas, volume fractions, advection and diffusion rates being defined at the correct
places of the grid.

These functions are defined as (simplified):

setup.grid.1D <- function(x.up = 0, x.down = NULL, L = NULL, N = NULL,

dx.1 = NULL, ...)

setup.grid.2D <- function(x.grid = NULL, y.grid = NULL)

setup.prop.1D <- function (func = NULL, value = NULL, xy = NULL,

interpolate = "spline", grid, ...)

setup.prop.2D <- function (func = NULL, value = NULL, grid, y.func = func,

y.value = value, ...)

Karline Soetaert and Filip Meysman 3

2. A parabolic PDE

As an example of the parabolic type, consider the 1-D diffusion-reaction model, in spherical,
cylindrical and cartesian coordinates, defined for r in [0, 10]:

∂C

∂t
=

1

r2
·

∂

∂r

(

r2
· D ·

∂C

∂r

)

− Q

∂C

∂t
=

1

r
·

∂

∂r

(

r · D ·
∂C

∂r

)

− Q

∂C

∂t
=

∂

∂r

(

D ·
∂C

∂r

)

− Q

with t the time, r the (radial) distance from the origin, Q, the consumption rate, and with
boundary conditions (values at the model edges):

∂C

∂r r=0

= 0

Cr=10 = Cext

To solve this model in R , first the 1-D model Grid is defined; it divides 10 cm (L) into 1000
equally-sized boxes (N).

Grid <- setup.grid.1D(N = 1000, L = 10)

Next the properties r and r2 are defined on this grid:

r <- setup.prop.1D(grid = Grid, func = function(r) r)

r2 <- setup.prop.1D(grid = Grid, func = function(r) r^2)

The model equation includes a transport term, approximated by ReacTran function tran.1D

and a consumption term (Q); only the downstream boundary condition, prescribed as a con-
centration (C.down) needs to be specified, as the zero-gradient at the upstream boundary is
the default:

library(ReacTran)

pde1D <- function(t, C, parms, A = 1) {

+ tran <- tran.1D(C = C, A = A, D = D, C.down = Cext, dx = Grid)$dC

+ list(tran - Q)

+ }

The model parameters are defined:

D <- 1

Q <- 1

Cext <- 20

4 Solving partial differential equations, using R package ReacTran

2.1. Steady-state solution

In a first application, the model is solved to steady-state, which retrieves the condition where
the concentrations are invariant, e.g. for the cylindrical coordinate case:

0 =
1

r2
·

∂

∂r

(

r2
· D ·

∂C

∂r

)

− Q

In R , steady-state conditions can be estimated using functions from package rootSolve which
implement amongst others a Newton-Raphson algorithm (Press, Teukolsky, Vetterling, and
Flannery 1992). For 1-dimensional models, steady.1D should be used. The initial “guess”
of the steady-state solution (y) is unimportant; here we take simply N random numbers.
Argument nspec = 1 informs the solver that only one component is described.

Although a system of 1000 equations needs to be solved, this takes only a fraction of a second:

library(rootSolve)

Cartesian <- steady.1D(y = runif(Grid$N),

+ func = pde1D, parms = NULL, nspec = 1, A = 1)

Cylindrical <- steady.1D(y = runif(Grid$N),

+ func = pde1D, parms = NULL, nspec = 1, A = r)

print(system.time(

+ Spherical <- steady.1D(y = runif(Grid$N),

+ func = pde1D, parms = NULL, nspec = 1, A = r2)

+))

user system elapsed

0 0 0

The values of the state-variables (y) are plotted against the radial distance, in the middle of
the grid cells (Grid$x.mid). We use rootSolve’s plot method to do so. This function accepts
several steady-state outputs at once:

plot(Cartesian, Cylindrical, Spherical, grid = Grid$x.mid,

+ main = "steady-state PDE", xlab = "x", ylab = "C",

+ col = c("darkgreen", "blue", "red"), lwd = 3, lty = 1:3)

legend("bottomright", c("cartesian", "cylindrical", "spherical"),

+ col = c("darkgreen", "blue", "red"), lwd = 3, lty = 1:3)

The analytical solutions compare well with the numerical approximation for all three cases:

max(abs(Q/6/D*(r2$mid - 10^2) + Cext - Spherical$y))

[1] 5.820809e-05

max(abs(Q/4/D*(r2$mid - 10^2) + Cext - Cylindrical$y))

Karline Soetaert and Filip Meysman 5

0 2 4 6 8 10

−
30

−
20

−
10

0
10

20

steady−state PDE

x

C

cartesian
cylindrical
spherical

Figure 1: Steady-state solution of the 1-D diffusion-reaction model

[1] 6.250002e-06

max(abs(Q/2/D*(r2$mid - 10^2) + Cext - Cartesian$y))

[1] 1.25e-05

Note that there is no automatic error checking/control here, so to reduce this error, the
number of boxes can be increased.

2.2. The method of lines

Next the model (for spherical coordinates) is run dynamically for 100 time units using deSolve

function ode.1D, and starting with an initially uniform distribution (y = rep(1, Grid$N)):

require(deSolve)

times <- seq(0, 100, by = 1)

system.time(

+ out <- ode.1D(y = rep(1, Grid$N), times = times, func = pde1D,

+ parms = NULL, nspec = 1, A = r2)

+)

user system elapsed

0.13 0.06 0.19

6 Solving partial differential equations, using R package ReacTran

Figure 2: Dynamic solution of the 1-D diffusion-reaction model

Here, out is a matrix, whose 1st column contains the output times, and the next columns the
values of the state variables in the different boxes:

tail(out[, 1:4], n = 3)

time 1 2 3

[99,] 98 3.332278 3.332303 3.332366

[100,] 99 3.332383 3.332408 3.332471

[101,] 100 3.332478 3.332503 3.332566

We plot the result using a blue-yellow-red color scheme, and using deSolve’s S3 method image:

image(out, grid = Grid$x.mid, xlab = "time, days",

+ ylab = "Distance, cm", main = "PDE", add.contour = TRUE)

Karline Soetaert and Filip Meysman 7

3. A hyperbolic PDE

The equation for a wave travelling in one direction (x) is given by:

∂2u

∂t2
= c2

∂2u

∂x2
(1)

where c is the propagation speed of the wave, and u is the variable that changes as the wave
passes. This equation is second-order in both t and x. The wave equation is the prototype of
a “hyperbolic” partial differential equation.

For it to be solved in R , the equation is rewritten as two coupled equations, first-order in
time:

∂u1

∂t
= u2 (2)

∂u2

∂t
= c2

∂2u1

∂x2
(3)

We solve the equation with the following initial and boundary conditions:

u1(0, x) = exp−0.05x2

u2(0, x) = 0

ut,−∞ = 0

ut,∞ = 0

where the first condition represents a Gaussian pulse.

The implementation in R starts with defining the box size dx and the grid, xgrid. To comply
with the boundary conditions (which are defined at ∞), the grid needs to be taken large
enough such that u remains effectively 0 at the boundaries, for all run times.

Here, the grid extends from -100 to 100:

dx <- 0.2

xgrid <- setup.grid.1D(-100, 100, dx.1 = dx)

x <- xgrid$x.mid

N <- xgrid$N

The initial condition, yini and output times are defined next:

uini <- exp(-0.05 * x^2)

vini <- rep(0, N)

yini <- c(uini, vini)

times <- seq (from = 0, to = 50, by = 1)

The wave equation derivative function first extracts, from state variable vector y the two prop-
erties u1, u2, both of length N, after which ReacTran function tran.1D performs transport
of u1. The squared velocity (c2) is taken as 1 (D=1):

wave <- function (t, y, parms) {

+ u1 <- y[1:N]

8 Solving partial differential equations, using R package ReacTran

+ u2 <- y[-(1:N)]

+

+ du1 <- u2

+ du2 <- tran.1D(C = u1, C.up = 0, C.down = 0, D = 1, dx = xgrid)$dC

+ return(list(c(du1, du2)))

+ }

The wave equation can be solved efficiently with a non-stiff solver such as the Runge-Kutta
method ode45.

out <- ode.1D(func = wave, y = yini, times = times, parms = NULL,

+ nspec = 2, method = "ode45", dimens = N, names = c("u", "v"))

We now plot the results (Fig. 3) using deSolves function matplot.1D; intial condition in
black, the values for selected time points in darkgrey; a legend with times is written.

matplot.1D(out, which = "u", subset = time %in% seq(0, 50, by = 10),

+ type = "l", col = c("black", rep("darkgrey", 5)), lwd = 2,

+ grid = x, xlim = c(-50,50))

legend("topright", lty = 1:6, lwd = 2, col = c("black", rep("darkgrey", 5)),

+ legend = paste("t = ",seq(0, 50, by = 10)))

−40 −20 0 20 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

u

x

t = 0
t = 10
t = 20
t = 30
t = 40
t = 50

Figure 3: The 1-D wave equation; black = initial condition; grey: several time lines

S3-method image can also be used to generate persp-like plots:

par(mar=c(0,0,0,0))

image(out, which = "u", method = "persp", main = "",

+ border = NA, col = "lightblue", box = FALSE,

+ shade = 0.5, theta = 0, phi = 60)

Karline Soetaert and Filip Meysman 9

Figure 4: The 1-D wave equation as a persp plot

You may also want to try the following "movie":

plot.1D(out, grid = x, which = "u", type = "l",

lwd = 2, ylim = c(0, 1), ask = TRUE)

10 Solving partial differential equations, using R package ReacTran

4. An elliptic PDE

The final example describes again a diffusion-reaction system with production p, consumption
rC, and diffusive transport (diffusion coefficients Dx, Dy) of a substance C in 2 dimensions
(x, y); the boundaries are prescribed as zero-gradient (the default).

∂C

∂t
=

∂

∂x
[Dx ·

∂C

∂x
] +

∂

∂y
[Dy ·

∂C

∂y
] − rC + pxy (4)

The parameter pxy is the production rate, which is zero everywhere except for 50 randomly
positioned spots where it is 1.

Transport is performed by ReacTran function tran.2D; the state variable vector (y) is recast
in matrix form (CONC) before it is transported. The first-order consumption rate -r * CONC

is added to the rate of change due to transport (Tran$dC). Production, p is added to 50 cells
indexed by ii, and which are randomly selected from the grid. The function returns a list,
containing the derivatives, as a vector:

require(ReacTran)

pde2D <- function (t, y, parms) {

+ CONC <- matrix(nr = n, nc = n, y)

+ Tran <- tran.2D(CONC, D.x = Dx, D.y = Dy, dx = dx, dy = dy)

+ dCONC <- Tran$dC - r * CONC

+ dCONC[ii]<- dCONC[ii] + p

+ return(list(as.vector(dCONC)))

+ }

Before running the model, the grid sizes (dx, dx), diffusion coefficients (Dx, Dy), 1st order
consumption rate (r) are defined. There are 100 boxes in x- and y direction (n). Furthermore,
we assume that the substance is produced in 50 randomly chosen cells (ii) at a constant rate
(p):

n <- 100

dy <- dx <- 1

Dy <- Dx <- 2

r <- 0.001

p <- runif(50)

ii <- trunc(cbind(runif(50) * n, runif(50) * n) + 1)

The steady-state is found using rootSolve ’s function steady.2D. It takes as arguments
amongst other the dimensionality of the problem (dimens) and the length of the work array
needed by the solver (lrw = 600000). It takes less than 0.5 seconds to solve this 10000 state
variable model.

require(rootSolve)

Conc0 <- matrix(nr = n, nc = n, 10)

print(system.time(ST <- steady.2D(y = Conc0, func = pde2D, parms = NULL,

+ dimens = c(n, n), lrw = 6e+05)))

Karline Soetaert and Filip Meysman 11

user system elapsed

0.05 0.01 0.08

image(ST, main = "steady-state 2-D PDE")

References

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992). Numerical Recipes in FOR-

TRAN. The Art of Scientific Computing. 2nd edition. Cambridge University Press.

Soetaert K (2009). rootSolve: Nonlinear root finding, equilibrium and steady-state analysis of

ordinary differential equations. R package version 1.6.

Soetaert K, Meysman F (2010). ReacTran: R-package ReacTran: Reactive Transport Mod-

elling in R. R package vignette.

Soetaert K, Meysman F (2012). “Reactive transport in aquatic ecosystems: Rapid model
prototyping in the open source software R.” Environmental Modelling and Software, 32,
49–60.

Soetaert K, Petzoldt T, Setzer RW (2010). “Solving Differential Equations in R: Package
deSolve.” Journal of Statistical Software, 33(9), 1–25. ISSN 1548-7660. URL http://www.

jstatsoft.org/v33/i09.

Affiliation:

Karline Soetaert
Royal Netherlands Institute of Sea Research (NIOZ)
4401 NT Yerseke, Netherlands
E-mail: karline.soetaert@nioz.nl

URL: http://www.nioz.nl

Filip Meysman
Royal Netherlands Institute of Sea Research (NIOZ)
4401 NT Yerseke, Netherlands
E-mail: filip.meysman@nioz.nl

URL: http://www.nioz.nl

http://www.jstatsoft.org/v33/i09
http://www.jstatsoft.org/v33/i09
mailto:karline.soetaert@nioz.nl
http://www.nioz.nl
mailto:filip.meysman@nioz.nl
http://www.nioz.nl

12 Solving partial differential equations, using R package ReacTran

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

steady−state 2−D PDE

x

y

Figure 5: Steady-state solution of the 2-D diffusion-reaction model

	Partial differential equations
	A parabolic PDE
	Steady-state solution
	The method of lines

	A hyperbolic PDE
	An elliptic PDE

