
Risk and Performance Estimators Standard Errors
(RPESE)

Anthony Christidis, Doug Martin, Xin Chen

September 7, 2022

Abstract

The Risk and Performance Estimators Standard Errors package (RPESE) implements

a new method for computing accurate standard errors of risk and performance estima-

tors when returns are serially correlated as well as when they are uncorrelated. The

new method makes use of the representation of a risk or performance estimator as a

summation of a time series of in�uence-function (IF) transformed returns, and computes

estimator standard errors using a sophisticated method of estimating the spectral den-

sity at frequency zero of the time series of IF transformed returns. The RPESE package

allows users to compute accurate standard errors for six risk estimators, including the

standard deviation, semi-standard deviation, value-at risk and expected shortfall, and

eight performance estimators, including the Sharpe ratio, Sortino ratio, and expected

shortfall ratio. This vignette provides basic instruction on how to use the RPESE package.

1 Introduction

The current �nance industry practice in reporting risk and performance estimates for indi-
vidual assets and portfolios seldom includes reporting estimate standard errors (SEs). For
this reason, consumers of such reports have no way of knowing the statistical accuracy of
the estimates. As a leading example, one seldom sees SE's reported for Sharpe ratios, and
consequently cannot tell whether or not two Sharpe ratios for two di�erent portfolio products
are signi�cantly di�erent.

This motivated us to develop a Risk and Performance Estimator Standard Errors (RPESE)
package for computing risk and performance estimator SE's that are accurate: (1) when

1

returns are serially correlated as well as when they are uncorrelated, and (2) account for
fat-tailed and skewed non-normality of returns distributions. RPESE uses a new method for
computing risk and performance estimators standard errors due to Chen and Martin [2018],
henceforth (CM).

RPESE supports computing SEs for the six risk estimators shown in Table 1, and the eight
performance estimators shown in Table 2. For each of the names in the Name column of
the two tables, there is a corresponding R function with a similar name in RPESE, except for
LMP1 and LPM2 in Table 1 there is a single function with an optional argument to choose
between these two risk estimators, and for SorR.µ and SorR.c in Table 2 there is a single
function with an optional argument to choose between these two performance estimators.

Name Estimator Description

SD Sample standard deviation

SemiSD Semi-standard deviation

LPM1 Lower partial moment of order 1

LPM2 Lower partial moment of order 2

ES Expected shortfall with tail probability α

VaR Value-at-risk with tail probability α

Table 1: Risk Estimator Names and Descriptions

2

Name Estimator Description

Mean Sample mean

robMean Robust sample mean

SR Sharpe ratio

DSR Downside Sharpe ratio

SoR Sortino ratio with threshold a constant cor mean µ

ESratio Mean excess return to ES ratio with tail probability α

VaRratio Mean excess return to VaR ratio with tail probability α

RachRatio Rachev ratio with lower upper tail probabilities α and β

OmegaRatio Omega ratio with threshold c

Table 2: Performance Estimator Names and Descriptions

The main function of RPESE is to compute the standard errors of the point estimates listed
in Tables 1 and 2, using the new method that we now brie�y describe.

The New Method

The basic elements of the new method are as follows. For a given risk or performance
estimator, the time series of returns used to compute the estimate are transformed using the
in�uence function (IF) of the estimator. For an introduction to in�uence functions for risk
and performance estimators, and derivations of the in�uence functions of the estimators in
Tables 1 and 2, see Zhang et al. [2019]. It turns out that risk and performance estimators
can be represented as the sample mean of the time series of in�uence-function transformed
returns. It is well-known that an appropriately standardized (with respect to sample size) sum
of a stationary time series has a variance that is approximated by the spectral density of the
time series at zero frequency, with the approximation becoming exact as the sample size tends
to in�nity. Thus, computing the standard error of a risk or performance estimator reduces
to estimating the spectral density at zero frequency of a standardized sum of the in�uence-
function transformed returns. CM developed an e�ective method of doing so based on �rst
computing the periodogram of the in�uence-function transformed returns, and then using
a regularized general linear model (GLM) method for exponential and gamma distributions
to �t a polynomial to the periodogram values. The regularization method used is an elastic

3

net (EN) method that encourages sparsity of coe�cients and is well-known in the machine
learning literature. The intercept of such GLM �tting provides the an estimate of the spectral
density at zero frequency, and hence a risk or performance estimator standard error. The
interested reader can �nd the details in the CM paper.

2 RPESE Component Packages

The overall structure of RPESE, depicted in Figure 1, shows that RPESE makes use of the
following two new packages:

� RPEIF (In�uence Functions of risk and performance estimators)

� RPEGLMEN (Generalized Linear Model �tting with Elastic Net, for exponential and
gamma distributions)

The purpose of RPEIF is to provide the analytic formulas of in�uence functions in support of
computing the IF transformed returns for the risk and performance estimators. For each risk
and performance estimator in Tables 1 and 2, the RPEGLMEN package �ts an EN regularized
GLM polynomial �t to the periodogram of the time series of IF-transformed returns, using a
GLM for exponential distributions or Gamma distributions. Figure 1 shows the relationship
between the above two packages and the overall RPESE package.

Figure 1: Packages Relations between RPEIF, RPGLMEN, RPESE and PerformanceAnalytics

3 How to Use RPESE

In the following sections, we show how to use the functions in RPESE to compute standard
errors of risk and performance estimators using time series of monthly hedge fund returns

4

contained in the PerformanceAnalytics package.

3.1 Installing and Loading RPESE and Loading an Examples Data

Set

In order to use RPESE, you don't need to manually install any dependent packages as they
will be installed automatically when RPESE is installed. You can install RPESE form CRAN
as follows:

install.packages("RPESE")

To load RPESE, use the code line:

library(RPESE)

We will use the xts data set edhec of hedge fund returns, contained in PerformanceAnalytics,
to demonstrate the functionality of RPESE. The following code loads the edhec data, con�rms
the object's class, lists the names of the hedge funds, and displays the range of dates of the
data.

data(edhec, package = "PerformanceAnalytics")

class(edhec)

[1] "xts" "zoo"

names(edhec)

[1] "Convertible Arbitrage" "CTA Global" "Distressed Securities"

[4] "Emerging Markets" "Equity Market Neutral" "Event Driven"

[7] "Fixed Income Arbitrage" "Global Macro" "Long/Short Equity"

[10] "Merger Arbitrage" "Relative Value" "Short Selling"

[13] "Funds of Funds"

library(xts) # Need this for the next line and later use of plot.zoo

range(index(edhec))

[1] "1997-01-31" "2019-11-30"

5

Since the hedge fund names are too long for convenient display, the following code is used to
create shorter two or three letter names:

names(edhec) <- c("CA", "CTA", "DIS", "EM","EMN", "ED", "FIA",

"GM", "LS","MA", "RV", "SS", "FOF")

3.2 Functions in RPESE

To see what functions are contained in the RPESE package, use the code line:

ls("package:RPESE")

[1] "DSR.SE" "ES.SE" "ESratio.SE" "EstimatorSE"

[5] "LPM.SE" "Mean.SE" "OmegaRatio.SE" "printSE"

[9] "RachevRatio.SE" "robMean.SE" "SD.SE" "SemiSD.SE"

[13] "SoR.SE" "SR.SE" "VaR.SE" "VaRratio.SE"

The twelve functions whose function name ends in .SE compute the standard error of the
estimator corresponding to the �rst part of the function name. Note that there are only
�ve risk estimators instead of the six in Table 1, which is because LPM.SE uses an optional
argument to choose computing LPM1 or LPM2, and similarly there are only seven perfor-
mance estimator instead of the eight in Table 2 because SortinorRatio.SE uses an optional
argument to choose computing SoRc or SoRµ.

The function printSE is a utility function whose use is demonstrated below, and the func-
tion estimatorSE is another utility function whose use is illustrated in an example in the
function's help �le.

3.3 Basic Functionality

The arguments of the twelve standard error computation functions are all similar, and are
illustrated below for the cases of the SD.SE and SR.SE functions using the args function:

args(SD.SE)

6

function (data, se.method = c("IFiid", "IFcor", "IFcorAdapt",

"IFcorPW", "BOOTiid", "BOOTcor")[1:2], cleanOutliers = FALSE,

fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5,

freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5,

corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1],

return.coef = FALSE, ...)

NULL

args(SR.SE)

function (data, rf = 0, se.method = c("IFiid", "IFcor", "IFcorAdapt",

"IFcorPW", "BOOTiid", "BOOTcor")[c(1, 4)], cleanOutliers = FALSE,

fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5,

freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5,

corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1],

return.coef = FALSE, ...)

NULL

The only argument that is required for the standard error computing functions is the data

argument, and if only the data argument is supplied then the function uses the defaults of
the other arguments. However the se.method = argument is particularly important, and the
standard error computation methods for the various choices for this argument are as follows:

� "IFiid": This results in an in�uence function (IF) method based computation of a
standard error assuming i.i.d. returns

� "IFcor": This is the basic IF method computation of a standard error that takes into
account serial correlation in the returns

� "IFcorAdapt": This IF based method adaptively interpolates between IFcor and IF-
corPW to better account for serial correlation in the returns than with either IFcor or
IFcorPW alone

� "IFcorPW": This IF based method uses pre-whitening of the IF transformed returns
and is useful when serial correlation is large

� "BOOTiid": This choice results in computing a bootstrap standard error assuming
i.i.d. returns

7

� "BOOTcor": This choice uses a block bootstrap method to compute a standard error
that takes into account serial correlation of returns.

Our two default choices of methods are:

� �IFiid� and �IFcor� for risk estimators, and for performance estimators when re-
turns serial correlation are known to be small

� �IFiid� and �IFcorPW� for performance estimators when returns correlations are
unknown and may be large

Note how these choices are made in the method = arguments for the SD.SE and SR.SE func-
tions above.

The value of including IFiid, along with IFcor and IFcorPW is that it allows the user to see
whether or not serial correlation results in a di�erence in the standard error that assumes
i.i.d. returns and the standard error that takes into account serial correlation. If there is
no serial correlation there will not be much di�erence, but if there is serial correlation the
di�erence can be considerable.

The BOOTiid and BOOTcor methods are provided for users who want to see how these boot-
strap methods of computing standard errors compare with the IF based methods. Our
experience to date indicates that BOOTiid generally agrees quite well with IFiid, but that
BOOTcor is not as consistent in giving values similar to those of IFcor.

As a simple example of using an SE function, the following code computes the standard error
(SE) of the standard deviation estimator for the convertible arbitrage (CA) hedge fund, using
the IFiid and IFcor methods:

Standard deviation SE computation for a single hedge fund

SD.SE(edhec[, "CA"])

$SD

[1] 0.01629694

##

$IFiid

$IFiid$se

[1] 0.002336667

##

$IFiid$coef

8

NULL

##

##

$IFcor

$IFcor$se

[1] 0.004044631

##

$IFcor$coef

NULL

In this case the IFcor standard error is considerable 76% larger than that of the IFiid

standard error.

We note that the result returned by an SE function is a list, and so the result is printed using
the default print method for a list. A more compact display of the results, with rounding to
three digits by default, can be obtained using the printSE function, whose arguments are:

args(printSE)

function (SE.data, round.digit = 3, round.out = TRUE)

NULL

For example:

sdSE <- SD.SE(edhec[, "CA"])

printSE(sdSE)

SD IFiid IFcor

[1,] 0.016 0.002 0.004

Of course if you want to compute any subset of the four IF based SE's and the two bootstrap
SE's, you can do. For example, you can obtain all six of those standard error estimates as
follows:

Sharpe Ratio SE computation for single hedge fund

Sharpe.out <- SR.SE(edhec[,"CA"],

se.method = c("IFiid","IFcor",

9

"IFcorAdapt","IFcorPW",

"BOOTiid","BOOTcor"))

Print output

printSE(Sharpe.out)

SR IFiid IFcor IFcorAdapt IFcorPW BOOTiid BOOTcor

[1,] 0.338 0.096 0.117 0.174 0.203 0.093 0.142

The risk and performance estimator functions allow you to return the standard errors for
more than one asset or portfolio, e.g. a portfolio of assets, at the same time. The following
code results in standard errors for all thirteen of the edhec hedge funds, using the �rst three
method in the set of six methods.

Sharpe Ratio SE computation for all hedge funds in data set

Sharpe.out <- SR.SE(edhec,

se.method = c("IFiid","IFcor","IFcorPW"))

printSE(Sharpe.out)

SR IFiid IFcor IFcorPW

CA 0.338 0.096 0.117 0.191

CTA 0.180 0.060 0.057 0.057

DIS 0.392 0.080 0.108 0.134

EM 0.194 0.069 0.084 0.092

EMN 0.543 0.110 0.116 0.124

ED 0.372 0.079 0.099 0.111

FIA 0.377 0.113 0.134 0.183

GM 0.371 0.054 0.057 0.057

LS 0.315 0.066 0.079 0.085

MA 0.560 0.092 0.098 0.104

RV 0.504 0.097 0.117 0.169

SS -0.041 0.061 0.072 0.072

FOF 0.275 0.066 0.083 0.094

Help �les for the functions in the RPESE are available in the usual ways. For example, you
can get the help �le for Sharpe Ratio in both of the following ways.

10

`?`(SR.SE)

help(SR.SE)

3.4 Outlier Cleaning

There is also the outlier cleaning functionality in the RPEIF package that is fully described in
Section 7 of CM, and is available in RPESE. Here we illustrate the use of the outlier cleaning
facility in terms of the in�uence function transformed returns for the sample mean estimator.
It is shown in Section 2 of CM that the in�uence function for the sample mean estimator is
IF (r;µ) = r − µ. Thus the IF transformed returns time series, computed with the function
IF.Mean is just rt − µ, where µ would be replaced by the sample mean in applications.
The function IF.Mean is made accessible by loading the package RPEIF. The following code
produces Figure 2, which illustrate the e�ect of outlier cleaning relative to no outlier cleaning
for the FIA hedge fund returns.

library(RPEIF)

IFout <- IF.Mean(returns = edhec[,"FIA"], cleanOutliers = F, IFprint = T)

IFout.clean <- IF.Mean(returns = edhec[,"FIA"], cleanOutliers = T,

IFprint = T)

par(mfrow = c(2,1))

ylim = c(-.1,.035)

plot.zoo(IFout,type = "b",

ylab = expression(paste("Returns - ",mu)),

main = "FIA Returns", pch = 20, lwd = .8, cex = .9,

ylim = ylim)

plot.zoo(IFout.clean,type = "b", ylab = expression(paste("Returns - ",mu)),

main = "FIA Outlier Cleaned Returns", pch = 20, lwd = .8, cex = .9,

ylim = ylim)

par(mfrow = c(1,1))

11

Figure 2: FIA Returns Versus Outlier Cleaned FIA Returns (with sample mean subtracted)

You can use the following code to compare Sharpe ratio SE's without and with outlier
cleaning.

IFcorAdapt SE results with outliers present and with outliers cleaned

SR <- SR.SE(edhec,se.method = "IFcorPW",cleanOutliers = F)

SRcl.out <- SR.SE(edhec,se.method = "IFcorPW",cleanOutliers = T)

clean.compare <- data.frame(SR$IFcorPW$se, SRcl.out$IFcorPW$se)

names(clean.compare) <- c("With Outliers", "Outliers Cleaned")

row.names(clean.compare) <- names(edhec)

round(clean.compare,3)

With Outliers Outliers Cleaned

12

CA 0.202 0.115

CTA 0.057 0.057

DIS 0.134 0.119

EM 0.092 0.084

EMN 0.124 0.092

ED 0.111 0.096

FIA 0.182 0.107

GM 0.057 0.062

LS 0.085 0.081

MA 0.104 0.090

RV 0.165 0.102

SS 0.072 0.073

FOF 0.093 0.083

It is not surprising that the SE's of the Sharpe ratio are smaller with outlier cleaning than
with the outliers in the returns, as outliers generally in�ate estimator variability.

3.5 Robust M-Esimator of Mean

As an alternative to the outlier cleaning method described in Section 3.4, a standard error
of the robust M-estimator of location (mean) based on the in�uence function approach is
available in RPESE. A rigorous treatment of the in�uence function of location M-estimators
can be found in [Maronna et al., 2019].

We illustrate the e�ect of using a robust estimator for the mean of serially correlated returns.
The following code computes, and plots in Figure 3, the IF.Mean transformed FIA returns,
and the IF.robMean transformed FIA returns.

retFIA <- edhec$FIA

iftrFIA <- IF.Mean(returns=retFIA,IFprint=T)

iftrFIArob <- IF.robMean(returns=retFIA,

family=c("mopt", "opt", "bisquare")[1], eff=0.95,

IFprint=T)

par(mfrow=c(2,1))

plot(iftrFIA, main="IF.Mean Transformed FIA Returns",lwd=.8)

plot(iftrFIArob, main="IF.robMean Tranformed FIA Returns", lwd=.8)

par(mfrow=c(1,1))

13

Figure 3: IF.Mean and IF.robMean FIA Transformed FIA Returns

In RPESE, the families of ψ functions for M-estimators of location and their in�uence functions
are the same ones available in the package RobStatTM, namely mOpt, opt and bisquare. The
default is the mOpt family, where

ψmOpt(x) =

{
x |x| ≤ 1
ϕ(1)

ϕ(1)−a

(
x− SGN(x) a

ϕ(x)

)
U(c− |x|) |x| > 1

(1)

where ϕ(x) is the standard normal density function, U(x) is the unit step function, and the
constants a and c depend on the desired normal distribution e�ciency. These constants are
computed internally in RPESE for a desired e�ciency. The following code shows an example
on how to compute the standard error of robust M-estimators of location, specifying the
family and eff function arguments.

14

Robust Location

robMean.out <- robMean.SE(edhec, se.method=c("IFiid", "IFcorPW"),

family = c("mopt", "opt", "bisquare")[1], eff = 0.95)

printSE(robMean.out, round.digit = 3)

robMean IFiid IFcorPW

CA 0.006 0.001 0.001

CTA 0.004 0.001 0.001

DIS 0.008 0.001 0.001

EM 0.008 0.002 0.002

EMN 0.005 0.000 0.000

ED 0.008 0.001 0.001

FIA 0.005 0.000 0.001

GM 0.004 0.001 0.001

LS 0.007 0.001 0.002

MA 0.006 0.001 0.001

RV 0.007 0.001 0.001

SS -0.004 0.002 0.003

FOF 0.004 0.001 0.001

3.6 Correlations of Returns and In�uence Function Transformed

Returns

Note that you can also return the (lag-1) correlations of the returns time series, as well as the
in�uence function transformed returns as part of the output using the corOut argument. The
available options are retCor, retIFCor and retIFCorPW, as shown in the example below.

Sharpe Ratio SE computation for all hedge funds in data set

with output of correlations of returns and IF transformed returns

Sharpe.retCor <- SR.SE(edhec,

se.method=c("IFiid","IFcor","IFcorPW"),

corOut=c("retCor", "retIFCor"))

printSE(Sharpe.retCor)

SR IFiid IFcor IFcorPW retCor retIFCor

CA 0.338 0.096 0.117 0.202 0.565 0.554

15

CTA 0.180 0.060 0.057 0.058 -0.008 -0.039

DIS 0.392 0.080 0.108 0.134 0.492 0.486

EM 0.194 0.069 0.084 0.092 0.296 0.280

EMN 0.543 0.110 0.116 0.124 0.284 0.153

ED 0.372 0.079 0.099 0.111 0.341 0.334

FIA 0.377 0.113 0.134 0.183 0.500 0.440

GM 0.371 0.054 0.057 0.057 0.057 0.060

LS 0.315 0.066 0.079 0.085 0.216 0.252

MA 0.560 0.092 0.098 0.104 0.277 0.130

RV 0.504 0.097 0.117 0.169 0.424 0.480

SS -0.041 0.061 0.072 0.072 0.154 0.154

FOF 0.275 0.066 0.082 0.093 0.311 0.334

3.7 Exponential and Gamma Distributions

The RPEGLMEN package used in the �tting of the elastic net penalized GLM model to the
periodogram of the IF transformed return series was developed and tested for exponential
distribution GLM models. However some initial work was done for that type of GLM model
�tting for the family of Gamma distribution. And initial results for the Gamma distribution,
reported in CM, indicates that the Gamma distribution GLM often results in a more parsi-
monious polynomial model �t the the periodogram. By way of example, the following code,
which is very slow, computes standard errors of Sharpe ratio estimators for exponential and
Gamma distributions.

Sharpe Ratio SE computation for edhec hedge funds using Gamma distribution

Clean.out <- SR.SE(edhec,

se.method=c("IFiid","IFcor","IFcorPW"),

cleanOutliers = T)

GammaClean.out <- SR.SE(edhec,

se.method=c("IFiid","IFcor","IFcorPW"),

cleanOutliers = T, fitting.method = "Gamma")

GammaExp.comparison <- cbind(printSE(Clean.out)[,4],

printSE(GammaClean.out)[,4])

colnames(GammaExp.comparison) <- c("IFcorPW", "IFcorPW-Gamma")

rownames(GammaExp.comparison) <- names(edhec)

GammaExp.comparison

16

We regard the Gamma family code implemented in RPEGLMEN, used for the above computa-
tion, to be quite experimental at this stage, and anticipate further development of the code
in C++ at a future date.

3.8 Decimation and Truncation of Frequencies of Discrete Fourier

Transform

There is an option in the SE functions to use a decimated or truncated percentage of the
frequencies of the discrete Fourier transforms for the periodogram in the �tting of the Expo-
nential or Gamma distributions. Decimation implies that only certain frequencies are used,
and they will be equally spaced selections from the frequencies. Truncation implies that only
a certain percentage of the frequencies (i.e. only the �rst frequencies until a certain point)
will be used.

By default, the SE functions use all the frequencies. If the argument freq.include is set to
�Decimate� or �Truncate� a value of 0.5 is used for the freq.par argument: every second
frequency is used in the decimation case, and only the �rst half of the frequencies are used
in the truncation case. Below is some sample code demostration for this usage.

Sharpe Ratio SE using all, decimating, or truncating the frequencies

SE.all <- SR.SE(edhec,

se.method=c("IFiid","IFcor","IFcorPW"),

cleanOutliers = T,

freq.include = "All")

SE.decimate <- SR.SE(edhec,

se.method=c("IFiid","IFcor","IFcorPW"),

cleanOutliers = T,

freq.include = "Decimate", freq.par = 0.5)

SE.truncate <- SR.SE(edhec,

se.method=c("IFiid","IFcor","IFcorPW"),

cleanOutliers = T,

freq.include = "Truncate", freq.par = 0.5)

frequency.comparison <- cbind(printSE(SE.all)[,4],

printSE(SE.decimate)[,4],

printSE(SE.truncate)[,4])

colnames(frequency.comparison) <- c("IFcorPW-All",

"IFcorPW-Decimate",

"IFcorPW-Truncate")

17

rownames(frequency.comparison) <- names(edhec)

frequency.comparison

IFcorPW-All IFcorPW-Decimate IFcorPW-Truncate

CA 0.115 0.121 0.113

CTA 0.057 0.057 0.057

DIS 0.119 0.124 0.121

EM 0.084 0.092 0.086

EMN 0.093 0.106 0.096

ED 0.096 0.101 0.098

FIA 0.107 0.111 0.107

GM 0.062 0.062 0.062

LS 0.081 0.084 0.082

MA 0.090 0.093 0.086

RV 0.102 0.113 0.100

SS 0.073 0.079 0.072

FOF 0.083 0.087 0.086

References

X. Chen and R. D. Martin. Standard errors of risk and performance measure estimators for
serially correlated returns. 2018. URL https://ssrn.com/abstract=3085672.

RA Maronna, RD Martin, VJ Yohai, and M Salibian-Barrera. Robust statistics: Theory and
methods (with r) wiley. Hoboken, NJ, USA, 2019.

S Zhang, R D Martin, and A A Christidis. In�uence functions for risk and performance
estimators. Working paper, 2019.

18

https://ssrn.com/abstract=3085672

	1 Introduction
	2 RPESE Component Packages
	3 How to Use RPESE
	3.1 Installing and Loading RPESE and Loading an Examples Data Set
	3.2 Functions in RPESE
	3.3 Basic Functionality
	3.4 Outlier Cleaning
	3.5 Robust M-Esimator of Mean
	3.6 Correlations of Returns and Influence Function Transformed Returns
	3.7 Exponential and Gamma Distributions
	3.8 Decimation and Truncation of Frequencies of Discrete Fourier Transform

