Package ‘RMCLab’

July 28, 2025

Type Package

Title Lab for Matrix Completion and Imputation of Discrete Rating Data
Version 0.1.0

Date 2025-07-25

Description
Collection of methods for rating matrix completion, which is a statistical framework for recom-
mender systems. Another relevant application is the imputation of rating-scale sur-
vey data in the social and behavioral sciences. Note that matrix completion and imputation are syn-
onymous terms used in different streams of the literature. The main functionality implements ro-
bust matrix completion for discrete rating-scale data with a low-rank constraint on a latent contin-
uous matrix (Archimbaud, Alfons, and Wilms (2025) <doi:10.48550/arXiv.2412.20802>). In ad-
dition, the package provides wrapper functions for 'softlmpute' (Mazumder, Hastie, and Tibshi-
rani, 2010, <https://www. jmlr.org/papers/v11/mazumderiQa.
html>; Hastie, Mazumder, Lee, Zadeh, 2015, <https:
//www.jmlr.org/papers/v16/hastiel5a.html>) for easy tuning of the regularization param-
eter, as well as benchmark methods such as median imputation and mode imputation.

License GPL (>=3)

Encoding UTF-8

Depends R (>=3.5.0)

Imports Rcpp, softimpute
LinkingTo Rcpp, ReppArmadillo

URL https://github.com/aalfons/RMCLab

BugReports https://github.com/aalfons/RMCLab/issues

Author Andreas Alfons [aut, cre] (ORCID:
<https://orcid.org/0000-0002-2513-3788>),
Aurore Archimbaud [aut] (ORCID:
<https://orcid.org/0000-0002-6511-9091>)

Maintainer Andreas Alfons <alfons@ese.eur.nl>
RoxygenNote 7.3.2
LazyData true

https://doi.org/10.48550/arXiv.2412.20802
https://www.jmlr.org/papers/v11/mazumder10a.html
https://www.jmlr.org/papers/v11/mazumder10a.html
https://www.jmlr.org/papers/v16/hastie15a.html
https://www.jmlr.org/papers/v16/hastie15a.html
https://github.com/aalfons/RMCLab
https://github.com/aalfons/RMCLab/issues
https://orcid.org/0000-0002-2513-3788
https://orcid.org/0000-0002-6511-9091

2 RMCLab-package

NeedsCompilation yes
Repository CRAN
Date/Publication 2025-07-28 19:00:09 UTC

Contents
RMCLab-package e 2
create_Splits e e 4
get_completed 5
get_lambda 7
get_ nb_iter e e e e e e 8
lambda_grid 9
median_impute e e e e e e e e 11
mode_impute e e 12
MovieLensToy e 13
TAMC e e e 14
rdmMC_tUNE e e e e e e 17
SOft_impute L e e e e e 19
soft_impute_tune 22
validation_control L e 24

Index 25

RMCLab-package Lab for Matrix Completion and Imputation of Discrete Rating Data
Description

Collection of methods for rating matrix completion, which is a statistical framework for recom-

mender systems. Another relevant application is the imputation of rating-scale survey data in

the social and behavioral sciences. Note that matrix completion and imputation are synonymous

terms used in different streams of the literature. The main functionality implements robust ma-

trix completion for discrete rating-scale data with a low-rank constraint on a latent continuous

matrix (Archimbaud, Alfons, and Wilms (2025) <doi:10.48550/arXiv.2412.20802>). In addition,

the package provides wrapper functions for ’softlmpute’ (Mazumder, Hastie, and Tibshirani, 2010,
<https://www.jmlr.org/papers/v11/mazumder10a.html>; Hastie, Mazumder, Lee, Zadeh, 2015, <https://www.jmlr.org/papers
for easy tuning of the regularization parameter, as well as benchmark methods such as median im-

putation and mode imputation.

Details
The DESCRIPTION file:
Package: RMCLab
Type: Package
Title: Lab for Matrix Completion and Imputation of Discrete Rating Data

Version: 0.1.0

RMCLab-package 3
Date: 2025-07-25
Description: Collection of methods for rating matrix completion, which is a statistical framework for recommender systen
License: GPL (>=3)
Encoding: UTF-8
Depends: R (>=3.5.0)
Imports: Rcpp, softlmpute
LinkingTo: Repp, ReppArmadillo
URL: https://github.com/aalfons/RMCLab
BugReports: https://github.com/aalfons/RMCLab/issues
Authors @R: c(person("Andreas", "Alfons", email = "alfons@ese.eur.nl", role = c("aut", "cre"), comment = c(ORCID = "(
Author: Andreas Alfons [aut, cre] (<https://orcid.org/0000-0002-2513-3788>), Aurore Archimbaud [aut] (<https://or
Maintainer: Andreas Alfons <alfons @ese.eur.nl>
RoxygenNote: 7.3.2
LazyData: true
Index of help topics:
MovielensToy Toy example derived from the Movielens 100K
dataset
RMCLab-package Lab for Matrix Completion and Imputation of
Discrete Rating Data
create_splits Create splits of observed data cells for
hyperparameter tuning
get_completed Extract the completed (imputed) data matrix
get_lambda Extract the optimal value of the regularization
parameter
get_nb_iter Extract the number of iterations
lambda_grid Construct grid of values for the regularization
parameter
median_impute Median imputation
mode_impute Mode imputation
rdmc Robust discrete matrix completion
rdmc_tune Robust discrete matrix completion with
hyperparameter tuning
soft_impute Matrix completion via nuclear-norm
regularization
soft_impute_tune Matrix completion via nuclear-norm
regularization with hyperparameter tuning
validation_control Control objects for hyperparameter validation

Author(s)

Andreas Alfons [aut, cre] (<https://orcid.org/0000-0002-2513-3788>), Aurore Archimbaud [aut]
(<https://orcid.org/0000-0002-6511-9091>)

Maintainer: Andreas Alfons <alfons@ese.eur.nl>

4 create_splits

References

Archimbaud, A., Alfons, A., and Wilms, 1. (2025) Robust Matrix Completion for Discrete Rating-
Scale Data. arXiv:2412.20802. doi:10.48550/arXiv.2412.20802.

Hastie, T., Mazumder, R., Lee, J. D. and Zadeh, R. (2015) Matrix Completion and Low-Rank SVD
via Fast Alternating Least Squares. Journal of Machine Learning Research, 16(104), 3367-3402.

Mazumder, R., Hastie, T. and Tibshirani, R. (2010) Spectral Regularization Algorithms for Learning
Large Incomplete Matrices. Journal of Machine Learning Research, 11(80), 2287-2322.

See Also
Useful links:

e https://github.com/aalfons/RMCLab
* Report bugs at https://github.com/aalfons/RMCLab/issues

create_splits Create splits of observed data cells for hyperparameter tuning

Description

Split the observed cells of a data matrix into training and validation sets for hyperparameter tuning.
Methods are available for repeated holdout validation and K -fold cross-validation.

Usage

create_splits(indices, control)
holdout(indices, pct = 0.1, R = 10L)

cv_folds(indices, K = 5L)

Arguments
indices an integer vector giving the indices of observed cells in a data matrix.
control a control object inheriting from class "split_control” as generated by holdout_control()
for repeated holdout validation or cv_folds_control () for K-fold cross-validation.
pct numeric in the interval (0, 1); the percentage of observed cells in the data matrix
to be randomly selected into the validation set (defaults to 0.1).
R an integer giving the number of random splits into training and validation sets
(defaults to 10).
K an integer giving the number of cross-validation folds (defaults to 5).
Details

Functions holdout() and cv_folds() are wrapper functions that first call holdout_control()
and cv_folds_control(), respectively, before calling create_splits().

https://doi.org/10.48550/arXiv.2412.20802
https://github.com/aalfons/RMCLab
https://github.com/aalfons/RMCLab/issues

get_completed 5

Value

A list of index vectors giving the validation sets of the respective replication or cross-validation
fold.

Author(s)

Andreas Alfons

See Also

holdout_control(), cv_folds_control(),

rdmc_tune(), soft_impute_tune()

Examples

toy example derived from MovieLens 100K dataset
data("MovielLensToy")
set up validation sets so that methods use same data splits
set.seed(20250723)
observed <- which(!is.na(MovielLensToy))
holdout_splits <- holdout(observed, R = 5)
robust discrete matrix completion with hyperparameter tuning
fit_RDMC <- rdmc_tune(
MovielensToy,
lambda = fraction_grid(nb_lambda = 6),
splits = holdout_splits
)
Soft-Impute with discretization step and hyperparameter tuning
fit_SI <- soft_impute_tune(
MovielensToy,
lambda = fraction_grid(nb_lambda = 6, reverse = TRUE),
splits = holdout_splits
)
extract optimal values of regularization parameter
get_lambda(fit_RDMC)
get_lambda(fit_SI)

get_completed Extract the completed (imputed) data matrix

Description

Extract the completed (i.e., imputed) data matrix from an object returned by a matrix completion
algorithm.

Usage

get_completed(object, ...)

S3 method for class 'rdmc_tuned'
get_completed(object, ...)

S3 method for class 'rdmc'
get_completed(object, which, ...)

S3 method for class 'soft_impute_tuned'
get_completed(object, discretized = NULL, ...)

S3 method for class 'soft_impute'
get_completed(object, which, discretized = NULL, ...)

S3 method for class 'median_impute'
get_completed(object, discretized = NULL, ...)

S3 method for class 'mode_impute'’

get_completed

get_completed(object, ...)
get_imputed(object, ...)
Arguments
object an object returned by a matrix completion algorithm.
additional arguments to be passed down to methods.
which an integer specifying the index of the regularization parameter for which to ex-
tract the completed data matrix.
discretized a logical indicating if the completed data matrix with or without the discretiza-
tion step should be extracted. The default is TRUE if the discretization step was
performed and FALSE otherwise.
Value

The completed (i.e., imputed) data matrix.

Note

Matrix completion and imputation are synonymous terms used in different streams of the literature,
hence get_imputed() is an alias for get_completed() with the same functionality.

Author(s)

Andreas Alfons and Aurore Archimbaud

See Also

rdmc_tune(), soft_impute_tune(), median_impute(), mode_impute()

get_lambda 7

Examples

toy example derived from MovieLens 100K dataset
data("MovielLensToy")
robust discrete matrix completion with hyperparameter tuning
set.seed(20250723)
fit <- rdmc_tune(MovielLensToy,

lambda = fraction_grid(nb_lambda = 6),

splits = holdout_control(R = 5))
extract completed matrix with optimal regularization parameter
X_hat <- get_completed(fit)
head(X_hat)

for more examples, see the help files of other functions for
matrix completion and imputation methods

get_lambda Extract the optimal value of the regularization parameter

Description

Extract the optimal value of the regularization parameter from an object returned by a matrix com-
pletion algorithm.

Usage
get_lambda(object, ...)

S3 method for class 'rdmc_tuned'
get_lambda(object, ...)

S3 method for class 'rdmc'
get_lambda(object, relative = TRUE, ...)

S3 method for class 'soft_impute_tuned'
get_lambda(object, ...)

S3 method for class 'soft_impute'

get_lambda(object, relative = TRUE, ...)
Arguments
object an object returned by a matrix completion algorithm with a regularization pa-
rameter.

additional arguments to be passed down to methods.

relative logical; in case the values of the regularization parameter were given relative to
a certain reference value computed from the data at hand, this allows to return
the optimal value before or after multiplication with that reference value.

8 get_nb_iter

Value

The optimal value of the regularization parameter.

Author(s)
Andreas Alfons

See Also

rdmc_tune(), soft_impute_tune()

Examples

toy example derived from MovielLens 100K dataset
data("MovielLensToy")
robust discrete matrix completion with hyperparameter tuning
set.seed(20250723)
fit <- rdmc_tune(MovielLensToy,

lambda = fraction_grid(nb_lambda = 6),

splits = holdout_control(R = 5))
extract optimal value of regularization parameter
get_lambda(fit)

for more examples, see the help files of other functions for
matrix completion and imputation methods

get_nb_iter Extract the number of iterations

Description

Extract the number of iterations from an object returned by a matrix completion algorithm.
Usage
get_nb_iter(object, ...)

S3 method for class 'rdmc_tuned'
get_nb_iter(object, ...)

S3 method for class 'rdmc'

get_nb_iter(object, ...)
Arguments
object an object returned by an iterative matrix completion algorithm.

currently ignored.

lambda_grid

Value

The number of iterations performed in the iterative algorithm.

Author(s)

Andreas Alfons

See Also

rdmc_tune()

Examples

toy example derived from MovielLens 100K dataset
data("MovielLensToy")
robust discrete matrix completion with hyperparameter tuning
set.seed(20250723)
fit <- rdmc_tune(MovielLensToy,

lambda = fraction_grid(nb_lambda = 6),

splits = holdout_control(R = 5))
extract number of iterations with optimal regularization parameter
get_nb_iter(fit)

lambda_grid Construct grid of values for the regularization parameter

Description

Construct a grid of values for the regularization parameter in rdmc() or soft_impute().

Usage

fraction_grid(
min = 0.01,
max = 1,
nb_lambda = 10L,
log = TRUE,
reverse = FALSE

mult_grid(min = 0.05, factor = 1.5, nb_lambda = 10L)

10 lambda_grid

Arguments
min numeric; the smallest value of the regularization parameter. For fraction_grid(),
it must be in the interval (0, 1) with the default being 0.01. For mult_grid(), it
must be larger than 0 with the default being 0.05.
max numeric; the largest value of the regularization parameter. It must be in the
interval (min, 1] with the default being 1.
nb_lambda a positive integer giving the number of values for the regularization parameter
to be generated.
log a logical indicating whether the grid of values should be on a logarithmic scale
(defaults to TRUE).
reverse a logical indicating whether the grid of values should be in ascending order
(FALSE, the default) or in descending order (TRUE).
factor numeric; multiplication factor larger than 1 to be used to construct the values of
the regularization parameter. That is, the second value is obtained by multiply-
ing min by factor, with this process being iterated further.
Details

Function fraction_grid() generates a grid of values in the interval (0, 1], either on a logarithmic
or linear scale, which rdmc() and soft_impute() can relate to a certain reference value computed
from the data at hand.

Function mult_grid() generates a multiplicative grid in which the each value is obtained by mul-
tiplying the previous value with a specified factor.

Value

A numeric vector of values for the regularization parameter.

See Also

rdmc(), rdmc_tune(), soft_impute(), soft_impute_tune()

Examples

fraction_grid()
fraction_grid(log = FALSE)
mult_grid(factor = 2)

median_impute 11

median_impute Median imputation

Description

Perform median imputation. In case of discrete rating-scale data, a discretization step can be carried
out afterwards to make sure that the imputed values are mapped to the rating scale of the observed
values (as the median of a given column may lie in between two answer categories in case of an even
number of observed values). This is done by randomly sampling from the largest answer category
smaller than the median and the smallest answer category larger than the median (for each missing
cell).

Usage

median_impute(X, discretize = TRUE, values = NULL)

Arguments
X a matrix or data frame with missing values.
discretize a logical indicating whether to include a discretization step after median impu-
tation (defaults to TRUE). In case of discrete rating-scale data, this can be used
to ensure that the imputed values are mapped to the discrete rating scale of the
observed values.
values an optional numeric vector giving the possible values of discrete ratings. This is
ignored if discretize is FALSE. Currently, the possible values are assumed to
be the same for all columns. If NULL, the unique values of the observed parts of
X are used.
Value

An object of class "median_impute” with the following components:

medians a numeric vector containing the median of the observed values for each variable.
X a numeric matrix containing the completed (i.e., imputed) data matrix.

X_discretized a numeric matrix containing the completed (i.e., imputed) data matrix after the
discretization step. This is only returned if requested via discretize = TRUE.

The class structure is still experimental and may change in the future. Use the accessor function
get_completed() to extract the completed (i.e., imputed) data matrix.

Author(s)
Andreas Alfons

See Also

mode_impute ()

12 mode_impute

Examples

toy example derived from MovieLens 100K dataset
data("MovielLensToy")

median imputation with discretization step

fit <- median_impute(MovielLensToy, values = 1:5)
extract discretized completed matrix

X_hat <- get_completed(fit)

head(X_hat)

mode_impute Mode imputation

Description

Perform mode imputation for discrete data. In case of multiple modes in a given column, one of
them is selected at random for each missing cell.

Usage

mode_impute(X, values = NULL)

Arguments
X a matrix or data frame of discrete data with missing values.
values an optional numeric vector giving the possible values. Currently, the possible
values are assumed to be the same for all columns. If NULL, the unique values of
the observed parts of X are used.
Value

An object of class "mode_impute” with the following components:

modes a list containing the mode(s) of the observed values for each variable.

X a numeric matrix containing the completed (i.e., imputed) data matrix.

The class structure is still experimental and may change in the future. Use the accessor function
get_completed() to extract the completed (i.e., imputed) data matrix.

Note

The mode is computed as the most frequent value, hence this function is only suitable for discrete
data. It does not estimate the mode of a continuous density.

Author(s)
Andreas Alfons

MovieLensToy 13

See Also

median_impute()

Examples

toy example derived from MovielLens 100K dataset
data("MovielLensToy")

mode imputation

fit <- mode_impute(MovieLensToy, values = 1:5)

extract completed matrix

X_hat <- get_completed(fit)

head(X_hat)

MovielLensToy Toy example derived from the MovieLens 100K dataset

Description

This dataset is a toy example derived from the MovieLens 100K dataset. The original data were col-
lected via the MovieLens website (movielens.umn.edu) over a seven-month period, from September
19, 1997, to April 22, 1998.

Usage

data("MovielLensToy")

Format

A matrix with 149 rows and 33 variables. Rows represent users and columns respresent movies.
Each cell contains a rating from 1 to 5, or NA if the movie was not rated by the user.

The row names correspond to the user ID and the column names to the movie ID in the original
MovieLens 100K dataset.

Details

The original MovieLens 100K dataset contains 100,000 ratings on a scale from 1 to 5 provided by
943 users for 1,682 movies.

This toy version has been curated to be used in instantaneously computable examples of the package
documentation. It includes only users who provided at least 200 ratings and movies that were rated
at least 300 times, ensuring a denser and more informative subset for testing and demonstration
purposes.

Source

GroupLens Research, https://grouplens.org/datasets/movielens/100k/

https://grouplens.org/datasets/movielens/100k/

14 rdmc

References

F. Maxwell Harper and Joseph A. Konstan (2015) The MovieLens Datasets: History and Context.
ACM Transactions on Interactive Intelligent Systems (TiiS), 5(4), Article 19. doi:10.1145/2827872.

Examples

data("MovielLensToy")
dim(MovielLensToy)

rdmc Robust discrete matrix completion

Description

Perform robust discrete matrix completion with a low-rank constraint on a latent continuous matrix,
implemented via an ADMM algorithm.

Usage

rdmc
X,
values = NULL,
lambda = fraction_grid(),
relative = TRUE,

loss = c("pseudo_huber”, "absolute”, "truncated"),
loss_const = NULL,
type = "svd",

svd_tol = 1e-04,
rank_max = NULL,
mu=0.1,

delta = 1.05,
conv_tol = 1e-04,
max_iter = 100L,

L = NULL,
Theta = NULL
)
Arguments
X a matrix or data frame of discrete ratings with missing values.
values an optional numeric vector giving the possible values of the ratings. Currently,
these are assumed to be the same for all columns. If NULL, the unique values of
the observed parts of X are used.
lambda anumeric vector giving values of the regularization parameter. See fraction_grid()

for the default values.

https://doi.org/10.1145/2827872

rdmc

relative

loss

loss_const

type

svd_tol

rank_max

mu

delta

conv_tol

max_iter

L, Theta

Details

15

a logical indicating whether the values of the regularization parameter should
be considered relative to a certain reference value computed from the data at
hand. If TRUE (the default), the values of 1ambda are multiplied with the largest
singular value of the median-centered data matrix with missing values replaced
by zeros.

a character string specifying the robust loss function for the loss part of the
objective function. Possible values are "pseudo_huber” (the default) for the
pseudo-Huber loss, "absolute” for the absolute loss, and "truncated” for the
truncated absolute loss. See ‘Details’ for more information.

tuning constant for the loss function. For the pseudo-Huber loss, the default
value is the average step size between the rating categories in values. For the
truncated absolute loss, the default is half the range of the rating categories in
values. This is ignored for the absolute loss, which does not have a tuning
parameter. See ‘Details’ for more information.

a character string specifying the type of algorithm for the low-rank latent contin-
uous matrix. Currently only "svd” is implemented for a soft-thresholded SVD
step.

numeric tolerance for the soft-thresholded SVD step. Only singular values larger
than svd_tol are kept to construct the low-rank latent continuous matrix.

a positive integer giving a rank constraint in the soft-thresholded SVD step for
the latent continuous matrix. The default is to use the minimum of the number
of rows and columns.

numeric; penalty parameter for the discrepancy between the discrete rating ma-
trix and the latent low-rank continuous matrix. It is not recommended to change
the default value of 0.1.

numeric; update factor for penalty parameter mu applied after each iteration to
increase the strength of the penalty. It is not recommended to change the default
value of 1.05.

numeric; convergence tolerance for the relative change in the objective function.

a positive integer specifying the maximum number of iterations. In practice,
large gains can often be had in the first few iterations, with subsequent iterations
yielding relatively small gains until convergence. Hence the default is to perform
at most 10 iterations.

starting values for the algorithm. These are not expected to be set by the user.
Instead, it is recommended to call this function with a grid of values for the
regularization parameter lambda so that the implementation automatically takes
advantage of warm starts.

For the loss part of the objective function, the pseudo-Huber loss (1oss = "pseudo_huber") is given

by

p(z) = loss_const?(y/1 + (x/loss_const)2 — 1).

The absolute loss (loss = "absolute”) is given by

plx) = |z,

16

rdmc

and the truncated absolute loss (1loss = "truncated”) is defined as

Value

p(x) = min(]z|, loss_const).

An object of class "rdmc” with the following components:

lambda

d_max

Theta

objective

converged

nb_iter

a numeric vector containing the values of the regularization parameter.

a numeric value with which the values of the regularization parameter were mul-
tiplied. If relative = TRUE, the largest singular value of the median-centered
data matrix, otherwise 1.

in case of a single value of lambda, a numeric matrix containing the predictions
of the median-centered data matrix. Otherwise a list of such matrices.

in case of a single value of lambda, an ancillary continuous matrix used in the
optimization algorithm. Otherwise a list of such matrices.

in case of a single value of 1lambda, a numeric matrix containing the discrepancy
parameter, i.e., the multiplier adjusting for the discrepancy between L and Z in
the optimization algorithm. Otherwise a list of such matrices.

a numeric vector containing the value of the objective function for each value of
the regularization parameter.

a logical vector indicating whether the algorithm converged for each value of
the regularization parameter.

an integer vector containing the number of iterations for each value of the regu-
larization parameter.

in case of a single value of 1lambda, a numeric matrix containing the completed
(i.e., imputed) data matrix. Otherwise a list of such matrices.

The class structure is still experimental and may change in the future. The following accessor
functions are available:

* get_completed() to extract the completed (i.e., imputed) data matrix for a specified value of
the regularization parameter,

* get_lambda() to extract the values of the regularization parameter,

* get_nb_iter() to extract the number of iterations for each value of the regularization param-

eter.

Author(s)

Andreas Alfons and Aurore Archimbaud

References

Archimbaud, A., Alfons, A., and Wilms, 1. (2025) Robust Matrix Completion for Discrete Rating-
Scale Data. arXiv:2412.20802. doi:10.48550/arXiv.2412.20802.

See Also

rdmc_tune(), fraction_grid()

https://doi.org/10.48550/arXiv.2412.20802

rdmc_tune 17

Examples

toy example derived from MovielLens 100K dataset
data("MovielLensToy")

robust discrete matrix completion

fit <- rdmc(MovielLensToy)

extract completed matrix with fifth value of

regularization parameter

X_hat <- get_completed(fit, which = 5)
head(X_hat)

rdmc_tune Robust discrete matrix completion with hyperparameter tuning

Description

Perform robust discrete matrix completion with a low-rank constraint on a latent continuous ma-
trix, implemented via an ADMM algorithm. The regularization parameter is thereby selected via
repeated holdout validation or cross-validation.

Usage
rdmc_tune(
X,
values = NULL,
lambda = fraction_grid(),

relative = TRUE,

splits = holdout_control(),

loss = c("pseudo_huber"”, "absolute"”, "truncated"),
loss_const = NULL,

)
Arguments

X a matrix or data frame of discrete ratings with missing values.

values an optional numeric vector giving the possible values of the ratings. Currently,
these are assumed to be the same for all columns. If NULL, the unique values of
the observed parts of X are used.

lambda anumeric vector giving values of the regularization parameter. See fraction_grid()
for the default values.

relative a logical indicating whether the values of the regularization parameter should

be considered relative to a certain reference value computed from the data at
hand. If TRUE (the default), the values of 1ambda are multiplied with the largest
singular value of the median-centered data matrix with missing values replaced
by zeros.

18 rdmc_tune

splits an object inheriting from class "split_control”, as generated by holdout_control()
for repeated holdout validation or cv_folds_control () for K-fold cross-validation,
or a list of index vectors giving different validation sets of observed cells as gen-
erated by create_splits(). Cells in the validation set will be set to NA for
fitting the algorithm with the training set of observed cells.

loss a character string specifying the robust loss function for the loss part of the
objective function. Possible values are "pseudo_huber"” (the default) for the
pseudo-Huber loss, "absolute"” for the absolute loss, and "truncated” for the
truncated absolute loss. See ‘Details’ for more information.

loss_const tuning constant for the loss function. For the pseudo-Huber loss, the default
value is the average step size between the rating categories in values. For the
truncated absolute loss, the default is half the range of the rating categories in
values. This is ignored for the absolute loss, which does not have a tuning
parameter. See ‘Details’ for more information.

additional arguments to be passed down to rdmc().

Details

For the loss part of the objective function, the pseudo-Huber loss (1oss = "pseudo_huber") is given
by

p(z) = loss_const?(y/1 + (x/loss_const)2 — 1).

The absolute loss (1oss = "absolute”) is given by
p(x) = |zl,
and the truncated absolute loss (loss = "truncated”) is defined as
p(x) = min(]z|, loss_const).

Value

An object of class "rdmc_tuned” with the following components:

lambda a numeric vector containing the values of the regularization parameter.

tuning_loss a numeric vector containing the (average) values of the loss function on the
validation set(s) for each value of the regularization parameter.

lambda_opt numeric; the optimal value of the regularization parameter.

fit an object of class "rdmc” containing the results from the algorithm with the

optimal regularization parameter on the full (observed) data matrix.

The class structure is still experimental and may change in the future. The following accessor
functions are available:

» get_completed() to extract the completed (i.e., imputed) data matrix with the optimal value
of the regularization parameter,
* get_lambda() to extract the optimal value of the regularization parameter,

* get_nb_iter() to extract the number of iterations with the optimal value of the regularization
parameter.

soft_impute 19

Author(s)

Andreas Alfons

References

Archimbaud, A., Alfons, A., and Wilms, 1. (2025) Robust Matrix Completion for Discrete Rating-
Scale Data. arXiv:2412.20802. doi:10.48550/arXiv.2412.20802.

See Also

rdmc(), fraction_grid(),

holdout_control(), cv_folds_control(), create_splits()

Examples

toy example derived from MovielLens 100K dataset
data("MovielLensToy")
robust discrete matrix completion with hyperparameter tuning
set.seed(20250723)
fit <- rdmc_tune(MovielLensToy,

lambda = fraction_grid(nb_lambda = 6),

splits = holdout_control(R = 5))
extract completed matrix with optimal regularization parameter
X_hat <- get_completed(fit)
head(X_hat)
extract optimal value of regularization parameter
get_lambda(fit)
extract number of iterations with optimal regularization parameter
get_nb_iter(fit)

soft_impute Matrix completion via nuclear-norm regularization

Description

Convenience wrapper for softImpute() that allows to supply a grid of values for the regularization
parameter. Other noteworthy differences with the original function are that the columns of the data
matrix are centered internally, that some of the default values are different, and that the output is
structured differently. Moreover, in case of discrete rating-scale data, the wrapper function allows
to include a discretization step after fitting the algorithm to map the imputed values to the rating
scale of the observed values.

https://doi.org/10.48550/arXiv.2412.20802

20 soft_impute

Usage

soft_impute(
X,
lambda = fraction_grid(reverse = TRUE),
relative = TRUE,
type = c("svd", "als"),
rank.max = NULL,
thresh = 1e-05,
maxit = 100L,
trace.it = FALSE,
final.svd = TRUE,
discretize = TRUE,
values = NULL

)
Arguments

X a matrix or data frame with missing values.

lambda anumeric vector giving values of the regularization parameter. See fraction_grid()
for the default values.

relative a logical indicating whether the values of the regularization parameter should be
considered relative to a certain reference value computed from the data at hand.
If TRUE (the default), the values of 1ambda are multiplied with the value returned
by lambda@() (applied to the mean-centered data matrix).

type a character string specifying the type of algorithm. Possible values are "svd"”
and "als"”. See softImpute() for details on the algorithms, but note that the
default value here is "svd".

rank.max a positive integer giving a rank constraint. See softImpute() for more details,

but note that the default here is to use the minimum of the number of rows and
columns minus 1 if type is "svd"”, and to use 2 if type is "als".

thresh, maxit, trace.it, final.svd
see sof tImpute().

discretize a logical indicating whether to include a discretization step after fitting the algo-

rithm (defaults to TRUE). In case of discrete rating-scale data, this can be used to
map the imputed values to the discrete rating scale of the observed values.

values an optional numeric vector giving the possible values of discrete ratings. This is
ignored if discretize is FALSE. Currently, the possible values are assumed to
be the same for all columns. If NULL, the unique values of the observed parts of
X are used.

Value

An object of class "soft_impute” with the following components:

lambda a numeric vector containing the values of the regularization parameter.

soft_impute 21

lambda@ a numeric value with which the values of the regularization parameter were mul-
tiplied. If relative = TRUE, the value returned by lambda@() (applied to the
mean-centered data matrix), otherwise 1.

svd in case of a single value of 1lambda, an object returned by softImpute(). Oth-
erwise a list of such objects.

X in case of a single value of 1ambda, a numeric matrix containing the completed
(i.e., imputed) data matrix. Otherwise a list of such matrices.

X_discretized in case of a single value of lambda, a numeric matrix containing the completed
(i.e., imputed) data matrix after the discretization step. Otherwise a list of such
matrices. This is only returned if requested via discretize = TRUE.

The class structure is still experimental and may change in the future. The following accessor
functions are available:

* get_completed() to extract the completed (i.e., imputed) data matrix for a specified value of
the regularization parameter,

* get_lambda() to extract the values of the regularization parameter.

Author(s)

Andreas Alfons and Aurore Archimbaud

References

Hastie, T., Mazumder, R., Lee, J. D. and Zadeh, R. (2015) Matrix Completion and Low-Rank SVD
via Fast Alternating Least Squares. Journal of Machine Learning Research, 16(104), 3367-3402.

Mazumder, R., Hastie, T. and Tibshirani, R. (2010) Spectral Regularization Algorithms for Learning
Large Incomplete Matrices. Journal of Machine Learning Research, 11(80), 2287-2322.

See Also

soft_impute_tune(), fraction_grid()

Examples

toy example derived from MovielLens 100K dataset
data("MovielLensToy")

Soft-Impute with discretization step

fit <- soft_impute(MovielLensToy)

extract discretized completed matrix with fifth value
of regularization parameter

X_hat <- get_completed(fit, which = 5)

head(X_hat)

22 soft_impute_tune

soft_impute_tune Matrix completion via nuclear-norm regularization with hyperparam-
eter tuning

Description

Perform matrix completion via nuclear-norm regularization based on softImpute(). The regular-
ization parameter is thereby selected via repeated holdout validation or cross-validation. Note that
this uses the convenience wrapper soft_impute (), whose default behavior is different from that of
the original function.

Usage

soft_impute_tune(
X,
lambda = fraction_grid(reverse = TRUE),
relative = TRUE,
splits = holdout_control(),
discretize = TRUE,
values = NULL

)
Arguments

X a matrix or data frame with missing values.

lambda anumeric vector giving values of the regularization parameter. See fraction_grid()
for the default values.

relative a logical indicating whether the values of the regularization parameter should be
considered relative to a certain reference value computed from the data at hand.
If TRUE (the default), the values of 1ambda are multiplied with the value returned
by lambda@() (applied to the mean-centered data matrix).

splits an object inheriting from class "split_control”, as generated by holdout_control()
for repeated holdout validation or cv_folds_control () for K-fold cross-validation,
or a list of index vectors giving different validation sets of observed cells as gen-
erated by create_splits(). Cells in the validation set will be set to NA for
fitting the algorithm with the training set of observed cells.
additional arguments to be passed down to soft_impute().

discretize a logical indicating whether to include a discretization step after fitting the algo-
rithm (defaults to TRUE). In case of discrete rating-scale data, this can be used to
map the imputed values to the discrete rating scale of the observed values.

values an optional numeric vector giving the possible values of discrete ratings. This is

ignored if discretize is FALSE. Currently, the possible values are assumed to
be the same for all columns. If NULL, the unique values of the observed parts of
X are used.

soft_impute_tune 23

Value

An object of class "soft_impute_tuned” with the following components:

lambda a numeric vector containing the values of the regularization parameter.

tuning_loss a numeric vector containing the (average) values of the loss function on the
validation set(s) for each value of the regularization parameter.

lambda_opt numeric; the optimal value of the regularization parameter.

fit an object of class "soft_impute” containing the results from the algorithm with

the optimal regularization parameter on the full (observed) data matrix.

The class structure is still experimental and may change in the future. The following accessor
functions are available:

* get_completed() to extract the imputed data matrix (with the optimal value of the regular-
ization parameter),

* get_lambda() to extract the optimal value of the regularization parameter.

Author(s)
Andreas Alfons

References

Hastie, T., Mazumder, R., Lee, J. D. and Zadeh, R. (2015) Matrix Completion and Low-Rank SVD
via Fast Alternating Least Squares. Journal of Machine Learning Research, 16(104), 3367-3402.

Mazumder, R., Hastie, T. and Tibshirani, R. (2010) Spectral Regularization Algorithms for Learning
Large Incomplete Matrices. Journal of Machine Learning Research, 11(80), 2287-2322.

See Also

soft_impute(), fraction_grid(),
holdout_control(), cv_folds_control(), create_splits()

Examples

toy example derived from MovielLens 100K dataset
data("MovielLensToy")
Soft-Impute with discretization step and hyperparameter tuning
set.seed(20250723)
fit <- soft_impute_tune(MovielensToy,
lambda = fraction_grid(nb_lambda = 6,
reverse = TRUE),
splits = holdout_control(R = 5))
extract discretized completed matrix with optimal
regularization parameter
X_hat <- get_completed(fit)
head(X_hat)
extract optimal value of regularization parameter
get_lambda(fit)

24 validation_control

validation_control Control objects for hyperparameter validation

Description

Construct control objects for repeated holdout validation or K -fold cross-validation.

Usage

holdout_control(pct = 0.1, R = 10L)

cv_folds_control(K = 5L)

Arguments
pct numeric in the interval (0, 1); the percentage of observed cells in the data matrix
to be randomly selected into the validation set (defaults to 0.1).
R an integer giving the number of random splits into training and validation sets
(defaults to 10).
K an integer giving the number of cross-validation folds (defaults to 5).
Value

An object inheriting from class "split_control” containing the relevant information for splitting
the the observed cells of a data matrix into training and validation sets for hyperparameter tuning.

The subclass "holdout_control” returned by holdout_control() is a list with components pct
and R containing the corresponding argument values after validity checks.

The subclass "cv_folds_control” returned by cv_folds_control() is a list with a single com-
ponent K containing the corresponding argument value after validity checks.

See Also

create_splits(),

rdmc_tune(), soft_impute_tune()

Examples

toy example derived from MovielLens 100K dataset
data("MovielLensToy")
robust discrete matrix completion with hyperparameter tuning
set.seed(20250723)
fit <- rdmc_tune(MovielLensToy,

lambda = fraction_grid(nb_lambda = 6),

splits = holdout_control(R = 5))
extract optimal value of regularization parameter
get_lambda(fit)

Index

* datasets mode_impute, 6, 11, 12
MovielLensToy, 13 MovielLensToy, 13

* multivariate mult_grid (lambda_grid), 9
median_impute, 11
mode_impute, 12 rdmc, 9, 10, 14, 18, 19
rdmc, 14 rdmc_tune, 5, 6, 8-10, 16, 17, 24
rdmc_tune, 17 RMCLab (RMCLab-package), 2
soft_impute, 19 RMCLab-package, 2
soft_impute_tune, 22

« package soft_impute, 9, 10, 19, 22, 23
RMCLab-package, 2 soft_impute_tune, 5, 6, 8, 10, 21,22, 24
+ utilities softImpute, 19-22
create_splits, 4
get_completed, 5
get_lambda, 7
get_nb_iter, 8
lambda_grid, 9
validation_control, 24

validation_control, 24

create_splits, 4, 18, 19, 22-24

cv_folds (create_splits), 4

cv_folds_control, 4, 5, 18, 19, 22, 23

cv_folds_control (validation_control),
24

fraction_grid, 14, 16, 17, 19-23
fraction_grid (lambda_grid), 9

get_completed, 5, 11, 12, 16, 18, 21, 23
get_imputed (get_completed), 5
get_lambda, 7, 16, 18, 21, 23
get_nb_iter, 8, 16, 18

holdout (create_splits), 4
holdout_control, 4, 5, 18, 19, 22, 23
holdout_control (validation_control), 24

lambda0, 20-22
lambda_grid, 9

median_impute, 6, 11, 13

25

	RMCLab-package
	create_splits
	get_completed
	get_lambda
	get_nb_iter
	lambda_grid
	median_impute
	mode_impute
	MovieLensToy
	rdmc
	rdmc_tune
	soft_impute
	soft_impute_tune
	validation_control
	Index

