Package ‘R.00’

May 2, 2025
Version 1.27.1
Depends R (>=2.13.0), R.methodsS3 (>=1.8.2)
Imports methods, utils
Suggests tools
Title R Object-Oriented Programming with or without References
Author Henrik Bengtsson [aut, cre, cph]
Maintainer Henrik Bengtsson <henrikb@braju.com>

Description Methods and classes for object-oriented programming in R with or without refer-
ences. Large effort has been made on making definition of methods as simple as possi-
ble with a minimum of maintenance for package developers. The package has been devel-
oped since 2001 and is now considered very stable. This is a cross-platform package imple-
mented in pure R that defines standard S3 classes without any tricks.

License LGPL (>=2.1)
LazyLoad TRUE

URL https://henrikbengtsson.github.io/R.00/,
https://github.com/HenrikBengtsson/R. o0

BugReports https://github.com/HenrikBengtsson/R.oo0/issues
NeedsCompilation no

Repository CRAN

Date/Publication 2025-05-02 21:00:05 UTC

Contents

R.oo-package
Class o e
Exception e e
extend
getConstructorS3 L. L e e
getName.environment e e e e
InternalErrorException

https://henrikbengtsson.github.io/R.oo/
https://github.com/HenrikBengtsson/R.oo
https://github.com/HenrikBengtsson/R.oo/issues

2 R.oo-package
A 13
Object e e e 15
ObJECtSIZE e e 20
objectSize.environment oL Lo 21
Package 22
Rdoc o e 24
RdocException e 26
setConstructorS3 L L L e e e e 28
throw . . . o e 29
thrOW.eITOr e e e 30
typeOfClass e 31

Index 32

R.oo-package Package R.oo
Description

Methods and classes for object-oriented programming in R with or without references. Large effort
has been made on making definition of methods as simple as possible with a minimum of mainte-
nance for package developers. The package has been developed since 2001 and is now considered
very stable. This is a cross-platform package implemented in pure R that defines standard S3 classes
without any tricks.

Please note that the Rdoc syntax/grammar used to convert Rdoc comments in code into Rd files is
not strictly defined and is modified by the need of the author. Ideally, there will be a well defined
Rdoc language one day.

Installation and updates

To install this package do

install.packages("R.00")

Dependencies and other requirements

This package requires a standard R installation and the R.methodsS3 package.

To get started

To get started,It is very useful to understand that:

1. The setMethodS3() function, which is defined in the R.methodsS3 package (used to be part

of R.00), is nothing but a conveniency wrapper for setting up S3 methods, and automatically
create an S3 generic function, if missing. For more information, see the help of R.methodsS3.

2. The Object class is a top-level "root" class that provides support for reference variables. Any

class inheriting from this class supports reference variables.

R.oo-package 3

3. The Object class is basically a wrapper around an environment, which some additional ac-
cessors etc. Itis the environment data type that provides the "emulation" of reference variables
- the Object class structure makes it easier to extends this class and adds some level of coding
protection. The Object class features is not intended for referencing individual elements of
basic R data types, but rather for the whole variable of such. For instance, you can reassign a
whole matrix X part of the object this way, but you cannot reassign X[1, 1] without creating a
completely new copy.

Further readings

For a detailed introduction to the package see [1] (part of the package distribution).

How to cite this package

Whenever using this package, please cite [1] as

Bengtsson, H. The R.oo package - Object-Oriented Programming with References Using
Standard R Code, Proceedings of the 3rd International Workshop on Distributed
Statistical Computing (DSC 2003), ISSN 1609-395X, Hornik, K.; Leisch, F. & Zeileis,
A. (ed.), 2003

License

The releases of this package is licensed under LGPL version 2.1 or newer.

Author(s)

Henrik Bengtsson

References
[1] H. Bengtsson, The R.oo package - Object-Oriented Programming with References Using Stan-
dard R Code, In Kurt Hornik, Friedrich Leisch and Achim Zeileis, editors, Proceedings of the 3rd

International Workshop on Distributed Statistical Computing (DSC 2003), March 20-22, Vienna,
Austria. https://www.r-project.org/conferences/DSC-2003/Proceedings/

See Also

People interested in R.00 may also be interested in packages proto and mutatr.

https://www.r-project.org/conferences/DSC-2003/Proceedings/

4 Class

Class The Class class describes an Object class

Description

Package: R.oo
Class Class

Object

~~+--Class

Directly known subclasses:

public static class Class
extends Object

The Class class describes an Object class. First of all, this class is most commonly used internally
and neither the end user nor the programmer need to no about the class Class.

Usage

Class(name=NULL, constructor=NULL)

Arguments

name Name of the class.

constructor Constructor (function) of any Object class.
Details

The class Class describes the Object class or one of its subclasses. All classes and constructors
created by setConstructorS3() will be of class Class. Its methods provide ways of accessing
static fields and static methods. Its print() method will print detailed information about the class
and its fields and methods.

Fields and Methods
Methods:

$ _
$<- -
.DollarNames -
.subset2Internal -

Exception

[C

[[<-
argsToString
as.character
forName
getDetails
getFields
getKnownSubclasses
getMethods
getName
getPackage
getRdDeclaration
getRdHierarchy
getRdMethods
getStaticInstance
getSuperclasses
isAbstract
isBeingCreated
isDeprecated
isPrivate
isProtected
isPublic
isStatic
newInstance
print

Gets the arguments of a function as a character string.
Returns a short string describing the class.

Gets a Class object by a name of a class.

Lists the fields and methods of a class.

Returns the field names of a class.

Gets all subclasses that are currently loaded.

Returns the method names of class and its super classes.
Gets the name of the class.

Gets the package to which the class belongs.

Gets the class declaration in Rd format.

Gets the class hierarchy in Rd format.

Gets the methods of a class in Rd format.

Gets the static instance of this class.

Gets the super classes of this class.

Checks if a class is abstract or not.

Checks if a class is currently being initiated initiated.
Checks if a class is deprecated or not.

Checks if a class is defined private or not.

Checks if a class is defined protected or not.

Checks if a class is defined public or not.

Checks if a class is static or not.

Creates a new instance of this class.

Prints detailed information about the class and its fields and methods.

Methods inherited from Object:

$, $<-, [[, [[<-, as.character, attach, attachLocally, clearCache, clearLookupCache, clone, detach,
equals, extend, finalize, getEnvironment, getFieldModifier, getFieldModifiers, getFields, getlnstan-
tiationTime, getStaticInstance, hasField, hashCode, 11, load, names, objectSize, print, save

Author(s)

Henrik Bengtsson

Exception

The Exception class to be thrown and caught

Description

Package: R.oo
Class Exception

Object

~~+--try-error

Directly known subclasses:
InternalErrorException, RccViolationException, RdocException

public static class Exception
extends simpleError

Exception

+--simpleError

+--Exception

Creates an Exception that can be thrown and caught. The Exception class is the root class of all
other Exception classes.

Usage

Exception(..., sep=

nn

Arguments

sep

collapse

, collapse=", ")

One or several strings, which will be concatenated and contain informative mes-
sage about the exception.

The string to used for concatenating several strings.

Fields and Methods

Methods:

as.character
getCall

getCalls
getLastException
getMessage
getStackTrace
getStackTraceString
getWhen

print
printStackTrace
throw

The string to used collapse vectors together.

Gets a character string representing of the Exception.

Gets the active calls saved when the exception was created.
Static method to get the last Exception thrown.

Gets the message of the Exception.

Gets the stack trace saved when the exception was created.
Gets the stack trace as a string.

Gets the time when the Exception was created.

Prints the Exception.

Prints the stack trace saved when the exception was created.
Throws an Exception that can be caught.

Exception 7

Methods inherited from error:
as.character, throw

Methods inherited from condition:
abort, as.character, conditionCall, conditionMessage, print

Methods inherited from Object:

$, $<-, [[, [[<-, as.character, attach, attachLocally, clearCache, clearLookupCache, clone, detach,
equals, extend, finalize, getEnvironment, getFieldModifier, getFieldModifiers, getFields, getlnstan-
tiationTime, getStaticInstance, hasField, hashCode, 11, load, names, objectSize, print, save

Author(s)

Henrik Bengtsson

See Also

See also tryCatch() (and try()).

Examples

B s S S i
1. To catch a regular "error” exception thrown by e.g. stop().
HHHEHEHBHBEHEH AR AR R
x <= NA
y <= NA
tryCatch({
x <- log(123)
y <= log("a")
}, error = function(ex) {
print(ex)
»
print(x)
print(y)

HHHEHHHEEEE AR R AR
2. Always run a "final” expression regardless or error or not.
B S S S R
filename <- tempfile("R.methodsS3.example")
con <- file(filename)
tryCatch({

open(con, "r")
}, error = function(ex) {

cat("Could not open ", filename, " for reading.\n", sep="")
}, finally = {

close(con)

cat("The id of the connection is ",

ifelse(is.null(con), "NULL", con), ".\n", sep="")

»

8 extend

HEHHHHHHEHEHHEHEEEHEHEHEHREEEEHEEAEEEHEHHHHHEEEEEHHEEE R HHHHR B
3. Creating your own Exception class
HHHHHHHEHEE AR AR A
setConstructorS3("NegativelogValueException”, function(
msg="Trying to calculate the logarithm of a negative value”, value=NULL) {
extend(Exception(msg=msg), "NegativelLogValueException”,
.value = value
)
»

setMethodS3("as.character”, "NegativelLogValueException”, function(this, ...) {
paste(as.character.Exception(this), ": ", getValue(this), sep="")

b

setMethodS3("getValue”, "NegativelLogValueException”, function(this, ...) {
this$.value

b

mylog <- function(x, base=exp(1)) {
if (x <0)
throw(NegativelLogValueException(value=x))
else
log(x, base=base)

Note that the order of the catch list is important:

1 <- NA
x <- 123
tryCatch({

1 <- mylog(x)
}, NegativelLogValueException = function(ex) {
cat(as.character(ex), "\n")

}, "try-error” = function(ex) {

cat("try-error: Could not calculate the logarithm of ", x, ".\n", sep="")
}, error = function(ex) {

cat("error: Could not calculate the logarithm of ", x, ".\n", sep="")
»

n

cat("The logarithm of ", x, " is ", 1, ".\n\n", sep="")

extend Extends a object

Description

via a mechanism known as "parasitic inheritance". Simply speaking this method "extends" the class
of an object. What is actually happening is that it creates an instance of class name . . .className,

extend 9

by taking another object and add . . .className to the class list and also add all the named values
in ... as attributes.

The method should be used by the constructor of a class and nowhere else.

Usage

Default S3 method:

extend(this, ...className, ...)
Arguments

this Object to be extended.

...className The name of new class.

Attribute fields of the new class.

Value

Returns an object of class . . .className.

Author(s)

Henrik Bengtsson

Examples
setConstructorS3("MyDouble”, function(value=0, ...) {
extend(as.double(value), "MyDouble”, ...)
»
setMethodS3("as.character”, "MyDouble"”, function(object, ...) {

fmtstr <- attr(object, "fmtstr")
if (is.null(fmtstr))

fmtstr <- "%.6f"
sprintf(fmtstr, object)

B

setMethodS3("print”, "MyDouble"”, function(object, ...) {
print(as.character(object), ...)

»

x <- MyDouble(3.1415926)
print(x)

x <- MyDouble(3.1415926, fmtstr="%3.2f")
print(x)

attr(x, "fmtstr") <- "%e"

print(x)

10

setConstructorS3(”"MyList"”, function(value=0, ...) {
extend(list(value=value, ...), "MyList")
»

setMethodS3("as.character”, "MyList", function(object,
fmtstr <- object$fmtstr
if (is.null(fmtstr))
fmtstr <- "%.6f"
sprintf(fmtstr, object$value)

DA

getConstructorS3

»
setMethodS3("print”, "MyList"”, function(object, ...) {
print(as.character(object), ...)

»

X <- MyList(3.1415926)

print(x)

X <- MyList(3.1415926, fmtstr="%3.2f")

print(x)

x$fmtstr <- "%e"

print(x)

getConstructorsS3 Get a constructor method

Description

Get a constructor method.

Usage
Default S3 method:
getConstructorS3(name, ...)
Arguments
name The name of the constructor function.
Not used.
Author(s)

Henrik Bengtsson

getName.environment

See Also

setConstructorS3(). getMethodS3. isGenericS3.

11

getName.environment Gets the name of an environment

Description

Gets the name of an environment, e.g. "R_GlobalEnv" or "0x@1ddd060".

Usage
S3 method for class 'environment'
getName(env, ...)
Arguments
env An environment.
Not used.
Value

Returns a character string.

Author(s)

Henrik Bengtsson

See Also

environmentName().

Examples
name <- getName(globalenv())

print(name)
stopifnot(identical(name, "R_GlobalEnv"))

getName(new.env())

12 InternalErrorException

InternalErrorException
InternalErrorException represents internal errors

Description

Package: R.oo
Class InternalErrorException

Object

~~+--try-error

+--simpleError

+--Exception

+--InternalErrorException

Directly known subclasses:

public static class InternalErrorException
extends Exception

InternalErrorException represents internal errors that are likely to be due to implementation errors
done by the author of a specific package and not because the user made an error. Errors that are due
to unexpected input to functions etc falls under this error type.

Usage
InternalErrorException(..., package=NULL)
Arguments
Any arguments accepted by Exception
package The name (character string) of the package where the error exists. Can also be

a Package object. If NULL, the source of the error is assumed to be unknown.

11 13

Fields and Methods
Methods:

getMessage Gets the message of the exception.
getPackage Gets the suspicious package likely to contain an error.

Methods inherited from Exception:

as.character, getCall, getCalls, getLastException, getMessage, getStackTrace, getWhen, print, printStack-
Trace, throw

Methods inherited from error:
as.character, throw

Methods inherited from condition:
abort, as.character, conditionCall, conditionMessage, print

Methods inherited from Object:

$, $<-, [[, [[<-, as.character, attach, attachLocally, clearCache, clearLookupCache, clone, detach,
equals, extend, finalize, getEnvironment, getFieldModifier, getFieldModifiers, getFields, getlnstan-
tiationTime, getStaticInstance, hasField, hashCode, 11, load, names, objectSize, print, save

Author(s)

Henrik Bengtsson

See Also

For detailed information about exceptions see Exception.

11 Generates a list of informative properties of all members of an envi-
ronment

Description

Generates a list of informative properties of all members of an environment.

Usage

Default S3 method:

11(pattern=".%x", ..., private=FALSE, properties=getOption("R.00::11/properties”,
c("data.class"”, "dimension”, "objectSize")), sortBy=NULL, decreasing=FALSE,
envir=parent.frame())

14 1

Arguments
pattern Regular expression pattern specifying which members to return. If ".x", all
names are matched.
A named vector of format functionName=value, where functionName () will
be called on each member found. If the result matches the value, the member
is returned, otherwise not.
private If TRUE, also private members, i.e. members with a name starting with a . (pe-
riod), will be listed, otherwise not.
properties Names of properties to be returned. There must exist a function with the same
name, because it will be called. This way one can extract any type of property
by defining new methods.
sortBy Name or index of column (property) to be sorted by. If NULL, the objects are
listed in the order they are found.
decreasing A logical indicating whether the sorting should be done in increasing or de-
creasing order.
envir An environment, a search path index or a name of a package to be scanned.
Value

Returns a data. frame containing information about all the members.

Default properties returned

Itis possible to set the default value of argument properties by setting option "R.00: :11/properties”,
e.g. options(”"R.o0::11/properties”=c("data.class”, "dimension™)). If this option is not
set when the package is loaded, it is set to c("data.class"”, "dimension”, "objectSize").

Author(s)

Henrik Bengtsson

See Also

1s.strand 11.0bject().

Examples

Not run:

To list all objects in .GlobalEnv:

> 110

member data.class dimension objectSize

1 *tmp* Person 1 428
2 as.character.Person function NULL 1208
3 country character 1 44
4 equals.Person function NULL 2324
5 filename character 1 84
6 getAge function NULL 372
7 getAge.Person function NULL 612

Object
8 getName.Person function
9 hashCode.Person function
10 last.warning list
11 obj Person
12 Person Class
13 setAge function
14 setAge.Person function
15 setName function
16 setName.Person function

17 staticCode.Person function

To list all functions in the methods package:
11(mode="function"”, envir="methods")

To list all numeric and character object in the base package:
11(mode=c("numeric”, "character"), envir="base")

To list all objects in the base package greater than 40kb:
subset(1ll(envir="base"), objectSize > 40000)

End(Not run)

NULL
NULL

1

1
NULL
NULL
NULL
NULL
NULL
NULL

628
1196
192
428
2292
372
2088
372
760
2372

15

Object

The root class that every class must inherit from

Description

R.oo
Class Object

public class Object

Object is the root class of all other classes. All classes must extends this class, directly or indirectly,
which means that they all will inherit the methods in this class.

Usage

Object(core=NA, finalize=TRUE)

Arguments

core

finalize

The core value of each reference referring to the Object. By default, this is just

the smallest possible R object, but there are situations where it is useful to have

another kind of core, which is the case with the Class class. Note that this value
belongs to the reference variable and not to the Object, which means it can not

be referenced.

If TRUE, method xfinalize() will be called on this Object when it is garbage

collected.

Fields and Methods

Methods:

$

$<-

.DollarNames
.subset2Internal
(L

[[<-

as.character
attach
attachlLocally
clearCache
clearLookupCache
clone

detach

equals

extend

finalize
getEnvironment
getFieldModifier
getFieldModifiers
getFields
getInstantiationTime
getInternalAddress
getStaticInstance
hasField

hashCode
isReferable

11

load

names

newlnstance
novirtual
objectSize

print

save

staticCode

Defining static fields

Object

Gets a character string representing the object.
Attaches an Object to the R search path.

Attaches an Object locally to an environment.
Clear fields that are defined to have cached values.
Clear internal fields used for faster lookup.
Clones an Object.

Detach an Object from the R search path.
Compares an object with another.

Extends another class.

Finalizer methods called when object is clean out.
Gets the environment of this object.

Gets all types of field modifiers.

Returns the field names of an Object.

Gets the time when the object was instantiated.

Gets the memory location where the Object resides.

Gets the static instance of this objects class.

Checks if a field exists or not.

Gets a hash code for the Object.

Checks if the object is referable or not.

Generates a list of informative properties of all members of an Object.
Static method to load an Object from a file or a connection.

Creates a new instance of the same class as this object.

Returns a reference to the same Object with virtual fields turned off.
Gets the size of the Object in bytes.

Prints an Object.

Saves an Object to a file or a connection.

Method that will be call each time a new instance of a class is created.

To define a static field of an Object class, use a private field <. field> and then create a virtual field
<field> by defining methods get<Field>() and set<Field>(). These methods should retrieve
and assign the value of the field <. field> of the static instance of the class. The second example
below shows how to do this. The example modifies also the static field already in the constructor,
which is something that otherwise may be tricky.

Object 17

Author(s)

Henrik Bengtsson

References

[1] H. Bengtsson, The R.oo package - Object-Oriented Programming with References Using Stan-
dard R Code, In Kurt Hornik, Friedrich Leisch and Achim Zeileis, editors, Proceedings of the 3rd
International Workshop on Distributed Statistical Computing (DSC 2003), March 20-22, Vienna,
Austria. https://www.r-project.org/conferences/DSC-2003/Proceedings/

Examples

HEHHHHHHHEHEHEH AR AR AR
Defines the class Person with private fields .name and .age, and
with methods print(), getName(), setName(), getAge() and setAge().
HEHHHHHHEHEHHH AR AR AR
setConstructorS3("Person”, function(name, age) {

if (missing(name)) name <- NA

if (missing(age)) age <- NA

extend(Object(), "Person”,

.name=name,
.age=age
)
»
setMethodS3("as.character”, "Person”, function(this, ...) {
paste(this$.name, "is”, as.integer(this$.age), "years old.")
»
setMethodS3("equals”, "Person”, function(this, obj, ...) {

(identical(data.class(this), data.class(obj)) &&
identical (this$getName(), obj$getName()) &&
identical(this$getAge() , obj$getAge()))

»

setMethodS3("hashCode”, "Person”, function(this, ...) {
Get the hashCode() of the '.name' and the '.age' fields
using hashCode.default().
hashCode(this$.name) * hashCode(this$.age)

»

setMethodS3("getName"”, "Person”, function(this, ...) {
this$.name

»

setMethodS3("setName”, "Person”, function(this, newName, ...) {

throw("It is not possible to change the name of a Person.")

b

https://www.r-project.org/conferences/DSC-2003/Proceedings/

18

Object

setMethodS3("getAge”, "Person”, function(this, ...) {
this$.age
»
setMethodS3("setAge"”, "Person”, function(this, newAge, ...) {
if (!is.numeric(newAge))
throw("”Age must be numeric: ", newAge)

if (newAge < 0)
throw("Trying to set a negative age:
this$.age <- newAge

b

n

, hewAge)

B
Code demonstrating different properties of the Object class using

the example class Person.
B

Create an object (instance of) the class Person.
p1 <- Person("Dalai Lama", 67)

'p1' is an Object of class Person.
print(data.class(p1)) # "Person”

Prints information about the Person object.
print(p1) # "Dalai Lama is 67 years old.”

or equivalent (except that no generic method has to exist):
p1$print() # "Dalai Lama is 67 years old.”

Shows that no generic method is required if the \$ operator is used:
print(p1$getName()) # "Dalai Lama”

The following will call pl$getName() since there exists a get-()
method for the 'name' property.
print(p1$name) # "Dalai Lama"

and equivalent when using the [[operator.
print(p1[["name"”]1]) # "Dalai Lama"

The following shows that pl1$setName(68) is called, simply because
there exists a set-() method for the 'name' property.
pl$age <- 68 # Will call pl1$setAge(68)

Shows that the age of the Person has been updated:
print(p1) # "Dalai Lama is 68 years old.”

If there would not exists such a set-() method or field a new
field would be created:
p1$country <- "Tibet”

Object 19

Lists all (non-private) members of the Person object:
print(11(p1))

which gives
member class mode typeof length dim bytes
1 country NULL character character 1 NULL 44

The following will call pl$setName("”Lalai Dama") which will
throw an exception saying one can not change the name of

a Person.

tryCatch(pi1$name <- "Lalai Dama"”, error=print)

The following will call pl1$setAge(-4) which will throw an
exception saying that the age must be a non-negative number.
tryCatch(pl$age <- -100, error=print)

Attaches Object 'p1' to the search path.
attach(p1)

Accesses the newly created field 'country'.
print(country) # "Tibet"

Detaches Object 'p1' from the search path. Note that all
modifications to 'country' are lost.

country <- "Sweden”

detach(p1)

print(pl$country) # "Tibet”

Saves the Person object to a tempory file.
filename <- tempfile("R.methodsS3.example")
save(pl, filename)

Deletes the object
rm(p1)

Loads an Object (of "unknown"” class) from file using the
static method load() of class Object.
obj <- Object$load(filename)

Prints information about the new Object.
print(obj)

Lists all (non-private) members of the new Object.
print(11(obj))

HHHHHHHEHEE A A A
Example illustrating how to "emulate” static fields using virtual

fields, i.e. get- and set-methods. Here we use a private static

field '.count' of the static class instance 'MyClass', i.e.

20

objectSize

MyClass$.count. Then we define a virtual field 'count' via method
getCount() to access this static field. This will make all queries
for 'count' of any object to use the static field instead. In the
same way is assignment controlled via the setCount() method. A
side effect of this way of coding is that all MyClass instances will
also have the private field '.count' (set to zero except for the
static field that is).
HHHHHHAAHEEH A AR
setConstructorS3(”"MyClass”, function(...) {
Create an instance (the static class instance included)
this <- extend(Object(), "MyClass”,

.count = @

od o o W

)
In order for a static field to be updated in the
constructor it has to be done after extend().

this$count <- this$count + 1

Return the object

this
1)
setMethodS3("as.character”, "MyClass”, function(this, ...) {
paste(class(this)[1], ": Number of instances: ", this$count, sep="")
»

Get virtual field 'count', e.g. obj$count.

setMethodS3("getCount”, "MyClass”, function(this, ...) {
MyClass$.count

»

Set virtual field 'count', e.g. obj$count <- value.
setMethodS3("setCount”, "MyClass”, function(this, value, ...) {
MyClass$.count <- value

b

Create four instances of class 'MyClass’
obj <- lapply(1:4, MyClass)

print(obj)

print(MyClass$count)

print(obj[[1]]1$count)

stopifnot(obj[[1]]1$count == length(obj))
stopifnot(MyClass$count == length(obj))

objectSize Gets the size of the object in bytes

objectSize.environment

Description

Gets the size of the object in bytes. This method is just a wrapper for object.size.

Usage

Default S3 method:
objectSize(...)

Arguments

Arguments passed to object.size.

Value

Returns an integer.

Author(s)

Henrik Bengtsson

See Also

Internally object.size.

objectSize.environment
Gets the size of an environment in bytes

Description

Gets the size of an environment in bytes.

Usage
S3 method for class 'environment'
objectSize(envir, ...)

Arguments
envir An environment().

Arguments passed to 1s().

Value

Returns an integer.

22 Package

Author(s)

Henrik Bengtsson

See Also

Internally object.size is used.

Package The Package class provides methods for accessing package informa-
tion

Description

Package: R.oo
Class Package

Object

~~+--Package

Directly known subclasses:

public class Package
extends Object

Creates a Package that can be thrown and caught. The Package class is the root class of all other
Package classes.

Usage
Package (name=NULL)

Arguments
name Name of the package.
Fields and Methods
Methods:
as.character Gets a string representation of this package.
getAuthor Gets the Author of this package.
getBundle Gets the Bundle that this package might belong to.

getBundlePackages Gets the names of the other packages that is in the same bundle as this package.

Package

getChangelog Gets the change log of this package.

getClasses Gets all classes of a package.

getContents Gets the contents of this package.

getContribUrl Gets the URL(s) from where this package can be installed.
getDataPath Gets the path to the data (data/) directory of this package.

getDate Gets the date when package was build.

getDescription Gets the description of the package.

getDescriptionFile Gets the description file of this package.

getDevelUrl Gets the URL(s) from where the developers version of this package can be installed.
getDocPath Gets the path to the accompanying documentation (doc/) directory of this package.
getEnvironment Gets the environment of a loaded package.

getExamplePath Gets the path to the example (R-ex/) directory of this package.
getHistory -

getHowToCite Gets the citation of this package.

getLicense Gets the License of this package.

getMaintainer Gets the Maintainer of this package.

getName Gets the name of this package.

getNews -

getPath Gets the library (system) path to this package.

getPosition Gets the search path position of the package.

getTitle Gets the Title of this package.

getUrl Gets the URL of this package.

getVersion Gets the version of this package.

isLoaded Checks if the package is installed on the search path or not.
isOlderThan Checks if the package is older than a given version.

11 Generates a list of informative properties of all members of the package.
load Loads a package.

showChangelog Show the change log of this package.

showContents Show the CONTENTS file of this package.

showDescriptionFile Show the DESCRIPTION file of this package.

showHistory -

showHowToCite Show the HOWTOCITE file of this package.

showNews -

startupMessage Generates a "package successfully loaded’ package startup message.
unload Unloads a package.

23

Methods inherited from Object:

$, $<-, [[, [[<-, as.character, attach, attachLocally, clearCache, clearLookupCache, clone, detach,
equals, extend, finalize, getEnvironment, getFieldModifier, getFieldModifiers, getFields, getlnstan-
tiationTime, getStaticInstance, hasField, hashCode, 11, load, names, objectSize, print, save

Author(s)

Henrik Bengtsson

Examples

Not run: # By defining .onAttach() as follows in zzz.R for a package, an

24 Rdoc
instance of class Package with the same name as the package will
be made available on the search path. More over, the code below
will also inform the user that the package has been loaded:
#
> library(R.o00)
R.oo v0.52 (2003/04/13) was successfully loaded.
#
.onAttach <- function(libname, pkgname) {
pkg <- Package(pkgname)
assign(pkgname, pkg, pos=getPosition(pkg))
cat(getName(pkg), " v", getVersion(pkg), " (", getDate(pkg), ")",
" was successfully loaded.\n", sep="")
}
The Package class works for any packages, loaded or not.
Some information about the base package
pkg <- Package("base")
print(pkg)
[1] "Package: base v3.6.2 is loaded (pos=14). Title: The R Base Package.
The official webpage is NA and the maintainer is R Core Team <R-core@
r-project.org>. The package is installed in /usr/lib/R/library/base/.
License: Part of R 3.6.2. Description: Base R functions. Type
showNews(base) for package history, and ?base for help.”
print(list.files(Package("base")$dataPath))
Some information about the R.oo package
print(R.oo::R.00)
[1] "Package: R.00 v1.23.0-9000 . Title: R Object-Oriented Programming
with or without References. The official webpage is https://github.com/
HenrikBengtsson/R.oo and the maintainer is Henrik Bengtsson. The package
is installed in /home/alice/R/x86_64-pc-linux-gnu-library/3.6/R.00/.
License: LGPL (>= 2.1). Description: Methods and classes for object-
oriented programming in R with or without references. Large effort has
been made on making definition of methods as simple as possible with a
minimum of maintenance for package developers. The package has been
developed since 2001 and is now considered very stable. This is a
cross-platform package implemented in pure R that defines standard S3
classes without any tricks. Type showNews(R.o00) for package history,
and ?R.oo for help.”
End(Not run)
Rdoc Class for converting Rdoc comments to Rd files
Description

Package: R.oo
Class Rdoc

Rdoc

Object

~~+--Rdoc

Directly known subclasses:

public static class Rdoc

extends Object

25

Class for converting Rdoc comments to Rd files.

Usage

Rdoc ()

Fields and Methods

Methods:

argsToString
check

compile
createManPath
createName
declaration
escapeRdFilename
getClassS4Usage
getKeywords
getManPath
getNameFormat
getObject
getPackageNameOf
getRdTitle
getUsage
hierarchy
isKeyword
isVisible

methodsInheritedFrom

setManPath
setNameFormat

Gets the arguments signature of a function.

Checks the compiled Rd files.

Compile source code files containing Rdoc comments into Rd files.
Creates the directory where the Rd files should be saved.
Creates a class-method name.

Gets the class declaration.

Escape non-valid characters in a filename.

Gets the usage of a S4 class.

Gets the keywords defined in R with descriptions.

Gets the path to the directory where the Rd files will be saved.
Gets the current name format.

Gets the package of a method or an object.

Extracts the title string of a Rd file.

Gets the usage of a method.

Gets the class hierarchy.

Checks if a word is a Rd keyword.

Checks if a member is visible given its modifiers.

Gets all methods inherited from a class in Rd format.

Sets the path to the directory where the Rd files should be saved.
Sets the current name format.

Methods inherited from Object:

$, $<-, [[, [[<-, as.character, attach, attachLocally, clearCache, clearLookupCache, clone, detach,
equals, extend, finalize, getEnvironment, getFieldModifier, getFieldModifiers, getFields, getInstan-
tiationTime, getStaticInstance, hasField, hashCode, 11, load, names, objectSize, print, save

26 RdocException

Author(s)

Henrik Bengtsson

References

R developers, Guidelines for Rd files, https://developer.r-project.org/Rds.html, 2003

Examples

Not run: # Set default author
author <- "Henrik Bengtsson, \url{https://github.com/HenrikBengtsson/R.00}"

Show the file containing the Rdoc comments
rdocFile <- system.file("misc”, "ASCII.R", package="R.o00")
file.show(rdocFile)

Compile the Rdoc:s into Rd files (saved in the destPath directory)
destPath <- tempdir()
Rdoc$compile(rdocFile, destPath=destPath)

List the generated Rd files
rdFiles <- list.files(destPath, full.names=TRUE)
print(rdFiles)

Show one of the files
file.show(rdFiles[1])

Clean up
file.remove(rdFiles)

End(Not run)

RdocException RdocException are thrown by the Rdoc compiler

Description

Package: R.oo
Class RdocException

https://developer.r-project.org/Rds.html

RdocException 27

+--simpleError

+--Exception

+--RdocException

Directly known subclasses:

public static class RdocException
extends Exception

RdocException are thrown by the Rdoc compiler when it fails to generate a Rd file from an Rdoc

comment.
Usage
RdocException(..., source=NULL)
Arguments
Any arguments accepted by Exception
source Object specifying the source where the Rdoc error occurred. This is commonly
a filename character string.
Fields and Methods
Methods:

as.character Gets a character string representing of the RdocException.
getSource Gets the source of the exception.

Methods inherited from Exception:
as.character, getCall, getCalls, getLastException, getMessage, getStackTrace, getWhen, print, printStack-
Trace, throw

Methods inherited from error:

as.character, throw

Methods inherited from condition:

abort, as.character, conditionCall, conditionMessage, print

Methods inherited from Object:

$, $<-, [[, [[<-, as.character, attach, attachLocally, clearCache, clearLookupCache, clone, detach,

equals, extend, finalize, getEnvironment, getFieldModifier, getFieldModifiers, getFields, getlnstan-
tiationTime, getStaticInstance, hasField, hashCode, 11, load, names, objectSize, print, save

28 setConstructorS3

Author(s)

Henrik Bengtsson

See Also

For detailed information about exceptions see Exception.

setConstructorsS3 Defines a class in S3/UseMethod style

Description

Defines a class in R.00/S3 style. What this function currently does is simply creating a constructor
function for the class.

Usage

Default S3 method:
setConstructorS3(name, definition, private=FALSE, protected=FALSE, export=TRUE,
static=FALSE, abstract=FALSE, trial=FALSE, deprecated=FALSE, envir=parent.frame(),

enforceRCC=TRUE, ...)
Arguments
name The name of the class.
definition The constructor definition. Note: The constructor must be able to be called with

no arguments, i.e. use default values for all arguments or make sure you use
missing() or similar!

static If TRUE this class is defined to be static, otherwise not. Currently this has no
effect expect as an indicator.

abstract If TRUE this class is defined to be abstract, otherwise not. Currently this has no
effect expect as an indicator.

private If TRUE this class is defined to be private.

protected If TRUE this class is defined to be protected.

export A logical setting attribute "export”.

trial If TRUE this class is defined to be a trial class, otherwise not. A trial class is

a class that is introduced to be tried out and it might be modified, replaced or
even removed in a future release. Some people prefer to call trial versions, beta
version. Currently this has no effect expect as an indicator.

deprecated If TRUE this class is defined to be deprecated, otherwise not. Currently this has
no effect expect as an indicator.

envir The environment for where the class (constructor function) should be stored.

enforceRCC If TRUE, only class names following the R Coding Convention is accepted. If the
RCC is violated an RecViolationException is thrown.
Not used.

Note: If a constructor is not declared to be private nor protected, it will be declared to be public.

throw 29

A constructor must be callable without arguments

The requirement that a constructor function should be callable without arguments (e.g. MyConstructor())
is because that call is used to create the static instance of a class. The reason for this is that a static
instance of the class is created automatically when the constructor is called the first time (only), that

is, when the first of object of that class is created. All classes have to have a static instance.

To make a constructor callable without arguments, one can either make sure all arguments have de-
fault values or one can test for missing arguments using missing(). For instance the following
definition is not correct: setConstructorS3("Foo”, function(x) extend(Object(), "Foo",
x=x)) whereas this one is setConstructorS3("”"Foo"”, function(x=NA) extend(Object(), "Foo",

X=x))
Code validation

If argument enforceRCC is TRUE, the class name is validated so it starts with a letter and it also
gives a warning if its first letter is not capital. The reason for this is to enforce a naming convention
that names classes with upper-case initial letters and methods with lower-case initial letters (this is
also the case in for instance Java).

Author(s)

Henrik Bengtsson

See Also
To define a method see setMethodS3. For information about the R Coding Conventions, see

RccViolationException. For a thorough example of how to use this method see Object.

Examples

Not run: For a complete example see help(Object).

throw Throws an Exception

Description

Throws an exception similar to stop (), but with support for Exception classes. The first argument
(object) is by default pasted together with other arguments (. . .) and with separator sep="". For
instance, to throw an exception, write

n

throw("”Value out of range: ", value, ".").

which is short for

n

throw(Exception("Value out of range: ", value, ".")).

Note that throw() can be defined for classes inheriting Exception, which can then be caught (or
not) using tryCatch().

30 throw.error

Usage
Default S3 method:
throw(...)
Arguments
One or several strings that are concatenated and collapsed into on message
string.
Value

Returns nothing.

Author(s)

Henrik Bengtsson

See Also

See the Exception class for more detailed information.

Examples

rbern <- function(n=1, prob=1/2) {
if (prob < @ || prob > 1)
throw("Argument 'prob' is out of range: ", prob)
rbinom(n=n, size=1, prob=prob)

3

rbern(10, 0.4)

#[1J]010001001%0

tryCatch(rbern(10, 10%0.4),
error=function(ex) {3}

)

throw.error Throws (rethrows) an object of class ’error’

Description

Rethrows an ’error’ object. The ’error’ class was introduced in R v1.8.1 with the new error handling
mechanisms.

Usage

S3 method for class 'error'
throw(error, ...)

typeOfClass
Arguments
error An object or class ’error’.
Not used.
Value

Returns nothing.

Author(s)

Henrik Bengtsson

See Also

See the tryCatch() method etc. See the Exception class for more detailed information.

31

typeOfClass Gets the type of a class (S3 or $4)

Description

Gets the type of a class (S3 or S4).

Usage
Default S3 method:
typeOfClass(object, ...)
Arguments
object The object to be checks.
Not used.
Value

Returns a character string "S3", "S3-Object” or "S4", or NA if neither.

Author(s)

Henrik Bengtsson

Index

x attribute
objectSize, 21

objectSize.environment, 21

+ character
typeOfClass, 31
* classes
Class, 4
Exception, 5

InternalErrorException, 12

Object, 15
Package, 22
Rdoc, 24
RdocException, 26
*x documentation
Rdoc, 24
* error
Exception, 5

InternalErrorException, 12

RdocException, 26
throw, 29
throw.error, 30

+ methods
Class, 4
Exception, 5
extend, 8
getConstructorS3s, 10
getName.environment, 11

InternalErrorException, 12

object, 15

objectSize.environment, 21

Package, 22
RdocException, 26
setConstructorS3s, 28
throw.error, 30

+ package
R.oo-package, 2

* programming
Class, 4
Exception, 5

32

extend, 8
getConstructorsS3s, 10
getName.environment, 11

InternalErrorException, 12

Object, 15

Package, 22

RdocException, 26

setConstructorS3s, 28
* utilities

11,13

objectSize, 21

objectSize.environment, 21

*finalize, 15

argsToString, 5, 25
as.character, 5, 6, 16, 22, 27
attach, /16
attachlocally, 16

character, 11, 12,27, 31
check, 25

Class, 4
clearCache, 16
clearLookupCache, 16
clone, 16

compile, 25
createManPath, 25
createName, 25

data.frame, /14
declaration, 25
detach, 16

environment, 3, 11, 14, 21
environmentName, //
equals, 16
escapeRdFilename, 25
Exception, 5, 12, 13,27-31
extend, 8, 16

finalize, 16

INDEX

forName, 5 getStackTraceString, 6
function, 4, 14 getStaticlInstance, 5, 16
getSuperclasses, 5
getAuthor, 22 getTitle, 23
getBundle, 22 getUrl, 23
getBundlePackages, 22 getUsage, 25
getCalls, 6 getVersion, 23
getChangelog, 23 getWhen, 6
getClasses, 23
getClassS4Usage, 25 hasField, /16
getConstructorsS3s, 10 hashCode, 16
getContents, 23 hierarchy, 25
getContribUrl, 23
getDataPath, 23 integer, 21
getDate, 23 InternalErrorException, 6, 12
getDescription, 23 isAbstract, 5
getDescriptionFile, 23 isBeingCreated, 5
getDetails, 5 isDeprecated, 5
getDevelUrl, 23 isGenericS3, 11
getDocPath, 23 isKeyword, 25
getEnvironment, 16, 23 isLoaded, 23
getExamplePath, 23 isOlderThan, 23
getFieldModifiers, 16 isPrivate, 5
getFields, 5, 16 isProtected, 5
getHowToCite, 23 isPublic, 5
getInstantiationTime, /6 isReferable, 16
getInternalAddress, 16 isStatic, 5
getKeywords, 25 isVisible, 25

getKnownSubclasses, 5

getLastException, 6 11,13116,23
getlLicense, 23 11.0bject, 14
getMaintainer, 23 108@,16,23
getManPath, 25 logical, 14, 28
getMessage, 6, 13 1s,21
getMethods, 5 1s.str, 14

getMethodS3, 11
getName, 5, 23
getName.environment, 11 NA, 31
getNameFormat, 25
getPackage, 5, 13

methodsInheritedFrom, 25

newInstance, 5, 16
novirtual, /16

getPackageNameOf, 25 NULL, 12, 14

getPath, 23

getPosition, 23 Object, 2-5, 12, 15, 22, 25, 26, 29
getRdDeclaration, 5 object.size, 21, 22
getRdHierarchy, 5 objectSize, 16, 20
getRdMethods, 5 objectSize.environment, 21
getRdTitle, 25

getSource, 27 Package, 12,22

getStackTrace, 6 print, 5, 6, 16

34 INDEX

printStackTrace, 6

R.oo (R.oo-package), 2
R.oo-package, 2
RccViolationException, 6, 29
Rdoc, 24

RdocException, 6, 26

save, 16
setConstructorS3, 11,28
setManPath, 25
setMethodS3, 2, 29
setNameFormat, 25
showChangelog, 23
showContents, 23
showDescriptionFile, 23
showHowToCite, 23
startupMessage, 23
staticCode, /16

throw, 6, 29
throw.error, 30
TRUE, 14, 15, 28, 29
try, 7
tryCatch, 7, 29
typeOfClass, 31

unload, 23
vector, 14

warning, 29

	R.oo-package
	Class
	Exception
	extend
	getConstructorS3
	getName.environment
	InternalErrorException
	ll
	Object
	objectSize
	objectSize.environment
	Package
	Rdoc
	RdocException
	setConstructorS3
	throw
	throw.error
	typeOfClass
	Index

