Package 'ProbBayes'

January 20, 2025

Type Package Title Probability and Bayesian Modeling Version 1.1 Author Jim Albert <albert@bgsu.edu> Maintainer Jim Albert <albert@bgsu.edu> Depends LearnBayes, ggplot2, gridExtra, shiny Suggests knitr, rmarkdown URL https://github.com/bayesball/ProbBayes **License** GPL (≥ 2) Description Functions and datasets to accompany J. Albert and J. Hu, ``Probability and Bayesian Modeling", CRC Press, (2019, ISBN: 1138492566). **Encoding** UTF-8 LazyData true NeedsCompilation no **Repository** CRAN Date/Publication 2020-03-06 09:40:07 UTC

Contents

nimation_ratings	3
urm_height	4
par_plot	4
patting_2018	5
payesian_crank	5
BBS_survey	6
peta_area	7
peta_data	7
beta_draw	8
beta_interval	9
peta_prior_post	9
peta_quantile	0

book_stats
buffalo_jan 1
career_1978
centertitle
CEsample
ChooseBeta
ComputerPriceSample
Cowles
DeathHeartAttackDataNYCfull
DeathHeartAttackManhattan
draw_two_p
dsampling
dspinner
electricbills
federalist_word_study
federer_time_to_serve
fire_calls
football_field_goals
gas2017
gibbs_betabin
gibbs_discrete
gibbs_normal
GradSchoolAdmission
Hamilton_can
house_prices
HWhours5schools
increasefont
JAGS_script
KDramaData
LaborParticipation
Madison_can
many_normal_plots
many_spinner_plots
marriage_counts
mcdonalds
metropolis
movies2017
nba_guards
normal_area
normal_draw
normal_interval
normal_quantile
normal_update
olympic_butterfly
prior_post_plot
prob_plot
ProfessorSalary
pt100price

animation_ratings

pt99price	40
pythag2018	40
random_walk	41
ScoreData	41
sleeping_times	42
spinner_bayes	42
spinner_data	43
spinner_likelihoods	
spinner_plot	
spinner_probs	
taxi_fares	46
tennis_serve	46
testing_prior	47
trout20	
two_players_time_to_serve	
two_p_summarize	49
two_p_update	49
web_visits	50

Index

animation_ratings Movie Ratings

Description

Ratings for a set of 2010 animation movies

Usage

animation_ratings

Format

A data frame with 55 observations on the following 6 variables.

userId user ID

movieId movie ID

rating numerical rating

timestamp time when the rating was recorded

title name of the movie

Group_Number numerical ID of movie

Source

MovieLens by GroupLens Research

51

arm_height

Description

Arm span and height measurements for a sample of students

Usage

arm_height

Format

A data frame with 20 observations on the following 2 variables.

arm length of arm span in cm

height height in cm

Source

Sample of college students

bar_plot

Bar plot of numeric or character data

Description

Constructs frequency bar plot of a vector of numeric data or a vector of character data

Usage

bar_plot(y, ...)

Arguments

У	vector of outcomes
	title of the graph

Value

A ggplot2 object containing the bar graph.

Author(s)

Jim Albert

batting_2018

Examples

```
s <- spinner_data(c(1, 2, 2, 1), nsim=100)
bar_plot(s, "Spinner Data")
y <- c(rep("a", 10), rep("b", 5),
            rep("c", 8), rep("d", 4))
bar_plot(y)</pre>
```

batting_2018 Batting Statistics for 2018 Season

Description

Batting statistics collected for all players during the first month and remainder of 2018 baseball season

Usage

batting_2018

Format

A data frame with 549 observations on the following 5 variables.

Name name of player

AB.x number of at bats in first month

H.x number of hits in first month

AB.y number of at bats in remainder of season

H.y number of hits in remainder of season

Source

Data collected from Retrosheet.org.

bayesian_crank Computes Posterior Probabilities for Discrete Models

Description

Given a data table with columns Prior and Likelihood, computes posterior probabilities

Usage

bayesian_crank(d)

Arguments

d

data frame with columns Prior and Likelihood

Value

data frame with new columns Product and Posterior

Author(s)

Jim Albert

Examples

BBS_survey

Trend Estimates of Bird Populations

Description

Trend Estimates for 28 Grassland Bird Species

Usage

BBS_survey

Format

A data frame with 28 observations on the following 4 variables.

Species_Name name of bird species

Trend trend estimate

SE standard error of estimate

N_Site number of observations at site

Source

North American Breeding Bird Survey

beta_area

Description

Computes and Displays Areas Under a Beta Curve

Usage

beta_area(lo, hi, shape_par, Color = "orange")

Arguments

lo	lower bound of interval
hi	upper bound of interval
shape_par	vector of shape parameters of the beta curve
Color	color of shading in the graph

Value

ggplot2 object containing the graphical display.

Author(s)

Jim Albert

Examples

```
lo <- .2
hi <- .4
shape_par <- c(2, 5)
beta_area(lo, hi, shape_par)
```

beta_data

Simulate random data from a beta curve

Description

Simulate random data from a beta curve

Usage

beta_data(shape_par, nsim=1000)

Arguments

shape_par	vector of shape parameters of the beta curve
nsim	number of simulations

Value

A vector of random draws from the beta distribution

Author(s)

Jim Albert

Examples

```
shape_par <- c(12, 8)
beta_data(shape_par, 10)</pre>
```

beta_draw

Draw a Beta Curve

Description

Draw a Beta Curve

Usage

beta_draw(shape_pars)

Arguments

shape_pars vector of shape parameters of the beta curve

Value

ggplot2 object containing the graphical display.

Author(s)

Jim Albert

Examples

shape_pars <- c(2, 5)
beta_draw(shape_pars)</pre>

beta_interval

Description

Computes Probability Interval for a Beta Curve

Usage

beta_interval(prob, shape_par, Color = "orange")

Arguments

prob	value of coverage probability
shape_par	vector of shape parameters of the beta curve
Color	color of shading in the graph

Value

ggplot2 object containing the graphical display.

Author(s)

Jim Albert

Examples

shape_par <- c(2, 5)
beta_interval(.5, shape_par)</pre>

beta_prior_post Plot of Two Beta Curves

Description

Plot of Prior and Posterior Beta Curves

Usage

beta_prior_post(prior_shapes, post_shapes)

Arguments

prior_shapes	vector of shape parameters of the beta prior
post_shapes	vector of shape parameters of the beta posterior

ggplot2 object containing the graphical display.

Author(s)

Jim Albert

Examples

```
prior_shapes <- c(4, 6)
post_shapes <- c(19, 16)
beta_prior_post(prior_shapes, post_shapes)</pre>
```

beta_quantile Displays a Quantile of a Beta Curve

Description

Displays a Quantile of a Beta Curve

Usage

beta_quantile(prob, shape_par, Color = "orange")

Arguments

prob	probability value of interest
shape_par	vector of shape parameters of the beta curve
Color	color of shading in the graph

Value

ggplot2 object containing the graphical display.

Author(s)

Jim Albert

Examples

```
# find the .50 quantile (the median)
prob <- 0.5
shape_par <- c(2, 5)
beta_quantile(prob, shape_par)
# find the .90 quantile (90th percentile)
prob <- 0.9
beta_quantile(prob, shape_par)</pre>
```

10

book_stats

Description

Text statistics for a collection of books sold at Amazon.com

Usage

book_stats

Format

A data frame with 21 observations on the following 3 variables.

Book name of book

Complex.Words percentage of words in the book with three or more syllables

Fog.Index number of years of formal education required to read and understand a passage of text

Source

Data collected from Amazon.com website.

buffalo_jan Buffalo snowfall data

Description

Total snowfall in inches for 20 Januarys in Buffalo, New York

Usage

buffalo_jan

Format

A data frame with 20 observations on the following 2 variables.

SEASON Season JAN inches of total snowfall

Source

National Weather Service, www.weather.gov

career_1978

Description

Season on-base statistics for collection of MLB baseball players who were born in 1978

Usage

career_1978

Format

A data frame with 399 observations on the following 6 variables.

nameLast last name of player

Player id of player

Age age of player

AgeD deviation of age from 30

PA number of plate appearances

OB number of on-base events

Source

Data collected from Lahman database.

centertitle

Centers title in a ggplot2 graphic

Description

Centers and increases font size of a ggplot2 graphic title

Usage

centertitle(Color = "blue")

Arguments

Color color of the text in the ggplot2 title

Value

ggplot2 theme code to center the title

CEsample

Author(s)

Jim Albert

Examples

CEsample

Expeditures of U.S. Households

Description

Expeditures of U.S. Households

Usage

CEsample

Format

A data frame with 1000 observations on the following 3 variables.

UrbanRural urban/rural status of CU - 1 = urban and 2 = rural

TotalIncomeLastYear amount of CU income before taxes in the last 12 months

TotalExpLastQ CU's total expenditure in the last quarter

Source

U.S. Bureau of Labor Statistics

ChooseBeta

Description

Interactively choose beta curve by selecting the .5 and .9 quantiles

Usage

ChooseBeta()

Value

None

Author(s)

Jim Albert

ComputerPriceSample Personal Computer Data

Description

Variables on a sample of personal computers

Usage

ComputerPriceSample

Format

A data frame with 500 observations on the following 5 variables.

Price sales price

Speed clock speed in MHz

HardDrive size of hard drive in MB

Ram size of Ram in MB

Premium premium status of manufacturer

Source

Unknown

Cowles

Description

Data from study to learn about personality determinants of volunteering

Usage

Cowles

Format

A data frame with 1421 observations on the following 5 variables.

subject subject number neuroticism measurement of neuroticism extraversion measurement of extraversion sex male or female volunteer no or yes

Source

Unknown.

DeathHeartAttackDataNYCfull

Risk-adjusted mortality outcomes for all NYC hospitals

Description

Reported deaths from heart attack for hospitals in New York City

Usage

DeathHeartAttackDataNYCfull

Format

A data frame with 45 observations on the following 5 variables.

Hospital name of hospitalBorough borough in New York CityType type of hospitalCases number of heart attach casesDeaths number of deaths

Source

New York State Department of Health

DeathHeartAttackManhattan

Risk-adjusted mortality outcomes for Manhattan hospitals

Description

Reported deaths from heart attack for hospitals in Manhattan in New York City

Usage

DeathHeartAttackManhattan

Format

A data frame with 13 observations on the following 4 variables.

Hospital name of hospital

Type type of hospital

Cases number of heart attach cases

Deaths number of deaths

Source

New York State Department of Health

draw_two_p

Plot of Distribution of Two Proportions

Description

Constructs a graph of the probability distribution of two proportions

Usage

```
draw_two_p(prob_matrix, ...)
```

Arguments

prob_matrix	matrix of probabilities of two proportions with the rows and columns labeled by the values
	other arguments such as the title of the plot

dsampling

Value

ggplot2 object containing the graphical display.

Author(s)

Jim Albert

Examples

```
prob_matrix <- testing_prior()
draw_two_p(prob_matrix, title="Testing Prior")</pre>
```

dsampling

Hypergeometric sampling density

Description

Hypergeometric sampling density

Usage

dsampling(sample_b, pop_N, pop_B, sample_n)

Arguments

sample_b	number of black balls in sample
pop_N	number of balls in population
pop_B	number of black balls in population
sample_n	number of balls in sample

Value

Value of hypergeometric sampling probability

Author(s)

Jim Albert

Examples

```
pop_N <- 10
pop_B <- 4
sample_n <- 3
sample_b <- 2
dsampling(sample_b, pop_N, pop_B, sample_n)</pre>
```

dspinner

Description

Computes likelihoods for spinner outcomes

Usage

dspinner(x, Prob)

Arguments

х	vector of spinner observations
Prob	matrix of spinner probabilities where each row corresponds to a different spinner

Value

column vector consisting of the likelihoods for the different spinners

Author(s)

Jim Albert

Examples

```
Prob <- matrix(c(.25, .25, .25, .25,
.50, .125, .125, .5,
.25, .5, .25, 0), 3, 4, byrow=TRUE)
x <- c(1, 2, 1, 3, 4)
dspinner(x, Prob)
```

electricbills Electricity Bills

Description

Electricity bills collected for all months for five years

Usage

electricbills

federalist_word_study

Format

A data frame with 62 observations on the following 3 variables.

Year year

Month number of month

Amount electicity bill in dollars

Source

Data collected for one household in Ohio

federalist_word_study Frequency use of words for Federalist Papers

Description

Frequency use of words for Federalist Papers written by either Alexander Hamilton or James Madison

Usage

```
federalist_word_study
```

Format

A data frame with 56853 observations on the following 7 variables.

Name name of Federalist paper

Total total number of words

word word that is counted

N frequency of the word

Rate fraction of words with that word

Authorship author of paper

Disputed is authorship disputed?

Source

http://www.gutenberg.org/ebooks/18

federer_time_to_serve Times to Serve for Roger Federer

Description

Measurements of time to serve for 20 serves of the tennis player Roger Federer

Usage

federer_time_to_serve

Format

A data frame with 20 observations on the following one variable.

time time to serve in seconds

Source

https://github.com/JeffSackmann

fire_calls Fire Calls for Zip Code Areas

Description

The number of fire calls and building fires for ten zip codes in Montgomery County, Pennsylvania

Usage

fire_calls

Format

A data frame with 10 observations on the following 3 variables.

Zip_Code zip code

Fire_Calls number of fire calls

Building_Fires number of building fires

Source

kaggle.com

football_field_goals Football Field Goals Dataset

Description

Field goal attempt data for three seasons of professional football

Usage

```
football_field_goals
```

Format

A data frame with 3025 observations on the following 5 variables.

Team name of team Year football season Kicker last name of kicker Distance distance in feet of attempt Success attempt was successful (1) or not (0)

Source

Data collected by Michael Lopez.

gas2017 Gas bill data

Description

Measurements of average temperature and natural gas bill for each month in 2017

Usage

gas2017

Format

A data frame with 12 observations on the following 3 variables.

Month abbreviation of month Temp average temperature Bill natural gas bill in dollars

Source

Personal data collected by a homeowner in Ohio

gibbs_betabin

Description

Implements Gibbs sampling of the beta-binomial distribution

Usage

```
gibbs_betabin(n, a, b, p = 0.5, iter = 1000)
```

Arguments

n	binomial sample size
а	first beta shape parameter
b	second beta shape parameter
р	starting value of proportion in algorithm
iter	number of iterations

Value

matrix of simulated draws from the algorithm

Author(s)

Jim Albert

Examples

sp <- gibbs_betabin(20, 5, 5, 100)</pre>

gibbs_discrete Gibbs sampling of a bivariate discrete distribution
--

Description

Implements Gibbs sampling for an arbitrary bivariate discrete distribution

Usage

gibbs_discrete(p, i = 1, iter = 1000)

gibbs_normal

Arguments

р	matrix defining the probability distribution
i	starting row of the matrix
iter	number of cycles of algorithm

Value

matrix of simulated draws from algorithm

Author(s)

Jim Albert

Examples

gibbs_normal	Gibbs sampling of the normal sampling posterior
groos_normar	Gibbs sampling of the normal sampling posterior

Description

Implements Gibbs sampling for normal sampling with independent priors on the mean and precision

Usage

gibbs_normal(s, P = 0.002, iter = 1000)

Arguments

S	a list with components y, the observed data, mu0, the prior mean of mu, sigma0,
	the prior standard deviation of mu, a, the shape parameter of the gamma prior
	on P, b, the rate parameter of the gamma prior on P
Р	starting value of the precision parameter
iter	number of iterations

Value

matrix of simulated draws of (mu, P) from the algorithm

Author(s)

Jim Albert

Examples

```
s <- list(y = rnorm(20, 5, 2),
mu0 = 10, sigma0 = 3, a = 1, b = 1)
out <- gibbs_normal(s, P = 0.01, iter=100)</pre>
```

GradSchoolAdmission Graduate School Admission

Description

Study to see what variables are helpful in determining admission to Graduate School

Usage

GradSchoolAdmission

Format

A data frame with 400 observations on the following 3 variables.

Admission student was admitted (1) or not admitted (0)

GRE GRE score

GPA grade point average

Source

Unknown.

Hamilton_can

Frequency use of "can" for Federalist Papers

Description

Frequency use of "can" for Federalist Papers written by Alexander Hamilton

Usage

Hamilton_can

24

house_prices

Format

A data frame with 49 observations on the following 6 variables.

Name name of Federalist paper

Total total number of words

word word that is counted

N frequency of the word

Rate fraction of words with that word

Authorship author of paper

Source

http://www.gutenberg.org/ebooks/18

house_prices House price data

Description

Measurements of house size and selling price for a collection of homes in a city in Ohio

Usage

house_prices

Format

A data frame with 24 observations on the following 2 variables.

price selling price in \$1000

size square footage of house

Source

Zillow.com

HWhours5schools

Description

Weekly hours spent on homework for students from five schools

Usage

HWhours5schools

Format

A data frame with 116 observations on the following 2 variables.

school school number of student

hours weekly hours spent on homework

Source

Unknown.

increasefont Increases font size of text

Description

Increases font size on all text in a ggplot2 graphic

Usage

```
increasefont(Size = 18)
```

Arguments

Size font size of all textual elements in a ggplot2 graphic

Value

ggplot2 theme code to increase the font size

Author(s)

Jim Albert

JAGS_script

Examples

JAGS_script

JAGS Script for Common Models

Description

Model script for JAGS to fit a particular Bayesian model. Currently the possible models are "beta_binomial", "hier_normal", "hier_trajectory", "normal", "regression", "regression_cond_means", and "trajectory".

Usage

JAGS_script(model)

Arguments

model name of the model

Value

A character string containing the model script

Description

Ratings of Korean dramas prodcast during different days of the week and didfferent producers

Usage

KDramaData

Format

A data frame with 101 observations on the following 5 variables.

Drama name of drama Schedule indicator of what day the drama was broadcast Producer indicator of the producer of the drama Rating rating of the drama Date date of rating

Source

AGB Nielsen Media Research Group

LaborParticipation U.S. Women Labor Participation

Description

U.S. women labor participation and family income

Usage

LaborParticipation

Format

A data frame with 753 observations on the following 2 variables.

Participation labor participation of the wifeFamilyIncome family income exclusive of wife's income in \$1000

Source

University of Michigan Panel Study of Income Dynamics

Madison_can Frequency use of "can" for Federalist Papers	
--	--

Description

Frequency use of "can" for Federalist Papers written by James Madison

Usage

Madison_can

Format

A data frame with 49 observations on the following 6 variables.

Name name of Federalist paper
Total total number of words
word word that is counted
N frequency of the word
Rate fraction of words with that word
Authorship author of paper

Source

http://www.gutenberg.org/ebooks/18

many_normal_plots Graph of several normal curves

Description

Graph of several normal curves

Usage

many_normal_plots(list_normal_par)

Arguments

list_normal_par

list of vectors, where each vector is a mean and standard deviation for a normal distribution

Value

ggplot2 object containing the graphical display.

Author(s)

Jim Albert

Examples

many_spinner_plots Graphs a collection of spinners

Description

Graphs a collection of spinners

Usage

many_spinner_plots(list_regions)

Arguments

list_regions list of vectors of integer areas for the spins 1, 2, ...

Value

A ggplot2 object containing the spinner displays

Author(s)

Jim Albert

Examples

```
regions1 <- c(1, 1, 1)
regions2 <- c(2, 1, 2, 1)
many_spinner_plots(list(regions1, regions2))</pre>
```

marriage_counts Annual Marriage Counts in Italy

Description

Annual marriage counts per 1000 of the population in Italy from 1936 to 1951

Usage

marriage_counts

Format

A data frame with 16 observations on the following 2 variables.

Year year

Count count of marriages per 1000 people

Source

Unknown.

mcdonalds

Description

Serving size and calories for a selection of sandwiches from McDonalds

Usage

mcdonalds

Format

A data frame with 11 observations on the following 3 variables.

Sandwich name of sandwich

Size serving size in grams

Calories calories of sandwich

Source

McDonalds restaurant

metropolis Metropolis sampling of a continuous distribution

Description

Implements Metropolis sampling for an arbitrary continuous probability distribution

Usage

```
metropolis(logpost, current, C, iter, ...)
```

Arguments

logpost	function definition of the log probability function
current	starting value of algorithm
С	half-width of proposal interval
iter	number of iterations
	other inputs needed in logpost function

Value

S	vector of simulated values
accept_rate	acceptance rate of algorithm

Author(s)

Jim Albert

Examples

movies2017

Movies Sales Data

Description

Weekend and gross sales for a selection of movies released in 2017

Usage

movies2017

Format

A data frame with 10 observations on the following 3 variables.

Movie name of movie

Weekend opening weekend sales in millions of dollars

Gross gross sales in millions of dollars

Source

Internet Movie Database

nba_guards

Description

Field goal and free throw shooting data for a collection of great NBA point guards

Usage

nba_guards

Format

A data frame with 230 observations on the following 6 variables.

Playername of playerAgeage of playerFGfield goalsFGAfield goal attemptsFTfree throwsFTAfree throw attempts

Source

Data collected from Basketball-Reference.com.

normal_area

Displays Area Under a Normal Curve

Description

Computes and Displays Area Under a Normal Curve

Usage

```
normal_area(lo, hi, normal_pars, Color = "orange")
```

Arguments

10	lower bound of interval
hi	upper bound of interval
normal_pars	vector of mean and standard deviation of the normal curve
Color	color of shading in plot

Value

ggplot2 object containing the graphical display.

Author(s)

Jim Albert

Examples

```
lo <- 10
hi <- 20
normal_pars <- c(25, 10)
normal_area(lo, hi, normal_pars)
```

normal_draw

Draws a Normal Curve

Description

Draws a Normal Curve

Usage

```
normal_draw(normal_pars, Color = "red")
```

Arguments

normal_pars	vector of mean and standard deviation of the normal curve
Color	color of line in plot

Value

ggplot2 object containing the graphical display.

Author(s)

Jim Albert

Examples

normal_pars <- c(2, 1)
normal_draw(normal_pars)</pre>

34

normal_interval

Description

Computes "equal-tails" probability interval for a normal curve

Usage

```
normal_interval(prob, normal_pars, Color = "orange")
```

Arguments

prob	value of coverage probability
normal_pars	vector of mean and standard deviation of the normal curve
Color	color of shading in plot

Value

ggplot2 object containing the graphical display.

Author(s)

Jim Albert

Examples

normal_pars <- c(2, 0.5)
prob <- 0.5
normal_interval(prob, normal_pars)</pre>

normal_quantile Displays a Quantile of a Normal Curve

Description

Displays a Quantile of a Normal Curve

Usage

```
normal_quantile(prob, normal_pars, Color = "orange")
```

Arguments

prob	probability value of interest
normal_pars	vector of mean and standard deviation of the normal curve
Color	color of shading in plot

ggplot2 object containing the graphical display.

Author(s)

Jim Albert

Examples

```
normal_pars <- c(100, 10)
prob <- 0.7
normal_quantile(prob, normal_pars)</pre>
```

normal_update Updates a Normal Prior with Normal Data

Description

Finds the parameters of the normal posterior with normal data and a normal prior

Usage

```
normal_update(prior, data, teach=FALSE)
```

Arguments

prior	vector with components mean and sd of the normal prior
data	vector with components the sample mean and the standard error of the estimate
teach	logical variable indicating the form of the output

Value

If teach = TRUE, returns data frame that displays the mean, precision, and standard deviation for the prior, data, and posterior. If teach = FALSE, returns a vector with mean and standard deviation of the posterior.

Author(s)

Jim Albert

Examples

```
prior <- c(100, 10)
data <- c(110, 15)
normal_update(prior, data)
normal_update(prior, data, teach=TRUE)</pre>
```

36
olympic_butterfly Winning Times in the 100 Meter Butterfly Race

Description

Winning times in seconds for the men's and women's 100m butterfly race for the Olympics from 1964 through 2016.

Usage

```
olympic_butterfly
```

Format

A data frame with 28 observations on the following 3 variables.

Year year of Olympics Gender gender Time winning time in seconds

Source

https://www.olympic.org/swimming/

prior_post_plot Graphs prior and posterior probabilities

Description

Graphs prior and posterior probabilities from a discrete Bayesian model

Usage

```
prior_post_plot(d, Color = "orange")
```

Arguments

d	data frame where the first column are the model values, and columns named
	Prior and Posterior
Color	fill color for the bars

Value

ggplot2 object containing the graphical display.

Author(s)

Jim Albert

Examples

prob_plot

Constructs a graph of a probability distribution

Description

Constructs a graph of a discrete probability distribution

Usage

```
prob_plot(d, Color = "red", Size = 1.5)
```

Arguments

d	data frame where the first two columns are the variable and associated probabil- ities
Color	color of line in plot
Size	width of line in plot

Value

A ggplot2 object containing the plot display

Author(s)

Jim Albert

Examples

ProfessorSalary Professor Salary Study

Description

Study on inputs that impact a salary of a professor

Usage

ProfessorSalary

Format

A data frame with 397 observations on the following 7 variables.

subject subject id
rank professor rank
discipline A is theoretical and B is applied
yrs.since.phd number of years since receipt of doctorate
yrs.service number of years of service
sex Female or Male
salary nine-month salary in dollars

Source

Unknown.

pt100price

Prices of One Carat Diamonds

Description

Prices of a sample of one carat diamonds

Usage

pt100price

Format

A data frame with 25 observations on the following 2 variables.

diamond index of diamond **price** price divided by 100

Source

Unknown.

pt99price

Description

Prices of a sample of 0.99 carat diamonds

Usage

pt99price

Format

A data frame with 23 observations on the following 2 variables.

diamond index of diamond **price** price divided by 100

Source

Unknown.

pythag2018

Baseball Win-Loss Records

Description

Final standings of the MLB baseball teams in the 2018 season

Usage

pythag2018

Format

A data frame with 30 observations on the following 7 variables.

Team team abbreviation

League league abbreviation

- W number of wins
- ${\bf L}\,$ number of losses
- Pct proportion of wins
- **R** average runs scored
- RA average runs allowed

Source

Lahman database

random_walk

Description

Implements Metropolis sampling for an arbitrary discrete probability distribution

Usage

```
random_walk(pd, start, num_steps)
```

Arguments

pd	function containing discrete probability function on the integers 1, 2,
start	starting value of algorithm
num_steps	number of iterations of algorithm

Value

A vector of simulated values

Author(s)

Jim Albert

Examples

```
# random walk through a binomial distribution
pd <- function(x){
   dbinom(x, size = 10, prob = 0.5)
}
start <- 4
num_steps <- 50
out <- random_walk(pd, start, num_steps)</pre>
```

ScoreData

Scores on Achievement Exam

Description

Scores on a 20-question T/F exam

Usage

ScoreData

Format

A data frame with 30 observations on the following 2 variables.

Person subject id

Score number correct in 20-question exam

Source

Data randomly generated.

sleeping_times Sleeping Times

Description

Sample of sleeping times for a single night for a sample of college students

Usage

sleeping_times

Format

A data frame with 14 observations on the following single variable.

hours number of hours of sleep

Source

Personal collection

spinner_bayes Implements Bayes' rule for a spinner problem

Description

Computes and plots the posterior distribution of spinners given a sequence of spins

Usage

spinner_data

Arguments

list_regions	list of vectors of integer areas for the spins 1, 2,
prior	a vector containing the prior probabilities for the spinners
data	a vector containing the spin values where 1, 2, 3, are the possible spins
plot	if plot=TRUE, a comparative graph of the prior and posterior probabilities is displayed

Value

A data frame with variables Spinner, Prior, Likelihood, Product, and Posterior

Author(s)

Jim Albert

Examples

spinner_data Simulate random data from a spinner

Description

Simulate random data from a spinner

Usage

spinner_data(regions, nsim=1000)

Arguments

regions	vector of integer values for the spins 1, 2,
nsim	number of spins

Value

A vector of random spins from the spinner

Author(s)

Jim Albert

Examples

```
regions <- c(2, 1, 1, 2)
spinner_data(regions, nsim=20)</pre>
```

spinner_likelihoods Computes likelihood matrix for many spinners

Description

Computes likelihood matrix for many spinners

Usage

spinner_likelihoods(regions)

Arguments

regions list of vectors of integer areas for the spins 1, 2, ...

Value

A matrix where each row corresponds to the outcome probabilities for one spinner.

Author(s)

Jim Albert

Examples

```
sp1 <- c(2, 1, 1)
sp2 <- c(1, 1, 1, 1)
regions <- list(sp1, sp2)
spinner_likelihoods(regions)</pre>
```

spinner_plot Constructs a spinner

Description

Constructs a spinner with different regions

Usage

spinner_plot(probs, ...)

spinner_probs

Arguments

probs	vector of probabilities for the spins 1, 2,
	optional vector of values and title

Value

A ggplot2 object containing the spinner display

Author(s)

Jim Albert

Examples

```
probs <- rep(.2, 5)
spinner_plot(probs,
            values=c("A", "B", "C", "D", "E"),
            title="My Spinner")
# probs does not need to be normalized
spinner_plot(c(1, 2, 1, 2))</pre>
```

spinner_probs Display probability distribution for a spinner

Description

Display probability distribution for a spinner

Usage

```
spinner_probs(regions)
```

Arguments

regions vector of positive values for the spins 1, 2, ...

Value

Dataframe with variables Region and Prob

Author(s)

Jim Albert

Examples

regions <- c(2, 1, 1, 2)
spinner_probs(regions)</pre>

taxi_fares

Description

Sample of taxi fares from a particular city

Usage

taxi_fares

Format

A data frame with 20 observations on the following single variable.

fare taxi cab fare

Source

Personal collection

tennis_serve Tennis Times to Serve

Description

Data on time to serve for six professional tennis players

Usage

tennis_serve

Format

A data frame with 6 observations on the following 3 variables.

Player last name of player

n number of serves

ybar mean time to serve

Source

https://github.com/JeffSackmann

testing_prior

Description

Constructs a discrete distribution for two proportions under a testing or uniform hypotheses

Usage

Arguments

lo	minimum value of each proportion
hi	maximum value of each proportion
n_values	number of values of each proportion
pequal	probability of the equality of the two proportions
uniform	indicates if a uniform prior is desired

Value

matrix of probabilities where the rows and columns are labeled by the values of the proportions

Author(s)

Jim Albert

Examples

```
# testing prior where each proportion is
# .1, .3, .5, .7, .9
Prob <- testing_prior(.1, .9, 5)
# uniform prior over same proportion values
Prob <- testing_prior(.1, .9, 5, uniform=TRUE)</pre>
```

trout20

Description

Launch speed and distance traveled for a sample of balls hit by the baseball player Mike Trout

Usage

trout20

Format

A data frame with 25 observations on the following 2 variables.

launch_speed launch speed in mph

hit_distance_sc distance in feet

Source

Major League Baseball Advanced Media

two_players_time_to_serve

Times to Serve for Two Tennis Players

Description

Measurements of time to serve serves of the tennis players Roger Federer and Rafael Nadal

Usage

two_players_time_to_serve

Format

A data frame with 100 observations on the following 2 variables.

Player last name of player

time time to serve in seconds

Source

https://github.com/JeffSackmann

two_p_summarize Summaries of a probability matrix

Description

Computes posterior of difference P2 - P1 of a probability matrix of two proportions

Usage

```
two_p_summarize(prob_matrix)
```

Arguments

prob_matrix probability matrix where the rows and columns are labeled with the values of the proportions

Value

data frame with variables diff21 and Prob where diff21 = P2 - P1

Author(s)

Jim Albert

Examples

```
# use uniform prior over values .2, .3, .4
prob_matrix <- testing_prior(.2, .4, 3, uniform=TRUE)
two_p_summarize(prob_matrix)</pre>
```

two_p_update

Posterior updating of two proportions

Description

Computes posterior distribution of two proportions with a discrete prior

Usage

```
two_p_update(prior, s1f1, s2f2)
```

Arguments

prior	prior probability matrix where the rows and columns are labeled with the values of the proportions
s1f1	number of successes and number of failures from first sample
s2f2	number of successes and number of failures from second sample

Value

posterior probability matrix

Author(s)

Jim Albert

Examples

```
prior <- testing_prior()
s1f1 <- c(3, 10)
s2f2 <- c(8, 20)
two_p_update(prior, s1f1, s2f2)</pre>
```

web_visits Website tracking data

Description

Number of visits to a blog website for different weeks and days of the week

Usage

web_visits

Format

A data frame with 28 observations on the following 3 variables.

Week week number Day day of the week Count number of website visits

Source

Personal data collected from Wordpress.com

Index

* datasets animation_ratings, 3 arm_height, 4 batting_2018, 5 BBS_survey, 6 book_stats, 11 buffalo_jan, 11 career_1978, 12 CEsample, 13 ComputerPriceSample, 14 Cowles, 15 DeathHeartAttackDataNYCfull, 15 DeathHeartAttackManhattan. 16 electricbills, 18 federalist_word_study, 19 federer_time_to_serve, 20 fire_calls, 20 $\texttt{football_field_goals, 21}$ gas2017, 21 GradSchoolAdmission, 24 Hamilton_can, 24 house_prices, 25 HWhours5schools, 26 JAGS_script, 27 KDramaData, 27 LaborParticipation, 28 Madison_can, 28 marriage_counts, 30mcdonalds, 31 movies2017, 32 nba_guards, 33 olympic_butterfly, 37 ProfessorSalary, 39 pt100price, 39 pt99price, 40 pythag2018, 40 ScoreData, 41 sleeping_times, 42 taxi_fares, 46

tennis_serve, 46 trout20, 48 two_players_time_to_serve, 48 web_visits, 50 animation_ratings, 3 arm_height, 4 bar_plot,4 batting_2018, 5 bayesian_crank, 5 BBS_survey, 6 beta_area, 7 beta_data, 7 beta_draw, 8 beta_interval, 9 beta_prior_post, 9 beta_quantile, 10 book_stats, 11 buffalo_jan, 11 career_1978, 12 centertitle, 12 CEsample, 13 ChooseBeta, 14 ComputerPriceSample, 14 Cowles, 15 DeathHeartAttackDataNYCfull, 15 DeathHeartAttackManhattan, 16 draw_two_p, 16 dsampling, 17 dspinner, 18 electricbills. 18 federalist_word_study, 19 federer_time_to_serve, 20 fire_calls, 20 football_field_goals, 21

INDEX

gas2017, 21 gibbs_betabin, 22 gibbs_discrete, 22 gibbs_normal, 23 GradSchoolAdmission, 24 Hamilton_can, 24 house_prices, 25 HWhours5schools, 26 increasefont, 26 JAGS_script, 27 KDramaData, 27 LaborParticipation, 28 Madison_can, 28 many_normal_plots, 29 many_spinner_plots, 29 marriage_counts, 30 mcdonalds, 31 metropolis, 31 movies2017, 32 nba_guards, 33 normal_area, 33 normal_draw, 34 normal_interval, 35 normal_quantile, 35 normal_update, 36 olympic_butterfly, 37 prior_post_plot, 37 prob_plot, 38 ProfessorSalary, 39 pt100price, 39 pt99price, 40 pythag2018, 40 random_walk, 41 ScoreData, 41 sleeping_times, 42 spinner_bayes, 42 spinner_data, 43 spinner_likelihoods, 44 spinner_plot, 44 spinner_probs, 45

taxi_fares, 46
tennis_serve, 46
testing_prior, 47
trout20, 48
two_p_summarize, 49
two_p_update, 49
two_players_time_to_serve, 48

web_visits, 50