PiC: Pointcloud Interactive Computation

Provides advanced algorithms for analyzing pointcloud data from terrestrial laser scanner in forestry applications. Key features include fast voxelization of large datasets; segmentation of point clouds into forest floor, understorey, canopy, and wood components. The package enables efficient processing of large-scale forest pointcloud data, offering insights into forest structure, connectivity, and fire risk assessment. Algorithms to analyze pointcloud data (.xyz input file). For more details, see Ferrara & Arrizza (2025) <https://hdl.handle.net/20.500.14243/533471>. For single tree segmentation details, see Ferrara et al. (2018) <doi:10.1016/j.agrformet.2018.04.008>.

Version: 1.2.6
Depends: R (≥ 4.3)
Imports: collapse, conicfit, data.table, dbscan, dplyr, foreach, magrittr, sf, stats, tictoc, utils
Suggests: DT, fs, ggplot2, later, plotly, shiny, shinycssloaders, shinydashboard, shinydashboardPlus, shinyFeedback, shinyFiles, shinyjs, shinythemes, shinyWidgets, testthat (≥ 3.0.0), tools, withr
Published: 2025-10-11
DOI: 10.32614/CRAN.package.PiC
Author: Roberto Ferrara ORCID iD [aut, cre], Stefano Arrizza ORCID iD [ctb]
Maintainer: Roberto Ferrara <roberto.ferrara at cnr.it>
BugReports: https://github.com/rupppy/PiC/issues
License: GPL (≥ 3)
URL: https://github.com/rupppy/PiC
NeedsCompilation: no
Materials: README, NEWS
CRAN checks: PiC results

Documentation:

Reference manual: PiC.html , PiC.pdf

Downloads:

Package source: PiC_1.2.6.tar.gz
Windows binaries: r-devel: PiC_1.0.3.zip, r-release: PiC_1.0.3.zip, r-oldrel: PiC_1.0.3.zip
macOS binaries: r-release (arm64): PiC_1.2.6.tgz, r-oldrel (arm64): PiC_1.2.6.tgz, r-release (x86_64): PiC_1.2.6.tgz, r-oldrel (x86_64): PiC_1.2.6.tgz
Old sources: PiC archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=PiC to link to this page.