Type: | Package |
Maintainer: | Slimane Regui <slimaneregui111997@gmail.com> |
Title: | Fitting Periodic Coefficients Linear Regression Models |
Version: | 4.4.3 |
Description: | Provides tools for fitting periodic coefficients regression models to data where periodicity plays a crucial role. It allows users to model and analyze relationships between variables that exhibit cyclical or seasonal patterns, offering functions for estimating parameters and testing the periodicity of coefficients in linear regression models. For simple periodic coefficient regression model see Regui et al. (2024) <doi:10.1080/03610918.2024.2314662>. |
License: | GPL-2 | GPL-3 [expanded from: GPL] |
Encoding: | UTF-8 |
Imports: | expm, readxl, sn |
URL: | https://doi.org/10.1080/03610918.2024.2314662 |
Packaged: | 2024-12-02 11:32:39 UTC; slima |
NeedsCompilation: | no |
Author: | Slimane Regui |
Repository: | CRAN |
Date/Publication: | 2024-12-02 15:50:05 UTC |
A Kronecker product B
Description
A_x_B() function gives A Kronecker product B
Usage
A_x_B(A,B)
Arguments
A |
A matrix. |
B |
A matrix. |
Value
A_x_B(A , B) |
returns the matrix A Kronecker product B, |
Examples
A=matrix(rep(1,6),3,2)
B=matrix(seq(1,8),2,4 )
A_x_B(A,B)
Calculating the component of vector DELTA
Description
DELTA() function gives the value of the component of vector DELTA \boldsymbol{\Delta}
. See Regui et al. (2024) for periodic simple regression model.
\mathbf{\Delta}=
\left[\begin{array}{c}
\mathbf{\Delta}_1 \\
\mathbf{\Delta}_2\\
\mathbf{\Delta}_3
\end{array}\right]\
, where \mathbf{\Delta}_1
is a vector of dimension S
with component
\frac{n^{\frac{-1}{2} } }{\widehat{ \sigma}_s}\sum\limits_{\underset{ }{r=0}}^{m-1}\widehat{\phi}(Z_{s+Sr,t})
, \mathbf{\Delta}_2
is a vector of dimension pS
with component \frac{ n^{\frac{-1}{2} } }{\widehat{\sigma}_{s}}\sum\limits_{\underset{ }{r=0}}^{m-1} \widehat{\phi}(Z_{s+Sr})K_{s}^{(n)} \mathbf{X}_{s+Sr}
,
\mathbf{\Delta}_3
is a vector of dimension S
with component \frac{n^{\frac{-1}{2} } }{2\widehat{\sigma}_{s}^{2}}\sum\limits_{\underset{ }{r=0}}^{m-1}{Z_{s+Sr} \widehat{\phi}(Z_{s+Sr})-1 }
.
Usage
DELTA(x,phi,s,e,sigma)
Arguments
x |
A list of independent variables with dimension |
phi |
|
s |
A period of the regression model. |
e |
The residuals vector. |
sigma |
Value
DELTA() |
returns the values of |
References
Regui, S., Akharif, A., & Mellouk, A. (2024). "Locally optimal tests against periodic linear regression in short panels." Communications in Statistics-Simulation and Computation, 1–15. doi:10.1080/03610918.2024.2314662
Calculating the component of matrix GAMMA
Description
GAMMA() function gives the value of the component of matrix GAMMA \boldsymbol{\Gamma}
. See Regui et al. (2024) for periodic simple regression model.
\mathbf{\Gamma}=\frac{1}{S}
\left[\begin{array}{ccc}
\left(\mathbf{\Gamma}_{11}\right)_{S \times S }&\mathbf{0} & \mathbf{\Gamma}_{13} \\
\mathbf{0} &\left(\mathbf{\Gamma}_{22} \right)_{pS\times pS } &\mathbf{0} \\
\mathbf{\Gamma}_{13} & \mathbf{0}& \left(\mathbf{\Gamma}_{33} \right)_{S\times S}
\end{array}\right]\
, where \mathbf{\Gamma}_{11}=\widehat{I}_{n}\text{diag}(\frac{1}{\widehat{\sigma}_{1}^{2}},...,\frac{1}{\widehat{\sigma}_{S}^{2}} )
, \mathbf{\Gamma}_{13}=\frac{\widehat{N}_{n}}{2}\text{diag}(\frac{1}{\widehat{\sigma}_{1}^{3}},...,\frac{1}{\widehat{\sigma}_{S}^{3}} )
,
\mathbf{\Gamma}_{22}=\widehat{I}_{n}\text{diag}(\frac{1}{\widehat{\sigma}_{1}^{2}},...,\frac{1}{\widehat{\sigma}_{S}^{2}} ) \otimes \mathbf{I}_{p}
,
\mathbf{\Gamma}_{33}=\frac{\widehat{J}_{n}}{4}\text{diag}(\frac{1}{\widehat{\sigma}_{1}^{4}},...,\frac{1}{\widehat{\sigma}_{S}^{4}} )
, \widehat{I}_n=\frac{1}{nT}\sum\limits_{\underset{ }{s=1}}^{S}\sum\limits_{\underset{}{r=0}}^{m-1}{\widehat{\phi}^{2}\left(\frac{\widehat{Z}_{s+Sr}}{\widehat{
\sigma}_s} \right)}
, \widehat{N}_n=\frac{1}{nT}\sum\limits_{\underset{ }{s=1}}^{S}\sum\limits_{\underset{ }{r=0}}^{m-1}{\widehat{\phi}}^{2}\left( \frac{\widehat{Z}_{s+Sr}}{\widehat{
\sigma}_s}\right)\frac{\widehat{Z}_{s+Sr}}{\widehat{
\sigma}_s}
, \widehat{J}_n=\frac{1}{nT}\sum\limits_{\underset{ }{s=1}}^{S}\sum\limits_{\underset{}{r=0}}^{m-1}\widehat{\phi}^{2}\left( \frac{\widehat{Z}_{s+Sr}}{\widehat{
\sigma}_s}\right)\left( \frac{\widehat{Z}_{s+Sr}}{\widehat{
\sigma}_s}\right)^{2}-1
, and
\widehat{\phi}(x)=\frac{1}{b^2_n}\frac{\sum\limits_{\underset{ }{s=1}}^{S}\sum\limits_{\underset{}{r=0}}^{m-1}\left(x-Z_{s+Sr}\right)\exp\left(-\frac{\left(x-Z_{s+Sr} \right)^2}{2b_n^2}\right) }{\sum\limits_{\underset{}{s=1}}^{S}\sum\limits_{\underset{}{r=0}}^{m-1}\exp\left(-\frac{\left(x-Z_{s+Sr} \right)^2}{2b_n^2}\right) } \text{ with }b_n\rightarrow 0
.
Usage
GAMMA(x,phi,s,z,sigma)
Arguments
x |
A list of independent variables with dimension |
phi |
|
s |
A period of the regression model. |
z |
The residuals vector. |
sigma |
Value
GAMMA() |
returns the matrix |
References
Regui, S., Akharif, A., & Mellouk, A. (2024). "Locally optimal tests against periodic linear regression in short panels." Communications in Statistics-Simulation and Computation, 1–15. doi:10.1080/03610918.2024.2314662
Least squares estimator for periodic coefficients regression model
Description
LSE_Reg_per() function gives the least squares estimation of parameters of a periodic coefficients regression model.
Usage
LSE_Reg_per(x,y,s)
Arguments
x |
A list of independent variables with dimension |
y |
A response variable. |
s |
A period of the regression model. |
Value
beta |
Parameters to be estimated. |
X |
Matrix of predictors. |
Y |
The response vector. |
Examples
set.seed(6)
n=400
s=4
x1=rnorm(n,0,1.5)
x2=rnorm(n,0,0.9)
x3=rnorm(n,0,2)
x4=rnorm(n,0,1.9)
y=rnorm(n,0,2.5)
x=list(x1,x2,x3,x4)
LSE_Reg_per(x,y,s)
Checking the periodicity of parameters in the regression model
Description
check_periodicity() function allows to detect the periodicity of parameters in the regression model using pseudo_gaussian_test. See Regui et al. (2024) for periodic simple regression model.
T^{(n)}=\left(\mathbf{\Delta}_{1}^{\circ(n)'},\mathbf{\Delta}_{2}^{\circ(n)'},\mathbf{\Delta}_{3}^{\circ(n)'} \right) \left(\begin{array}{ccc}
\mathbf{\Gamma}^{\circ} _{1} & \mathbf{\Gamma}^{\circ}_{12} & \mathbf{0} \\
\mathbf{\Gamma}^{\circ}_{12} &\mathbf{\Gamma}^{\circ}_{22} & \mathbf{0} \\
\mathbf{0} &\mathbf{0} & \mathbf{\Gamma}^{\circ}_{33}
\end{array} \right)^{-1} \left(\begin{array}{c}
\mathbf{\Delta}_{1}^{\circ(n)} \\
\mathbf{\Delta}_{2}^{\circ(n)}\\
\mathbf{\Delta}_{3}^{\circ(n)}
\end{array} \right)
,
where
\boldsymbol{\Delta}_{1}^{\circ(n)}= n^{\frac{-1}{2}} \sum\limits_{\underset{ }{r=0}}^{m-1} \left(\begin{array}{c}
\widehat{\phi}(Z_{1+Sr})-\widehat{\phi}(Z_{S+Sr})
\\
\vdots\\
\widehat{\phi}(Z_{S-1+Sr})-\widehat{\phi}(Z_{S+Sr})
\end{array} \right)
,
\mathbf{\Delta}_{2}^{\circ(n)}= \frac{n^{\frac{-1}{2}}}{2\widehat{\sigma} }\sum\limits_{\underset{ }{r=0}}^{m-1} \left(\begin{array}{c}
\widehat{\psi}(Z_{1+Sr})- \widehat{\psi}(Z_{S+Sr}) \\
\vdots\\
\widehat{\psi}(Z_{S-1+Sr})- \widehat{\psi}(Z_{S+Sr}) \\
\end{array}\right)
,
\mathbf{\Delta}_{3}^{\circ(n)}=n^{\frac{-1}{2}} \sum\limits_{\underset{ }{r=0}}^{m-1} \left(
\begin{array}{c}
\widehat{\phi}(Z_{1+Sr}) \mathbf{K}_1^{(n)}\mathbf{X}_{1+Sr}- \widehat{\phi}(Z_{S+Sr}) \mathbf{K}_S^{(n)}\mathbf{X}_{S+Sr}\\ \vdots\\
\widehat{\phi}(Z_{S-1+Sr})\mathbf{K}_{S-1}^{(n)}\mathbf{X}_{S-1+Sr}- \widehat{\phi}(Z_{S+Sr})\mathbf{K}_S^{(n)}\mathbf{X}_{S+Sr}
\end{array} \right)
,
\mathbf{\Gamma}^{\circ} _{11}=\frac{\widehat{I}_n }{S} \Sigma
, \mathbf{\Gamma}^{\circ} _{22}=\dfrac{\widehat{I}_n}{4S\widehat{\sigma}^2}
\Sigma
, \mathbf{\Gamma}^{\circ} _{12}=\frac{ \widehat{N}_n }{2S\widehat{\sigma}} \Sigma
, and
\mathbf{\Gamma}^{\circ} _{33}=\frac{\widehat{I}_n }{S} \Sigma \otimes \mathbf{I}_{p\times p}
with
\widehat{I}_n=\frac{1}{nT}\sum\limits_{\underset{ }{s=1}}^{S}\sum\limits_{\underset{}{r=0}}^{m-1}{\widehat{\phi}^{2}\left(\frac{\widehat{Z}_{s+Sr}}{\widehat{
\sigma}_s} \right)}
, \widehat{N}_n=\frac{1}{nT}\sum\limits_{\underset{ }{s=1}}^{S}\sum\limits_{\underset{ }{r=0}}^{m-1}{\widehat{\phi}}^{2}\left( \frac{\widehat{Z}_{s+Sr}}{\widehat{
\sigma}_s}\right)\frac{\widehat{Z}_{s+Sr}}{\widehat{
\sigma}_s}
,
\Sigma=\left[\begin{array}{cccc}
2 & 1& \ldots&1 \\
1&\ddots & \ddots& \vdots\\
\vdots& \ddots &\ddots & 1 \\
1&\ldots &1 & 2
\end{array}\right]\
,
Z_{s+Sr}=\frac{y_{s+Sr}-\widehat{\mu}_s-\sum\limits_{\underset{}{j=1}}^{p}\widehat{\beta}^j_{s}x^j_{s+Sr}}{\widehat{\sigma}_s}
, \mathbf{ X}_{s+Sr}=\left(x^1_{s+Sr},...,x^p_{s+Sr} \right)^{'}
, \mathbf{K}^{(n)}_{s}=\left[\begin{array}{ccc}
\overline{(x^1_{s})^2 } & &\overline{x^i_{s}x^j_{s} }\\
&\ddots & \\
\overline{x^j_{s}x^i_{s} } & &\overline{(x^p_{s})^2 }
\end{array}\right]^{\frac{-1}{2} }
,
\overline{x^i_{s}x^j_{s} } =\frac{1}{m}\sum\limits_{\underset{ }{r=0}}^{m-1}{x^i_{s+Sr}x^j_{s+Sr}}
, \overline{(x^i_{s})^2 } =\frac{1}{m}\sum\limits_{\underset{ }{r=0}}^{m-1}{(x^i_{s+Sr})^2 }
, \widehat{\psi}(x)=x\widehat{\phi}(x)-1
, and
\widehat{\phi}(x)=\frac{1}{b^2_n}\frac{\sum\limits_{\underset{ }{s=1}}^{S}\sum\limits_{\underset{}{r=0}}^{m-1}\left(x-Z_{s+Sr}\right)\exp\left(-\frac{\left(x-Z_{s+Sr} \right)^2}{2b_n^2}\right) }{\sum\limits_{\underset{}{s=1}}^{S}\sum\limits_{\underset{}{r=0}}^{m-1}\exp\left(-\frac{\left(x-Z_{s+Sr} \right)^2}{2b_n^2}\right) }
with b_n\rightarrow 0
.
Usage
check_periodicity(x,y,s)
Arguments
x |
A list of independent variables with dimension |
y |
A response variable. |
s |
A period of the regression model. |
Value
check_periodicity() |
returns the value of observed statistic, |
References
Regui, S., Akharif, A., & Mellouk, A. (2024). "Locally optimal tests against periodic linear regression in short panels." Communications in Statistics-Simulation and Computation, 1–15. doi:10.1080/03610918.2024.2314662
Examples
library(expm)
set.seed(6)
n=400
s=4
x1=rnorm(n,0,1.5)
x2=rnorm(n,0,0.9)
x3=rnorm(n,0,2)
x4=rnorm(n,0,1.9)
y=rnorm(n,0,2.5)
x=list(x1,x2,x3,x4)
check_periodicity(x,y,s)
Adaptive estimator for periodic coefficients regression model
Description
estimate_para_adaptive_method() function gives the adaptive estimation of parameters of a periodic coefficients regression model.
Usage
estimate_para_adaptive_method(n,s,y,x)
Arguments
n |
The length of vector |
s |
A period of the regression model. |
y |
A response variable. |
x |
A list of independent variables with dimension |
Value
beta_ad |
Parameters to be estimated. |
Examples
set.seed(6)
n=400
s=4
x1=rnorm(n,0,1.5)
x2=rnorm(n,0,0.9)
x3=rnorm(n,0,2)
x4=rnorm(n,0,1.9)
y=rnorm(n,0,2.5)
x=list(x1,x2,x3,x4)
model=lm(y~x1+x2+x3+x4)
z=model$residuals
estimate_para_adaptive_method(n,s,y,x)
Fitting periodic coefficients regression model by using LSE
Description
lm_per() function gives the least squares estimation of parameters, intercept \mu_s
, slope \boldsymbol{\beta}_s
, and standard deviation \sigma_s
, of a periodic coefficients regression model using LSE_Reg_per and sd_estimation_for_each_s functions.
\widehat{\boldsymbol{\vartheta}}=\left(X^{'}X\right)^{-1}X^{'} Y
where X=
\left[\begin{array}{ccccccccccc}
&\mathbf{X}^1_{1}&0&\ldots & 0& &\mathbf{X}^p_{1}&0&\ldots & 0 \\
& 0&\mathbf{X}^1_{2} &\ldots &0 & &0&\mathbf{X}^p_{2} &\ldots &0\\
\textbf{I}_{S}\otimes \mathbf{1}_{m} &0&0& \ddots&\vdots&\ldots&0& 0&\ddots&\vdots \\
& 0 &0&0 &\mathbf{X}^1_{S}& &0 &0&0 &\mathbf{X}^p_{S}
\end{array}\right]\
,
\mathbf{X}^j_{s}=\left(x^j_{s},...,x^j_{s+(m-1)S}\right)^{'}
,
Y=(\mathbf{Y}_1^{'},...,\mathbf{Y}_S^{'})^{'}
, \mathbf{Y}_{s} =(y_{s},...,y_{(m-1)S+s})^{'}
,
\mathbf{\epsilon}=(\mathbf{\epsilon}_{1}^{'},...,\mathbf{\epsilon}_{S}^{'})^{'}
,
\mathbf{\epsilon}_{s} =(\varepsilon_{s},...,\varepsilon_{(m-1)S+s})^{'}
, \mathbf{1}_{m}
is a vector of ones of dimension m
, \textbf{I}_{S}
is the identity matrix of dimension S
, \otimes
denotes the Kronecker product, and \boldsymbol{\vartheta} =\left(\boldsymbol{\mu}^{'} ,{\boldsymbol{\beta}}^{'}\right)^{'}
with \boldsymbol{\mu}=(\mu_1,...,\mu_S)^{'}
and \boldsymbol{\beta}=(\beta^1_{1},...,\beta^1_{S};...;\beta^p_{1},...,\beta^p_{S})^{'}
.
Usage
lm_per(x,y,s)
Arguments
x |
A list of independent variables with dimension |
y |
A response variable. |
s |
A period of the regression model. |
Value
Residuals |
the residuals, that is response minus fitted values |
Coefficients |
a named vector of coefficients |
Root mean square error |
The root mean square error |
Examples
set.seed(6)
n=400
s=4
x1=rnorm(n,0,1.5)
x2=rnorm(n,0,0.9)
x3=rnorm(n,0,2)
x4=rnorm(n,0,1.9)
y=rnorm(n,0,2.5)
x=list(x1,x2,x3,x4)
lm_per(x,y,s)
Fitting periodic coefficients regression model by using Adaptive estimation method
Description
lm_per_AE() function gives the adaptive estimation of parameters, intercept \mu_s
, slope \boldsymbol{\beta}_s
, and standard deviation \sigma_s
, of a periodic coefficients regression model. \widehat{\boldsymbol{\theta}}_{AE} ={\widehat{\boldsymbol{\vartheta} }_{LSE} }+\frac{1}{\sqrt{n}}{\mathbf{\Gamma}}^{-1}\mathbf{\Delta}
.
Usage
lm_per_AE(x,y,s)
Arguments
x |
A list of independent variables with dimension |
y |
A response variable. |
s |
A period of the regression model. |
Value
Residuals |
the residuals, that is response minus fitted values |
Coefficients |
a named vector of coefficients |
Root mean square error |
The root mean square error |
Examples
set.seed(6)
n=200
s=2
x1=rnorm(n,0,1.5)
x2=rnorm(n,0,0.9)
x3=rnorm(n,0,2)
x4=rnorm(n,0,1.9)
y=rnorm(n,0,2.5)
x=list(x1,x2,x3,x4)
lm_per_AE(x,y,s)
Calculating the value of \phi
function
Description
phi_n() function gives the value of \widehat{\phi}(x)=\frac{1}{b^2_n}\frac{\sum\limits_{\underset{ }{s=1}}^{S}\sum\limits_{\underset{}{r=0}}^{m-1}\left(x-Z_{s+Sr}\right)\exp\left(-\frac{\left(x-Z_{s+Sr} \right)^2}{2b_n^2}\right) }{\sum\limits_{\underset{}{s=1}}^{S}\sum\limits_{\underset{}{r=0}}^{m-1}\exp\left(-\frac{\left(x-Z_{s+Sr} \right)^2}{2b_n^2}\right) }
with b_n=0.002
.
Usage
phi_n(x)
Arguments
x |
A numeric value. |
Value
returns the value of \widehat{\phi}(x)
Detecting periodicity of parameters in the regression model
Description
pseudo_gaussian_test() function gives the value of the statistic test, T^{(n)}
, for detecting periodicity of parameters in the regression model. See check_periodicity function.
Usage
pseudo_gaussian_test(x,z,s)
Arguments
x |
A list of independent variables with dimension |
z |
The residuals vector. |
s |
A period of the regression model. |
Value
returns the value of the statistic test, T^{(n)}
.
Estimating periodic variances in a periodic coefficients regression model
Description
sd_estimation_for_each_s() function gives the estimation of variances, \widehat{\sigma}_s^2=\frac{1}{m-p-1}\sum\limits_{\underset{ }{r=0}}^{m-1}\widehat{\varepsilon}^2_{s+Sr}
for all s=1,...,S
,in a periodic coefficients regression model.
Usage
sd_estimation_for_each_s(x,y,s,beta_hat)
Arguments
x |
A list of independent variables with dimension |
y |
A response variable. |
s |
A period of the regression model. |
beta_hat |
The least squares estimation using LSE_Reg_per. |
Value
returns the value of \widehat{\sigma}_s^2
.
Examples
set.seed(6)
n=400
s=4
x1=rnorm(n,0,1.5)
x2=rnorm(n,0,0.9)
x3=rnorm(n,0,2)
x4=rnorm(n,0,1.9)
y=rnorm(n,0,2.5)
x=list(x1,x2,x3,x4)
beta_hat=LSE_Reg_per(x,y,s)$beta
sd_estimation_for_each_s(x,y,s,beta_hat)