Package ‘PStrata’

January 20, 2025

Type Package
Title Principal Stratification Analysis in R

Version 0.0.5

Date 2023-12-02

Encoding UTF-8

Maintainer Bo Liu <bl226@duke.edu>

Description Estimating causal effects in the presence of post-treatment confounding using princi-
pal stratification. 'PStrata’ allows for customized monotonicity assumptions and exclusion restric-
tion assumptions, with automatic full Bayesian inference supported by 'Stan'. The main func-
tion to use in this package is PStrata(), which provides posterior estimates of principal causal ef-
fect with uncertainty quantification. Visualization tools are also provided for diagnosis and inter-
pretation. See Liu and Li (2023) <arXiv:2304.02740> for details.

Depends R (>=3.5.0)

Collate PStrata-package.R PSFormula.R PStratalnfo.R survival.R prior.R
make_standata.R PSObject.R make_stancode.R PSSample.R PStrata.R
PSOutcome.R sim_data_normal.R sim_data_Cox.R PSContrast.R

License GPL (>=2)

Suggests R.rsp

VignetteBuilder R.rsp

Imports ggplot2, rstan, Ime4, abind, dplyr, purrr, stringr, stats
LazyData true

RoxygenNote 7.2.3

NeedsCompilation no

Author Bo Liu [aut, cre],
Fan Li [ctb]

Repository CRAN
Date/Publication 2023-12-03 03:10:02 UTC

https://arxiv.org/abs/2304.02740

2 PStrata-package

Contents
PStrata-package 2
make_stancode L e e e 3
make_standata L e e e e 4
PIIOT . . . o o o e 4
PSContrast e e e e e e 5
PSFormula e e 6
PSObject e 9
PSOutcome e e e 11
PSSample 12
PStrata e e 17
PStratalnfo e 19
sim_data_CoX e, 21
sim_data_normal L e e e e 22
survival ... L e e e e 23

Index 24

PStrata-package PStrata: Principal STRATification Analysis for Data with Post-
Randomization Confounding
Description

The PStrata package is designed for estimating causal effects in the presense of post-treatment
confounding using principal stratification. It provides an interface to fit the Bayesian principal
stratification model, which is a complex mixture model, using Stan, a C++ package for obtaining
full Bayesian inference. The formula syntax is an extended version of the syntax applied in many
regression functions and packages, such as 1m, glm and Imed4, to provide a simple interface. A
wide variety of distributions and link functions are supported, allowing users to fit linear, binary
or count data, and survival models with principal stratification. Further modeling options include
multiple post-treatment confounding variables and cluster random effects. The monotonicity and
exclusion restriction assumptions can be easily applied, and prior specifications are flexible and
encourage users to reflect their prior belief. In addition, all parameters can be inferred from the
posterior distribution, which enables further analysis other than provided by the package. A fre-
quentist weighting-based triply-robust estimator is also implemented for both ordinary outcomes
and survival outcomes.

Details

The Bayesian principal stratification analysis relies on two models, the principal stratum model
and the outcome model. The main function of PStrata is PStrata, which uses formula syntax to
specify these models. Based on the supplied formulas, data and additional information allowing
users to specify assumptions and prior distributions, it automatically generates the Stan code via
make_stancode and make_standata, and fits the model using Stan.

make_stancode 3

The estimated probability for each principal stratum and the estimated mean response are calculated
with Stan as it is faster and more space-efficient. However, a large number of post-processing meth-
ods can also be applied. summary is perfectly suited for an overview of the estimated parameters,
and plot provides visualization of the principal stratification and the outcome distribution.

Because PStrata heavily relies on Stan for posterior sampling, a C++ compiler is required. The pro-
gram Rtools (available on https://cran.r-project.org/bin/windows/Rtools/) comes with a
C++ compiler for Windows. On Mac, Xcode is suggested. For further instructions on how to get
the compilers running, please refer to the prerequisites section at the RStan-Getting-Started page.

References

The Stan Development Team. Stan Modeling Language User’s Guide and Reference Manual.
https://mc-stan.org/users/documentation/

Stan Development Team (2020). RStan: the R interface to Stan. R package version 2.21.2. https:
//mc-stan.org/

See Also

PStrata

make_stancode Stan Code for PStrata Models

Description

Generate the Stan code corresponding to the model, which is read by Stan to do sampling.

Usage

make_stancode(PSobject, filename = NULL, debug = FALSE)

Arguments
PSobject an object of class PSobject
filename (optional) string. If not NULL, the stan file will be saved via cat in a text file
named after the string supplied.
debug only for testing in development mode. Will be removed in future release.
Value

A string, which can be printed on screen using cat.

https://cran.r-project.org/bin/windows/Rtools/
https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
https://mc-stan.org/users/documentation/
https://mc-stan.org/
https://mc-stan.org/

4 prior

make_standata Data for PStrata Models

Description

Generate data for PStrata models to be passed to Stan

Usage

make_standata(PSobject)

Arguments

PSobject an object of class PSObject

Value

a named list of objects containing the required data to fit a PStrata model with Stan.

prior Prior functions

Description

Define prior functions used in PStrata.

Usage
prior_flat()

prior_normal(mu = @, sigma = 1)
prior_t(mu = @, sigma = 1, df = 1)
prior_cauchy(mu = @, sigma = 1)
prior_lasso(mu = @, sigma = 1)
prior_logistic(mu = @, sigma = 1)
prior_chisq(df = 1)
prior_inv_chisq(df = 1)

prior_exponential(beta = 1)

PSContrast 5

prior_gamma(alpha = 1, beta = 1)
prior_inv_gamma(alpha = 1, beta = 1)
prior_weibull(alpha = 1, sigma = 1)

Arguments

mu, sigma, df, alpha, beta
parameters for the prior distribution

Value

A list, including the following items.

name name of the distribution
type type of the distribution, one character string of "real" or "positive"
args a named list of all the input parameters

call a function call object of the prior distribution on the parameters

PSContrast Contrast of potential outcome for principal stratification analysis

Description

Create an object that represents contrast of potential outcomes by treatment arms, strata or time

points.
Usage
PSContrast(
outcome,
S = NULL,
Z = NULL,
T = NULL,
type = c("all”, "sequential”, "cycle”)
)
Arguments
outcome an object of class PSoutcome or PSContrast
S a vector denoting which strata to take contrasts. Default is NULL indicating no
contrasts are taken. Set to ‘TRUE® to take contrasts between all strata.
Z a vector denoting which treatment arms to take contrasts. Default is NULL in-

dicating no contrasts are taken. Set to ‘TRUE‘ to take contrasts between all
treatment arms.

type

Value

PSFormula

a vector denoting which time points to take contrasts. Default is NULL indicating
no contrasts are taken. Set to “TRUE® to take contrasts between all time points.
This is used only when ‘object’ is obtained under survival outcome.

Either "all"” (default), "sequential” or "cycle”. If "all”, every pairwise
contrasts are taken. If "sequential”, contrasts are taken over every consecutive
pairs. If "cycle”, contrasts are taken over every consecutive pairs and also
between the first and the last levels.

An S3 object of class PSContrast and PSOutcome, containing

outcome_array

is.survival

time_points

A num_strata * num_treatment * num_iter array of contrast if the outcome type
is non-survival or a num_strata * num_treatment * num_time_points * num_iter
array of contrast if the outcome type is survival.

A boolean value, whether the outcome type is survival.

The time points at which the outcome is evaluated, if the outcome type is sur-
vival.

The S3 method summary and plot can be applied to the returned object.

PSFormula

Set up a model formula for use in PStrata

Description

Set up a model formula for use in PStrata package allowing users to specify the treatment indicator,
the post-randomization confounding variables, the outcome variable, and possibly the covariates.
For survival outcome, a censoring indicator is also specified. Users can also define (potentially
non-linear) transforms of the covariates and include random effects for clusters.

Usage

PSFormula(formula, data)

Arguments

formula

data

an object of class formula (or one that can be coerced to that class): a symbolic
description of the model to be fitted. The details of model specification are given
in ’Details’.

a data frame containing the variables named in formula.

PSFormula 7

Details

Two models are required for the principal stratification analysis: the principal stratum model and
the outcome model.

General formula structure: For the principal stratum model, the formula argument accepts
formulas of the following syntax:

treatment + postrand ~ terms

The treatment variable refers to the name of the binary treatment indicator. The postrand
variable refers to the name of the binary post-randomization confounding variable. The terms
part includes all of the predictors used for the principal stratum model.

For the outcome model, the formula argument accepts formulas of the similar syntax:
response [+ observed] ~ terms

The response variable refers to the name of the outcome variable. The terms part includes all of
the predictors used for the outcome model. The observed variable shall not be used for ordinary
response. When the true response is subject to right censoring (also called survival outcome in
relevant literature), the response variable should refer to the observed or censored response, and
the observed variable should be an indicator of whether the true response is observed. For exam-
ple, suppose the true time for an event is 7" and the time of censoring is C', Then, the response
variable should refer to min(7, C), the actual time of the event or censoring, whichever comes
earlier, and the indicator observed is 1 if T' < C and 0 otherwise.

The terms specified in the principal stratum model and the outcome model can be different.

Multiple post-randomization confounding variables: If multiple post-randomization con-
founding variables exist, one can specify all of them using the following syntax:

treatment + postrand_1 + postrand_2 + ... + postrand_n ~ terms

The post-randomization confounding variables are provided in place of postrand_1 to postrand_n.
Up to this version, all of these variables should be binary indicators. Note that the order of these
post-randomization confounding variables will not affect the result of the estimation of the pa-
rameters, but it will be important in specifying other parameters, such as strata and ER (see
PStrata).

Non-linear transformation of the predictors: The syntax for the predictors follow the conven-
tions as used in link{formula}. The part terms consists of a series of terms concatenated by +,
each term being the name of a variable, or the interaction of several variables separated by :.

Apart from + and :, a number of other operators are also useful. The * operator is a short-hand
for factor crossing: a*b is interpreted as a + b + a:b. The * operator means factor crossing to a
specific degree. For example, (a + b + c)*2 is interpreted as (a+b + c) * (a +b + c), which is
identical toa+b + c+a:b + a:c +b:c. The - operator removes specified terms, so that (a +b +
c)*2 - a:bisidentical to a+b+c+a:c+b:c. The - operator can be also used to remove the
intercept term, such as x - 1. One can also use x + @ to remove the intercept term.

Arithmetic expressions such as a + log(b) are also legal. However, arithmetic expressions may
contain special symbols that are defined for other use, such as +, *, * and -. To avoid confusion,
the function I() can be used to bracket portions where the operators should be interpreted in
arithmetic sense. For example, in x + I(y + z), the term y + z is interpreted as the sum of y and z.

Group level random effect: When effects assumed to vary across grouping variables are consid-
ered, one can specify such effects by adding terms in the form of gterms | group, where group

8 PSFormula

refers to the group indicator (usually a factor), and gterms specifies the terms whose coefficients
are group-specific, drawn from a population normal distribution.

The most common situation for group level random effect is to include group-specific intercepts
to account for unmeasured confounding. For example, x +y + (1 | g) specifies a model with
population predictors x and y, as well as random intercept for each level of g.

For more complex random effect structures, refer to 1me4: : Imer. However, structures other than
simple random intercepts and slopes may lead to unexpected behaviors.

Value

PSFormula returns an object of class PSFormula, which is a 1ist containing for following compo-
nents.

full_formula input formula as is

data input data frame

fixed_eff_formula input formula with only fixed effects

response_names character vector with names of variables that appear on the left hand side of input
formula

has_random_effect logical indicating whether random effects are specified in the input formula
has_intercept logical indicating whether the input formula has an intercept
fixed_eff_names character vector with names of all variables included as fixed effects

fixed_eff_count integer indicating the number of variables (factors are converted to and counted
as dummy variables)

fixed_eff_matrix fixed-effect design matrix

random_eff_list a list containing information for each random effect. Such information is a list
with the corresponding design matrix, the term names and the factor levels.

See Also

formula, 1mer.

Examples

df <- data.frame(

X =1:10,

Z =c¢c(0,0,0,0,0,1,1,1,1,1),
D = c(0,0,0,1,1,1,0,0,1,1),
R=c¢(,1,1,1,2,2,2,3,3,3)

)
PSFormula(Z + D ~ X + I(X*2) + (1 | R), df)

PSObject 9

PSObject Create a Principal Stratification Object

Description

Create an object containing essential information to create the Stan file and data for Stan to draw
posterior samples. Such information includes the specified model for principal stratum and out-
come, the type of outcome, assumptions, and prior specification, etc.

Usage

PSObject(
S.formula,
Y.formula,
Y.family,
data = NULL,
strata = NULL,
ER = NULL,
prior_intercept = prior_flat(),
prior_coefficient = prior_normal(),
prior_sigma = prior_inv_gamma(),
prior_alpha = prior_inv_gamma(),
prior_lambda = prior_inv_gamma(),
prior_theta = prior_normal(),
survival.time.points = 50

Arguments

S.formula, Y.formula
an object of class "PSFormula" (or an object of class "formula" that can be
coerced to that class with data provided) specifying the model for principal
stratum and outcome respectively. See PSFormula for details.

Y.family an object of class "family": specifying the parametric family of the model for
the response and the link function. See the documentation for glm for details on
how such model fitting takes place. Supported families and corresponding link
functions are presented in ’Details’ below.

data (optional) a data frame object. This is required when either S.formula or
Y.formulais a formula object, to coerce it into a PSFormula object. When this
happens, the data frame should contain all of the variables with names given in
S.formula or Y. formula.

strata, ER arguments to define the principal strata. See PStratalnfo for details.

Alternatively, one can pass an object of class PStratalnfo to strata, and ER
will be ignored.

10 PSObject

prior_intercept, prior_coefficient, prior_sigma, prior_alpha,
prior_lambda, prior_theta
prior distribution for corresponding parameters in the model.
survival.time.points
a vector of time points at which the estimated survival probability is evaluated
(only used when the type of outcome is survival), or an integer specifying the
number of time points to be chosen. By default, the time points are chosen with
equal distance from O to the 90% quantile of the observed outcome.

Details

The supported family objects include two types: native families for ordinary outcome and survival
family for survival outcome.

For ordinary outcome, the below families and links are supported. See family for more details.

family link

binomial logit, probit, cauchit, log, cloglog
gaussian identity, log, inverse

Gamma inverse, identity, log

poisson log, identity, log

inverse.gamma 1/mu”2, inverse, identity, log

The quasi family is not supported for the current version of the package.

For survival outcome, the family object is created by survival (method = "Cox", link = "identity"),
where method can be either "Cox” for Weibull-Cox model or "AFT" for accelerated failure time
model. See survival for more details. For the current version, only "identity" is used as the link
function.

The gaussian family and the survival family with method = "AFT" introduce an additional pa-
rameter sigma for the standard deviation, whose prior distribution is specified by prior_sigma.
Similarly, prior_alpha specifies the prior distribution of alpha for Gamma family, prior_lambda
specifies the prior distribution of theta for inverse.gaussian family, and prior_theta specifies
the prior distribution of theta for survival family with method = "Cox".

The models for principal stratum S.formula and response Y. formula also involve a linear com-
bination of terms, where the prior distribution of the intercept and coefficients are specified by
prior_intercept and prior_coefficient respectively.

Value
A list, containing important information describing the principal stratification model.

S.formula, Y.formula
A PSFormula object converted from the input S. formula and Y. formula
Y.family Same as input.

is.survival A boolean value. TRUE if Y. family is survival_Cox or survival_AFT.

strata_info A PStrataInfo object converted from the input strata and ER.

PSOutcome 11

prior_intercept, prior_coefficient, prior_sigma, prior_alpha,
prior_lambda, prior_theta

Same as input.
survival.time.points

A list of time points at which the estimated survival probability is evaluated.

SZDG_table A matrix. Each row corresponds to a valid (stratum, treatment, confounder,
group) combination.
Z_names A character vector. The names of the levels of the treatment.
Examples

df <- data.frame(
Z = rbinom(10, 1, 0.5),
D = rbinom(10, 1, 0.5),
Y = rnorm(10),

X =1:10
)
PSObject(
S.formula = Z + D ~ X,
Y.formula = Y ~ X,
Y.family = gaussian("identity"),
data = df,
strata = c(n = "Q0x", c = "@1", a = "11x")
)

PSObject(
S.formula =72 +D ~ 1,

Y.formula = Y ~ 1,

Y.family = gaussian("identity"),

data = sim_data_normal,

strata = c(n = "00x", c = "01", a = "11%")

PSOutcome Estimated potential outcome for principal stratification analysis

Description

Create an object useful to present the potential outcomes under each treatment arm for each principal
stratum. Contrasts between treatment arms or principal strata are easy to obtain from this object.

Usage

PSOutcome(PStrataObj, type = c("probability”, "RACE"))

12 PSSample

Arguments
PStrataObj an object of class PStrata or PStrata_survival
type whether the causal estimand is survival probability or RACE, ignored for non-
survival outcomes.
Value

An S3 object of type PSOutcome, containing

outcome_array A num_strata * num_treatment * num_iter array of mean outcome if the out-
come type is non-survival or a num_strata * num_treatment * num_time_points
* num_iter array of mean outcome if the outcome type is survival.

is.survival A boolean value, whether the outcome type is survival.
time_points The time points at which the outcome is evaluated, if the outcome type is sur-
vival.

The S3 method summary and plot can be applied to the returned object.

PSSample Sample with Stan

Description

Sample from the posterior distribution by calling stan. Check stan for details of the arguments.

Usage
PSSample(
file,
model_name = "anon_model”,
model_code = "",
fit = NA,
data = list(),
pars = NA,
chains = 4,
iter = 2000,
warmup = floor(iter/2),
thin = 1,
init = "random”,

seed = sample.int(.Machine$integer.max, 1),
algorithm = c("NUTS", "HMC", "Fixed_param"),
control = NULL,

sample_file = NULL,

diagnostic_file = NULL,

save_dso = TRUE,

verbose = FALSE,

PSSample 13

include = TRUE,

cores = getOption(”"mc.cores”, 1L),

open_progress = interactive() && !isatty(stdout()) && !identical(Sys.getenv("RSTUDIO"),
II‘I H) ,

boost_lib
eigen_lib

)

NULL,
NULL

Arguments

file The path to the Stan program to use. file should be a character string file name
or a connection that R supports containing the text of a model specification in
the Stan modeling language.

A model may also be specified directly as a character string using the model_code
argument, but we recommend always putting Stan programs in separate files
with a . stan extension.

The stan function can also use the Stan program from an existing stanfit ob-
ject via the fit argument. When fit is specified, the file argument is ignored.

model_name A string to use as the name of the model; defaults to "anon_model”. However,
the model name will be derived from file or model_code (if model_code is
the name of a character string object) if model_name is not specified. This is
not a particularly important argument, although since it affects the name used in
printed messages, developers of other packages that use rstan to fit models may
want to use informative names.

model_code A character string either containing the model definition or the name of a char-
acter string object in the workspace. This argument is used only if arguments
file and fit are not specified.

fit An instance of S4 class stanfit derived from a previous fit; defaults to NA. If
fit is not NA, the compiled model associated with the fitted result is re-used;
thus the time that would otherwise be spent recompiling the C++ code for the
model can be saved.

data A named list or environment providing the data for the model, or a character
vector for all the names of objects to use as data. See the Passing data to Stan
section below.

pars A character vector specifying parameters of interest to be saved. The default
is to save all parameters from the model. If include = TRUE, only samples for
parameters named in pars are stored in the fitted results. Conversely, if include
= FALSE, samples for all parameters except those named in pars are stored in the
fitted results.

chains A positive integer specifying the number of Markov chains. The default is 4.

iter A positive integer specifying the number of iterations for each chain (including
warmup). The default is 2000.

warmup A positive integer specifying the number of warmup (aka burnin) iterations per
chain. If step-size adaptation is on (which it is by default), this also controls
the number of iterations for which adaptation is run (and hence these warmup

14

thin

init

seed

algorithm

PSSample

samples should not be used for inference). The number of warmup iterations
should be smaller than iter and the default is iter/2.

A positive integer specifying the period for saving samples. The default is 1,
which is usually the recommended value. Unless your posterior distribution
takes up too much memory we do not recommend thinning as it throws away
information. The tradition of thinning when running MCMC stems primarily
from the use of samplers that require a large number of iterations to achieve
the desired effective sample size. Because of the efficiency (effective samples
per second) of Hamiltonian Monte Carlo, rarely should this be necessary when
using Stan.

Specification of initial values for all or some parameters. Can be the digit @, the
strings "@" or "random”, a function that returns a named list, or a list of named
lists:

init="random” (default): Let Stan generate random initial values for all pa-
rameters. The seed of the random number generator used by Stan can be
specified via the seed argument. If the seed for Stan is fixed, the same
initial values are used. The default is to randomly generate initial values
between -2 and 2 on the unconstrained support. The optional additional
parameter init_r can be set to some value other than 2 to change the range
of the randomly generated inits.

init="0", init=0: Initialize all parameters to zero on the unconstrained sup-
port.

inits via list: Set inital values by providing a list equal in length to the number
of chains. The elements of this list should themselves be named lists, where
each of these named lists has the name of a parameter and is used to specify
the initial values for that parameter for the corresponding chain.

inits via function: Set initial values by providing a function that returns a list
for specifying the initial values of parameters for a chain. The function can
take an optional parameter chain_id through which the chain_id (if spec-
ified) or the integers from 1 to chains will be supplied to the function for
generating initial values. See the Examples section below for examples of
defining such functions and using a list of lists for specifying initial values.

When specifying initial values via a list or function, any parameters for
which values are not specified will receive initial values generated as described
in the init="random" description above.

The seed for random number generation. The default is generated from 1 to the
maximum integer supported by R on the machine. Even if multiple chains are
used, only one seed is needed, with other chains having seeds derived from that
of the first chain to avoid dependent samples. When a seed is specified by a
number, as. integer will be applied to it. If as. integer produces NA, the seed
is generated randomly. The seed can also be specified as a character string of
digits, such as "12345", which is converted to integer.

Using R’s set. seed function to set the seed for Stan will not work.

One of the sampling algorithms that are implemented in Stan. The default
and preferred algorithm is "NUTS”, which is the No-U-Turn sampler variant of
Hamiltonian Monte Carlo (Hoffman and Gelman 2011, Betancourt 2017). Cur-

rently the other options are "HMC" (Hamiltonian Monte Carlo), and "Fixed_param”.

PSSample

control

sample_file

diagnostic_file

save_dso

15

When "Fixed_param” is used no MCMC sampling is performed (e.g., for sim-
ulating with in the generated quantities block).

A named list of parameters to control the sampler’s behavior. It defaults to
NULL so all the default values are used. First, the following are adaptation param-
eters for sampling algorithms. These are parameters used in Stan with similar
names here.

e adapt_engaged (logical)

* adapt_gamma (double, positive, defaults to 0.05)

e adapt_delta (double, between O and 1, defaults to 0.8)

* adapt_kappa (double, positive, defaults to 0.75)

* adapt_t@ (double, positive, defaults to 10)

e adapt_init_buffer (integer, positive, defaults to 75)

* adapt_term_buffer (integer, positive, defaults to 50)

* adapt_window (integer, positive, defaults to 25)

In addition, algorithm HMC (called ’static HMC’ in Stan) and NUTS share the
following parameters:

* stepsize (double, positive, defaults to 1) Note: this controls the initial
stepsize only, unless adapt_engaged=FALSE.

e stepsize_jitter (double, [0,1], defaults to 0)

* metric(string, one of "unit_e", "diag_e", "dense_e", defaults to "diag_e")
For algorithm NUTS, we can also set:

* max_treedepth (integer, positive, defaults to 10)
For algorithm HMC, we can also set:

* int_time (double, positive)
For test_grad mode, the following parameters can be set:

e epsilon (double, defaults to 1e-6)
e error (double, defaults to 1e-6)

An optional character string providing the name of a file. If specified the draws
for all parameters and other saved quantities will be written to the file. If not pro-
vided, files are not created. When the folder specified is not writable, tempdir ()
is used. When there are multiple chains, an underscore and chain number are
appended to the file name.

An optional character string providing the name of a file. If specified the diag-
nostics data for all parameters will be written to the file. If not provided, files
are not created. When the folder specified is not writable, tempdir() is used.
When there are multiple chains, an underscore and chain number are appended
to the file name.

Logical, with default TRUE, indicating whether the dynamic shared object (DSO)
compiled from the C++ code for the model will be saved or not. If TRUE, we can
draw samples from the same model in another R session using the saved DSO
(i.e., without compiling the C++ code again). This parameter only takes effect if
fit is not used; with fit defined, the DSO from the previous run is used. When

16

verbose

include

cores

open_progress

PSSample

save_dso=TRUE, the fitted object can be loaded from what is saved previously
and used for sampling, if the compiling is done on the same platform, that is,
same operating system and same architecture (32bits or 64bits).

TRUE or FALSE: flag indicating whether to print intermediate output from Stan
on the console, which might be helpful for model debugging.

Logical scalar defaulting to TRUE indicating whether to include or exclude the
parameters given by the pars argument. If FALSE, only entire multidimensional
parameters can be excluded, rather than particular elements of them.

The number of cores to use when executing the Markov chains in parallel. The
default is to use the value of the "mc.cores” option if it has been set and oth-
erwise to default to 1 core. However, we recommend setting it to be as many
processors as the hardware and RAM allow (up to the number of chains). See
detectCores if you don’t know this number for your system.

Logical scalar that only takes effect if cores > 1 but is recommended to be TRUE
in interactive use so that the progress of the chains will be redirected to a file
that is automatically opened for inspection. For very short runs, the user might
prefer FALSE.
Other optional parameters:

e chain_id (integer)

* init_r (double, positive)

* test_grad (logical)

* append_samples (logical)

* refresh(integer)

* save_warmup(logical)

* deprecated: enable_random_init(logical)
chain_id can be a vector to specify the chain_id for all chains or an integer. For
the former case, they should be unique. For the latter, the sequence of integers
starting from the given chain_id are used for all chains.
init_r is used only for generating random initial values, specifically when
init="random" or not all parameters are initialized in the user-supplied list
or function. If specified, the initial values are simulated uniformly from inter-
val [-init_r, init_r] rather than using the default interval (see the manual of
(cmd)Stan).
test_grad (logical). If test_grad=TRUE, Stan will not do any sampling. In-
stead, the gradient calculation is tested and printed out and the fitted stanfit
object is in test gradient mode. By default, it is FALSE.
append_samples (logical). Only relevant if sample_file is specified and is
an existing file. In that case, setting append_samples=TRUE will append the
samples to the existing file rather than overwriting the contents of the file.
refresh (integer) can be used to control how often the progress of the sam-
pling is reported (i.e. show the progress every refresh iterations). By default,
refresh =max(iter/10, 1). The progress indicator is turned off if refresh
<=0.
Deprecated: enable_random_init (logical) being TRUE enables specifying
initial values randomly when the initial values are not fully specified from the
user.

PStrata 17

save_warmup (logical) indicates whether to save draws during the warmup
phase and defaults to TRUE. Some memory related problems can be avoided by
setting it to FALSE, but some diagnostics are more limited if the warmup draws
are not stored.

boost_lib The path for an alternative version of the Boost C++ to use instead of the one in
the BH package.
eigen_lib The path for an alternative version of the Eigen C++ library to the one in ReppEigen.
Value

An object of S4 class rstan: :stanfit.

PStrata Principal Stratification Analysis for Data with Post-Randomization In-
tervention

Description

Perform pincipal stratification analysis when there are confounding variables after randomization

Usage

PStrata(
PSobject = NULL,
S.formula,
Y.formula,
Y.family,
data = NULL,
strata = NULL,
ER = NULL,
prior_intercept = prior_flat(),
prior_coefficient = prior_normal(),
prior_sigma = prior_inv_gamma(),
prior_alpha = prior_inv_gamma(),
prior_lambda = prior_inv_gamma(),
prior_theta = prior_normal(),
survival.time.points = 50,
filename = NULL,

Arguments

PSobject an object of class PSObject. If left blank, the object is constructed using the
following arguments. See PSObject for details.

18

PStrata

S.formula, Y.formula

Y.family

data

strata, ER

prior_intercept,

an object of class "PSFormula" (or an object of class "formula" that can be
coerced to that class with data provided) specifying the model for principal
stratum and outcome respectively. See PSFormula for details.

an object of class "family": specifying the parametric family of the model for
the response and the link function. See the documentation for glm for details on
how such model fitting takes place. Supported families and corresponding link
functions are presented in "Details’ below.

(optional) a data frame object. This is required when either S.formula or
Y.formula is a formula object, to coerce it into a PSFormula object. When this
happens, the data frame should contain all of the variables with names given in
S.formula or Y. formula.

arguments to define the principal strata. See PStrataInfo for details.

Alternatively, one can pass an object of class PStratalnfo to strata, and ER
will be ignored.

prior_coefficient, prior_sigma, prior_alpha,

prior_lambda, prior_theta

prior distribution for corresponding parameters in the model.

survival.time.points

filename

Value

a vector of time points at which the estimated survival probability is evaluated
(only used when the type of outcome is survival), or an integer specifying the
number of time points to be chosen. By default, the time points are chosen with
equal distance from O to the 90% quantile of the observed outcome.

(optional) string. If not NULL, the stan file will be saved via cat in a text file
named after the string supplied.

additional parameters to be passed into PSSample.

An object of class PStrata or PStrata_survival, which is a list containing

PSobject

post_samples

Examples

require(abind)

An object of PSObject.

An object of class rstan: :stanfit returned by Stan.

PSobj <- PSObject(

)

S.formula
Y.formula

Z+D~1,
Y ~ 1,

Y.family = gaussian("identity"),
data = sim_data_normal,
strata = c(n = "00*", c = "01", a = "11%")

PStrata(PSobj, cores = 2, chains = 2, iter = 200)

Another example for survival data

PStratalnfo 19

PSobj <- PSObject(
S.formula =72 +D ~ 1,
Y.formula = Y + delta ~ 1,
Y.family = survival("Cox"),
data = sim_data_Cox,
strata = c("never-taker™ = "Q0x", complier = "01", ~always-taker™ = "11%")

)

PStrata(PSobj, cores = 2, chains = 2, iter = 200)

PStratalInfo Create an object that defines the principal strata

Description
PStratalnfo is a class of object that defines all principal strata to be considered, by specifying the
potential value of each post-randomization confounding variable under each treatment arm.

Usage

PStrataInfo(strata, ER = NULL)

Arguments
strata a list or a vector defining all principal strata. Details of the syntax are given in
"Details’ below.
ER a vector indicating on which strata exclusion restriction is assumed. Details are
given in ’Details’ below.
Details

Since definition of the principal strata appears fundamental and essential in principal stratification
analyses, the creation of such an object is designed to be user-friendly - various ways are accommo-
dated to create a PStrataInfo object, some possibly preferable over others under different settings.

There are mainly two ways to easily create a PStrataInfo object.

By string: To define the principal strata by strings, the strata argument should receive a named
vector, each component being the description of one strata with the name of that strata. The
naming does not affect the actual inference, but informative names can be helpful for users to
distinguish among strata.

Each stratum is defined by the potential values of the post-randomization confounding variable
D under each treatment arm. By convention, assume that the K treatment arms are numbered
from 0 to K-1. Then, each stratum is defined by the tuple (D(0), ..., D(K — 1)), which can be
written compactly as a string. For example, under binary treatment, the never-takers (i.e. D(0) =
D(1) = 0) can be represented by string "@0" and the compliers (i.e. D(0) = 0, D(1) = 1) can be
represented by string "@1". Note that the value that the post-randomization confounding variable

20 PStratalnfo

can take is limited between O to 9 for the string to be parsed correctly. This should be more than
enough in most of the applications, and in cases where a number above 10 is needed, please create
the PStrataInfo object by matrix (see below).

When multiple post-randomization confounding variables exist, the string for each confounding
variable is concatenated with the symbol "|". For example, if Dy and D; are both binary post-
randomization confounding variables, the stratum defined by Dy(0) = Dy(1) = 0,D;(0) =
0,D;1(1) = 1 can be represented by string "@@|11". The order of these confounding variables
should be the same as they appear in the S. formula parameter in PSObject.

A common assumption in practice is the exclusion restriction (ER) assumption, which assumes
that the causal effect of the treatment on the outcome is totally realized through the post-randomization
confounding variables. For example, the ER assumption on the stratum of never-takers can be in-
terpreted as the outcome is identically distributed across the treated and control group, because
all causal effect of the treatment is realized through the post-randomization variable, which is the
same (0) under both treatment arms. To assume ER for some stratum, simply put an asterisk "*"
at the end of the string, such as "00*" for the never-taker stratum. Note that under the context of
multiple post-randomization variables, the package treats all such variables as a unity. The out-
come is assumed to be identical under different treatment arms only when all post-randomization
variables remain the same under these treatment arms.

Another way to specify the stratum where ER is assumed is to use the ER argument. It either takes
a logical vector of the same length of strata with TRUE indicating ER is assumed and FALSE
otherwise, or takes a character vector with the names of all strata where ER is to be assumed
upon. When names to the strata are not provided in strata, the strata can be referred to by
their canonical name, which is the string used to define the stratum with asterisks removed. For
example, the strata "0@|11*" can be referred to with name "00I11".

By matrix: To define the principal strata by matrices, the strata argument should receive a
named list, each component being a matrix. The number of rows matches the number of post-
randomization variables, and the number of columns matches that of possible treatment arms. For
any fixed row ¢, column j stores the potential value of the i-th post-randomization variable under
treatment arm j.

When this approach is used, there is no shorthand to specify ER assumption. The ER argument is
required to do this.

Warning: When ER assumption is specified in both strata and ER argument, the shorthand no-
tation for ER in strata is ignored, and a warning is given regardless of whether the specification
given by strata and ER actually match.

Value

an object of class PSStrataInfo, which is a list of the following components.

num_strata number of principal strata defined

num_treatment number of treatment arms

num_postrand_var number of post-randomization variables

max_postrand_level integer vector, the biggest number used by each post-randomization variable

strata_matrix integer matrix, each row corresponding to one stratum and each column correspond-
ing to one treatment arm. The matrix is designed only for internal use.

sim_data_Cox 21

ER_list logical vector, each component corresponding to one stratum, indicating whether ER is
assumed for the specific stratum

strata_names character vector, the names of all strata

Examples

PStratalnfo(strata = c(n = "00x", c = "01", a = "11"))
PStrataInfo(
strata = list(n = c(0@, 0), c
ER = c(TRUE, FALSE, FALSE)

C(0! 1)’ a=C(1’ 1))!

)
PStratalnfo(
strata = list(n = c(@, @), c = c(0, 1), a =c(1, 1)),
ER = c("n")
)
sim_data_Cox Simulated Dataset for Survival Outcome (Cox Model)
Description

A dataset generated for illustration of the principal stratification analysis. This dataset represents
the common case of non-compliance.

Usage

sim_data_Cox

Format

‘sim_data_Cox‘ A data frame with 1,000 rows and 7 columns:

"non

S Principal Strata: "never taker", "complier” or "always taker"

Z Randomized treatment arm: 0 = control, 1 = treatment

D Actual treatment arm: O = control, 1 = treatment

T True outcome: event time

C Censor time

delta Event indicator. 1 means true outcome is observed; 0 means otherwise

Y The observed event time or censor time

22 sim_data_normal

Details

The dataset represents the scenario where actual treatment might not be in compliance with the ran-
domized (assigned) treatment. Defiers and always-takers are ruled out, leaving two strata, "never-
taker" and "complier" randomly sampled with probability 0.3, 0.7 respectively. The assigned treat-
ment Z is randomized with 0.5 probability for either arm. The true event time 7 is given by the
following Weibull-Cox distribution

never-taker Y ~ Weibull — Cox(theta = 1, mu = 0.3)

complier Y ~ Weibull — Cox(theta = 1,mu=2— 0.6 * Z)

and the censor time C' is uniformly drawn between 0.5 and 2.

The exclusion restriction assumption holds for never-takers in this generated dataset.

sim_data_normal Simulated Dataset for Normal Outcome

Description

A dataset generated for illustration of the principal stratification analysis. This dataset represents
the common case of non-compliance.

Usage

sim_data_normal

Format

‘sim_data_normal‘ A data frame with 1,000 rows and 4 columns:

"non

S Principal Strata: "never taker", "complier” or "always taker"
7. Randomized treatment arm: 0 = control, 1 = treatment

D Actual treatment arm: O = control, 1 = treatment

Y Outcome

Details

The dataset represents the scenario where actual treatment might not be in compliance with the ran-
domized (assigned) treatment. Defiers are ruled out, leaving three strata, "never taker", "complier"
and "always taker" randomly sampled with probability 0.3, 0.2 and 0.5 respectively. The assigned
treatment Z is randomized with 0.5 probability for either arm. The outcome Y is given by the

following.

never taker Y ~ N(3,1)
complier Y ~ N(—1— Z,0.5)
always taker Y ~ N(1,2)

The exclusion restriction assumption holds for never takers and always takers in this generated
dataset.

survival

23

survival The family function for survival data

Description

Construct a family object for survival data

Usage

survival(method = "Cox"”, link = "identity")

Arguments
method the parametric method used for survival data. Can be Cox or AFT.
link a link function, currently only identity is implemented and used
Value

A family object

Index

x datasets
sim_data_Cox, 21
sim_data_normal, 22

cat, 3,18
detectCores, /16

family, 9, 10, 18
formula, 8, 9, 18

glm, 2,9, 18
1,7

Im, 2

1me4, 2

Ime4: :1mer, 8
1lmer, 8

make_stancode, 2, 3
make_standata, 2, 4

plot, 3

prior, 4

prior_cauchy (prior), 4
prior_chisq(prior), 4
prior_exponential (prior), 4
prior_flat (prior), 4
prior_gamma (prior), 4
prior_inv_chisq(prior), 4
prior_inv_gamma (prior), 4
prior_lasso (prior), 4
prior_logistic (prior), 4
prior_normal (prior), 4
prior_t (prior), 4
prior_weibull (prior), 4
PSContrast, 5
PSFormula, 6, 9, 18
PSObject, 9, 17, 20
PSOutcome, 11

24

PSSample, 12, 18
PStrata, 2, 3,7, 17
PStrata-package, 2
PStratalnfo, 9, 18, 19

sim_data_Cox, 21
sim_data_normal, 22
stan, 12

summary, 3
survival, 10, 23

	PStrata-package
	make_stancode
	make_standata
	prior
	PSContrast
	PSFormula
	PSObject
	PSOutcome
	PSSample
	PStrata
	PStrataInfo
	sim_data_Cox
	sim_data_normal
	survival
	Index

