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PINstimation-package An R package for estimating the probability of informed trading

Description

The package provides utilities for the estimation of probability of informed trading measures: orig-
inal PIN (PIN) as introduced by Easley and Ohara (1992) and Easley et al. (1996) , multilayer
PIN (MPIN) as introduced by Ersan (2016), adjusted PIN (AdjPIN) model as introduced in Duarte
and Young (2009), and volume-synchronized PIN (VPIN) as introduced by Easley et al. (2011) and
Easley et al. (2012). Estimations of PIN, MPIN, and adjPIN are subject to floating-point exception
error, and are sensitive to the choice of initial values. Therefore, researchers developed factoriza-
tions of the model likelihood functions as well as algorithms for determining initial parameter sets
for the maximum likelihood estimation - (MLE henceforth).

As for the factorizations, the package includes three different factorizations of the PIN likelihood
function :fact_pin_eho() as in Easley et al. (2010), fact_pin_lk() as in Lin and Ke (2011), and
fact_pin_e() as in Ersan (2016); one factorization for MPIN likelihood function: fact_mpin() as
in Ersan (2016); and one factorization for AdjPIN likelihood function: fact_adjpin() as in Ersan
and Ghachem (2022b).

The package implements three algorithms to generate initial parameter sets for the MLE of the PIN
model in: initials_pin_yz() for the algorithm of Yan and Zhang (2012), initials_pin_gwj()
for the algorithm of Gan et al. (2015), and initials_pin_ea() for the algorithm of Ersan and
Alici (2016). As for the initial parameter sets for the MLE of the MPIN model, the function
initials_mpin() implements a multilayer extension of the algorithm of Ersan and Alici (2016).
Finally, three functions implement three algorithms of initial parameter sets for the MLE of the
AdjPIN model, namely initials_adjpin() for the algorithm in Ersan and Ghachem (2022b),
initials_adjpin_cl() for the algorithm of Cheng and Lai (2021); and initials_adjpin_rnd()
for randomly generated initial parameter sets. The choice of the initial parameter sets can be done
directly, either using specific functions implementing MLE for the PIN model, such as, pin_yz(),
pin_gwj(), pin_ea(); or through the argument initialsets in generic functions implementing
MLE for the MPIN and AdjPIN models, namely mpin_ml(), and adjpin(). Besides, PIN, MPIN
and AdjPIN models can be estimated using custom initial parameter set(s) provided by the user
and fed through the argument initialsets for the functions pin(), mpin_ml() and adjpin().
Through the function get_posteriors(), the package also allows users to assign, for each day in
the sample, the posterior probability that the day is a no-information day, good-information day and
bad-information day.

As an alternative to the standard maximum likelihood estimation, estimation via expectation con-
ditional maximization algorithm (ECM) is suggested in Ghachem and Ersan (2022a), and is imple-
mented through the function mpin_ecm() for the MPIN model, and the function adjpin() for the
AdjPIN model.

Dataset(s) of daily aggregated numbers of buys and sells with user determined number of infor-
mation layers can be simulated with the function generatedata_mpin() for the MPIN (PIN) model;
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and generatedata_adjpin() for the AdjPIN model. The output of these functions contains the the-
oretical parameters used in the data generation, empirical parameters computed from the generated
data, alongside the generated data itself. Data simulation functions allow for broad customization
to produce data that fit the user’s preferences. Therefore, simulated data series can be utilized in
comparative analyses for the applied methods in different scenarios. Alternatively, the user can use
two example datasets preloaded in the package: dailytrades as a representative of a quarterly
trade data with daily buys and sells; and hfdata as a simulated high-frequency dataset comprising
100 000 trades.

Finally, the package provides two functions to deal with high-frequency data. First, the func-
tion vpin() estimates and provides detailed output on the order flow toxicity metric, volume-
synchronized probability of informed trading, as developed in Easley et al. (2011) and Easley
et al. (2012). Second, the function aggregate_trades() aggregates the high-frequency trade-data
into daily data using several trade classification algorithms, namely the tick algorithm, the quote
algorithm, LR algorithm (Lee and Ready 1991) and the EMO algorithm (Ellis et al. 2000).

The package provides fast, compact, and precise utilities to tackle the sophisticated, error-prone,
and time-consuming estimation procedure of informed trading, and this solely using the raw trade-
level data. Ghachem and Ersan (2022b) provides comprehensive overview of the package: it first
details the underlying theoretical background, provides a thorough description of the functions,
before using them to tackle relevant research questions.

Functions

• adjpin estimates the adjusted probability of informed trading (AdjPIN) of the model of Duarte
and Young (2009).

• aggregate_trades aggregates the trading data per day using different trade classification algo-
rithms.

• detectlayers_e detects the number of information layers present in the trade-data using the
algorithm in Ersan (2016).

• detectlayers_eg detects the number of information layers present in the trade-data using the
algorithm in Ersan and Ghachem (2022a).

• detectlayers_ecm detects the number of information layers present in the trade-data using the
expectation-conditional maximization algorithm in Ghachem and Ersan (2022a).

• fact_adjpin returns the AdjPIN factorization of the likelihood function by Ersan and Ghachem
(2022b) evaluated at the provided data and parameter sets.

• fact_pin_e returns the PIN factorization of the likelihood function by Ersan (2016) evaluated
at the provided data and parameter sets.

• fact_pin_eho returns the PIN factorization of the likelihood function by Easley et al. (2010)
evaluated at the provided data and parameter sets.

• fact_pin_lk returns the PIN factorization of the likelihood function by Lin and Ke (2011)
evaluated at the provided data and parameter sets.

• fact_mpin returns the MPIN factorization of the likelihood function by Ersan (2016) evaluated
at the provided data and parameter sets.

• generatedata_adjpin generates a dataset object or a list of dataset objects generated according
to the assumptions of the AdjPIN model.
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• generatedata_mpin generates a dataset object or a list of dataset objects generated according
to the assumptions of the MPIN model.

• get_posteriors computes, for each day in the sample, the posterior probabilities that it is a
no-information day, good-information day and bad-information day respectively.

• initials_adjpin generates the initial parameter sets for the ML/ECM estimation of the adjusted
probability of informed trading using the algorithm of Ersan and Ghachem (2022b).

• initials_adjpin_cl generates the initial parameter sets for the ML/ECM estimation of the adjusted
probability of informed trading using an extension of the algorithm of Cheng and Lai (2021).

• initials_adjpin_rnd generates random parameter sets for the estimation of the AdjPIN model.

• initials_mpin generates initial parameter sets for the maximum likelihood estimation of the
multilayer probability of informed trading (MPIN) using the Ersan (2016) generalization of the
algorithm in Ersan and Alici (2016).

• initials_pin_ea generates the initial parameter sets for the maximum likelihood estimation of
the probability of informed trading (PIN) using the algorithm of Ersan and Alici (2016).

• initials_pin_gwj generates the initial parameter set for the maximum likelihood estimation of
the probability of informed trading (PIN) using the algorithm of Gan et al. (2015).

• initials_pin_yz generates the initial parameter sets for the maximum likelihood estimation of
the probability of informed trading (PIN) using the algorithm of Yan and Zhang (2012).

• mpin_ecm estimates the multilayer probability of informed trading (MPIN) using the expectation-
conditional maximization algorithm (ECM) as in Ghachem and Ersan (2022a).

• mpin_ml estimates the multilayer probability of informed trading (MPIN) using layer detec-
tion algorithms in Ersan (2016), and Ersan and Ghachem (2022a); and standard maximum
likelihood estimation.

• pin estimates the probability of informed trading (PIN) using custom initial parameter set(s)
provided by the user.

• pin_bayes estimates the probability of informed trading (PIN) using the Bayesian approach in
Griffin et al. (2021).

• pin_ea estimates the probability of informed trading (PIN) using the initial parameter sets from
the algorithm of Ersan and Alici (2016).

• pin_gwj estimates the probability of informed trading (PIN) using the initial parameter set
from the algorithm of Gan et al. (2015).

• pin_yz estimates the probability of informed trading (PIN) using the initial parameter sets from
the grid-search algorithm of Yan and Zhang (2012).

• vpin estimates the volume-synchronized probability of informed trading (VPIN).

Datasets

• dailytrades A dataframe representative of quarterly (60 trading days) data of simulated daily
buys and sells.

• hfdata A dataframe containing simulated high-frequency trade-data on 100 000 timestamps
with the variables {timestamp, price, volume, bid, ask}.
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Estimation results

• estimate.adjpin-class The class estimate.adjpin stores the estimation results of the function
adjpin().

• estimate.mpin-class The class estimate.mpin stores the estimation results of the MPIN model
as estimated by the function mpin_ml().

• estimate.mpin.ecm-class The class estimate.mpin.ecm stores the estimation results of the
MPIN model as estimated by the function mpin_ecm().

• estimate.pin-class The class estimate.pin stores the estimation results of the following PIN
functions: pin(), pin_yz(), pin_gwj(), and pin_ea().

• estimate.vpin-class The class estimate.vpin stores the estimation results of the VPIN model
using the function vpin().

Data simulation

• dataset-class The class dataset stores the result of simulation of the aggregate daily trading
data.

• data.series-class The class data.series stores a list of dataset.

Author(s)
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adjpin Estimation of adjusted PIN model

Description

Estimates the Adjusted Probability of Informed Trading (adjPIN) as well as the Probability of
Symmetric Order-flow Shock (PSOS) from the AdjPIN model of Duarte and Young(2009).
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Usage

adjpin(data, method = "ECM", initialsets = "GE", num_init = 20,
restricted = list(), ..., verbose = TRUE)

Arguments

data A dataframe with 2 variables: the first corresponds to buyer-initiated trades
(buys), and the second corresponds to seller-initiated trades (sells).

method A character string referring to the method used to estimate the model of Duarte
and Young (2009). It takes one of two values: "ML" refers to the standard max-
imum likelihood estimation, and "ECM" refers to the expectation-conditional
maximization algorithm. The default value is "ECM". Details of the ECM
method, and comparative results can be found in Ghachem and Ersan (2022a),
and in Ghachem and Ersan (2022b).

initialsets It can either be a character string referring to prebuilt algorithms generating ini-
tial parameter sets or a dataframe containing custom initial parameter sets. If
initialsets is a character string, it refers to the method of generation of the
initial parameter sets, and takes one of three values: "GE", "CL", or "RANDOM".
"GE" refers to initial parameter sets generated by the algorithm of Ersan and
Ghachem (2022b), and implemented in initials_adjpin(), "CL" refers to ini-
tial parameter sets generated by the algorithm of Cheng and Lai (2021), and im-
plemented in initials_adjpin_cl(), while "RANDOM" generates random ini-
tial parameter sets as implemented in initials_adjpin_rnd(). The default
value is "GE". If initialsets is a dataframe, the function adjpin() will esti-
mate the AdjPIN model using the provided initial parameter sets.

num_init An integer specifying the maximum number of initial parameter sets to be used
in the estimation. If initialsets="GE", the generation of initial parameter sets
will stop when the number of initial parameter sets reaches num_init. It can
stop earlier if the number of all possible generated initial parameter sets is lower
than num_init. If initialsets="RANDOM", exactly num_init initial parameter
sets are returned. If initialsets="CL": then num_init is ignored, and all
256 initial parameter sets are used. The default value is 20. [i] The argument
num_init is ignored when the argument initialsets is a dataframe.

restricted A binary list that allows estimating restricted AdjPIN models by specifying
which model parameters are assumed to be equal. It contains one or multiple of
the following four elements {theta, mu, eps, d}. For instance, If theta is set
to TRUE, then the probability of liquidity shock in no-information days, and in
information days is assumed to be the same (θ=θ′). If any of the remaining rate
elements {mu, eps, d} is set to TRUE, (say mu=TRUE), then the rate is assumed
to be the same on the buy side, and on the sell side (µb=µs). If more than one
element is set to TRUE, then the restrictions are combined. For instance, if the
argument restricted is set to list(theta=TRUE, eps=TRUE, d=TRUE), then
the restricted AdjPIN model is estimated, where θ=θ′, εb=εs, and ∆b=∆s. If the
value of the argument restricted is the empty list (list()), then all parame-
ters of the model are assumed to be independent, and the unrestricted model is
estimated. The default value is the empty list list().
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... Additional arguments passed on to the function adjpin(). The recognized ar-
guments are hyperparams, and fact. The argument hyperparams consists of
a list containing the hyperparameters of the ECM algorithm. When not empty, it
contains one or more of the following elements: maxeval, and tolerance. It
is used only when the method argument is set to "ECM". The argument fact
is a binary value that determines which likelihood functional form is used: A
factorization of the likelihood function by Ersan and Ghachem (2022b) when it
is set to TRUE, otherwise, the original likelihood function of Duarte and Young
(2009). The default value is TRUE. More about these arguments are in the Details
section.

verbose A binary variable that determines whether detailed information about the steps
of the estimation of the AdjPIN model is displayed. No output is produced when
verbose is set to FALSE. The default value is TRUE.

Details

The argument ’data’ should be a numeric dataframe, and contain at least two variables. Only the first
two variables will be considered: The first variable is assumed to correspond to the total number
of buyer-initiated trades, while the second variable is assumed to correspond to the total number
of seller-initiated trades. Each row or observation correspond to a trading day. NA values will be
ignored.

If initialsets is neither a dataframe, nor a character string from the set {"GE", "CL", "RANDOM"},
the estimation of the AdjPIN model is aborted. The default initial parameters ("GE") for the esti-
mation method are generated using a modified hierarchical agglomerative clustering. For more
information, see initials_adjpin().

The argument hyperparams contains the hyperparameters of the ECM algorithm. It is either empty
or contains one or two of the following elements:

• maxeval: (integer) It stands for maximum number of iterations of the ECM algorithm for each
initial parameter set. When missing, maxeval takes the default value of 100.

• tolerance (numeric) The ECM algorithm is stopped when the (relative) change of log-likelihood
is smaller than tolerance. When missing, tolerance takes the default value of 0.001.

Value

Returns an object of class estimate.adjpin.

References

Cheng T, Lai H (2021). “Improvements in estimating the probability of informed trading models.”
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Examples

# We use 'generatedata_adjpin()' to generate a S4 object of type 'dataset'
# with 60 observations.

sim_data <- generatedata_adjpin(days = 60)

# The actual dataset of 60 observations is stored in the slot 'data' of the
# S4 object 'sim_data'. Each observation corresponds to a day and contains
# the total number of buyer-initiated transactions ('B') and seller-
# initiated transactions ('S') on that day.

xdata <- sim_data@data

# ------------------------------------------------------------------------ #
# Compare the unrestricted AdjPIN model with various restricted models #
# ------------------------------------------------------------------------ #

# Estimate the unrestricted AdjPIN model using the ECM algorithm (default),
# and show the estimation output

estimate.adjpin.0 <- adjpin(xdata, verbose = FALSE)

show(estimate.adjpin.0)

# Estimate the restricted AdjPIN model where mub=mus

estimate.adjpin.1 <- adjpin(xdata, restricted = list(mu = TRUE),
verbose = FALSE)

# Estimate the restricted AdjPIN model where eps.b=eps.s

estimate.adjpin.2 <- adjpin(xdata, restricted = list(eps = TRUE),
verbose = FALSE)

# Estimate the restricted AdjPIN model where d.b=d.s

estimate.adjpin.3 <- adjpin(xdata, restricted = list(d = TRUE),
verbose = FALSE)

# Compare the different values of adjusted PIN

estimates <- list(estimate.adjpin.0, estimate.adjpin.1,
estimate.adjpin.2, estimate.adjpin.3)

adjpins <- sapply(estimates, function(x) x@adjpin)
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psos <- sapply(estimates, function(x) x@psos)

summary <- cbind(adjpins, psos)
rownames(summary) <- c("unrestricted", "same.mu", "same.eps", "same.d")

show(round(summary, 5))

dailytrades Example of quarterly data

Description

An example dataset representative of quarterly data containing the aggregate numbers of buyer-
initiated and seller-initiated trades for each trading day.

Usage

dailytrades

Format

A data frame with 60 observations and 2 variables:

• B: total number of buyer-initiated trades.

• S: total number of seller-initiated trades.

Source

Artificially created data set.

data.series-class List of dataset objects

Description

The class data.series is the blueprint of S4 objects that store a list of dataset objects.

Usage

## S4 method for signature 'data.series'
show(object)

Arguments

object an object of class data.series
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Slots

series (numeric) returns the number of dataset objects stored.

days (numeric) returns the length of the simulated data in days common to all dataset objects
stored. The default value is 60.

model (character) returns a character string, either 'MPIN' or 'adjPIN'.

layers (numeric) returns the number of information layers in all dataset objects stored. It takes
the value 1 for the adjusted PIN model, i.e. when model takes the value 'adjPIN'.

datasets (list) returns the list of the dataset objects stored.

restrictions (list) returns a binary list that contains the set of parameter restrictions on the
original AdjPIN model in the estimated AdjPIN model. The restrictions are imposed equality
constraints on model parameters. If the value of the parameter restricted is the empty list
(list()), then the model has no restrictions, and the estimated model is the unrestricted, i.e.,
the original AdjPIN model. If not empty, the list contains one or multiple of the following
four elements {theta, mu, eps, d}. For instance, If theta is set to TRUE, then the estimated
model has assumed the equality of the probability of liquidity shocks in no-information, and
information days, i.e., θ=θ′. If any of the remaining rate elements {mu, eps, d} is equal
to TRUE, (say mu=TRUE), then the estimated model imposed equality of the concerned param-
eter on the buy side, and on the sell side (µb=µs). If more than one element is equal to
TRUE, then the restrictions are combined. For instance, if the slot restrictions contains
list(theta=TRUE, eps=TRUE, d=TRUE), then the estimated AdjPIN model has three restric-
tions θ=θ′, εb=εs, and ∆b=∆s, i.e., it has been estimated with just 7 parameters, in comparison
to 10 in the original unrestricted model. [i] This slot only concerns datasets generated by the
function generatedata_adjpin().

warnings (numeric) returns numbers referring to the warning errors caused by a conflict between
the different arguments used to call the function generatedata_mpin().

runningtime (numeric) returns the running time of the data simulation in seconds.

dataset-class Simulated data object

Description

The class dataset is a blueprint of S4 objects that store the result of simulation of the aggregate
daily trading data.

Usage

## S4 method for signature 'dataset'
show(object)

Arguments

object an object of class dataset
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Details

theoreticals are the parameters used to generate the daily buys and sells. empiricals are com-
puted from the generated daily buys and sells. If we generate data for a 60 days using α=0.1, the
most likely outcome is to obtain 6 days (0.1 x 60) as information event days. In this case, the theo-
retical value of α=0.1 is equal to the empirically estimated value of α=6/60=0.1. The number of
generated information days can, however, be different from 6; say 5. In this case, empirical (actual)
α parameter derived from the generated numbers would be 5/60=0.0833, which differs from the
theoretical α=0.1. The weak law of large numbers ensures the empirical parameters (empiricals)
converge towards the theoretical parameters (theoreticals) when the number of days becomes
very large. To detect the estimation biases from the models/methods, comparing the estimates with
empiricals rather than theoreticals would yield more realistic results.

Slots

model (character) returns the model being simulated, either "MPIN", or "adjPIN".

days (numeric) returns the length of the generated data in days.

layers (numeric) returns the number of information layers in the simulated data. It takes the value
1 for the adjusted PIN model, i.e. when model takes the value 'adjPIN'.

theoreticals (list) returns the list of the theoretical parameters used to generate the data.

empiricals (list) returns the list of the empirical parameters computed from the generated data.

aggregates (numeric) returns an aggregation of information layers’ empirical parameters along-
side with εb and εs. The aggregated parameters are calculated as follows: αagg =

∑
αj

δagg =
∑

αj × δj , and µagg =
∑

αj × µj .

emp.pin (numeric) returns the PIN/MPIN/AdjPIN value derived from the empirically estimated
parameters of the generated data.

data (dataframe) returns a dataframe containing the generated data.

likelihood (numeric) returns the value of the (log-)likelihood function evaluated at the empirical
parameters.

warnings (character) stores warning messages for events that occurred during the data genera-
tion, such as conflict between two arguments.

restrictions (list) returns a binary list that contains the set of parameter restrictions on the
original AdjPIN model in the estimated AdjPIN model. The restrictions are imposed equality
constraints on model parameters. If the value of the parameter restricted is the empty list
(list()), then the model has no restrictions, and the estimated model is the unrestricted, i.e.,
the original AdjPIN model. If not empty, the list contains one or multiple of the following
four elements {theta, mu, eps, d}. For instance, If theta is set to TRUE, then the estimated
model has assumed the equality of the probability of liquidity shocks in no-information, and
information days, i.e., θ=θ′. If any of the remaining rate elements {mu, eps, d} is equal
to TRUE, (say mu=TRUE), then the estimated model imposed equality of the concerned param-
eter on the buy side, and on the sell side (µb=µs). If more than one element is equal to
TRUE, then the restrictions are combined. For instance, if the slot restrictions contains
list(theta=TRUE, eps=TRUE, d=TRUE), then the estimated AdjPIN model has three restric-
tions θ=θ′, εb=εs, and ∆b=∆s, i.e., it has been estimated with just 7 parameters, in comparison
to 10 in the original unrestricted model. [i] This slot only concerns datasets generated by the
function generatedata_adjpin().
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detecting-layers Layer detection in trade-data

Description

Detects the number of information layers present in trade-data using the algorithms in Ersan (2016),
Ersan and Ghachem (2022a), and Ghachem and Ersan (2022a).

Usage

detectlayers_e(data, confidence = 0.995, correction = TRUE)

detectlayers_eg(data, confidence = 0.995)

detectlayers_ecm(data, hyperparams = list())

Arguments

data A dataframe with 2 variables: the first corresponds to buyer-initiated trades
(buys), and the second corresponds to seller-initiated trades (sells).

confidence A number from (0.5,1), corresponding to the range of the confidence inter-
val used to determine whether a given cluster is compact, and therefore can
be considered an information layer. If all values of absolute order imbalances
(AOI) within a given cluster are within the confidence interval of a Skellam dis-
tribution with level equal to 'confidence', and centered on the mean of AOI,
then the cluster is considered compact, and, therefore, an information layer. If
some observations are outside the confidence interval, then the data is clustered
further. The default value is 0.995. [i] This is an argument of the functions
detectlayers_e(), and detectlayers_eg().

correction A binary variable that determines whether the data will be adjusted prior to
implementing the algorithm of Ersan (2016). The default value is TRUE.

hyperparams A list containing the hyperparameters of the ECM algorithm. When not empty, it
contains one or more of the following elements: maxeval, tolerance, maxinit,
and maxlayers. More about these elements are found in the Details section. [i]
This is an argument of the function detectlayers_ecm().

Details

The argument ’data’ should be a numeric dataframe, and contain at least two variables. Only the first
two variables will be considered: The first variable is assumed to correspond to the total number
of buyer-initiated trades, while the second variable is assumed to correspond to the total number
of seller-initiated trades. Each row or observation correspond to a trading day. NA values will be
ignored.

The argument hyperparams contains the hyperparameters of the ECM algorithm. It is either empty
or contains one or more of the following elements:
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• maxeval: (integer) It stands for maximum number of iterations of the ECM for each initial
parameter set. When missing, maxeval takes the default value of 100.

• tolerance (numeric) The ECM algorithm is stopped when the (relative) change of log-likelihood
is smaller than tolerance. When missing, tolerance takes the default value of 0.001.

• maxinit: (integer) It is the maximum number of initial parameter sets used for the ECM
estimation per layer. When missing, maxinit takes the default value of 20.

• maxlayers (integer) It is the upper limit of number of layers used in the ECM algorithm. To
find the optimal number of layers, the ECM algorithm will estimate a model for each value of
the number of layers between 1 and maxlayers, and then picks the model that has the lowest
Bayes information criterion (BIC). When missing, maxlayers takes the default value of 8.

Value

Returns an integer corresponding to the number of layers detected in the data.

References

Ersan O (2016). “Multilayer Probability of Informed Trading.” Available at SSRN 2874420.

Ersan O, Ghachem M (2022a). “Identifying information types in probability of informed trad-
ing (PIN) models: An improved algorithm.” Available at SSRN 4117956.

Ghachem M, Ersan O (2022a). “Estimation of the probability of informed trading models via an
expectation-conditional maximization algorithm.” Available at SSRN 4117952.

Examples

# There is a preloaded quarterly dataset called 'dailytrades' with 60
# observations. Each observation corresponds to a day and contains the
# total number of buyer-initiated trades ('B') and seller-initiated
# trades ('S') on that day. To know more, type ?dailytrades

xdata <- dailytrades

# Detect the number of layers present in the dataset 'dailytrades' using the
# different algorithms and display the results

e.layers <- detectlayers_e(xdata)
eg.layers <- detectlayers_eg(xdata)
em.layers <- detectlayers_ecm(xdata)

show(c(e = e.layers, eg = eg.layers, em = em.layers))
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estimate.adjpin-class AdjPIN estimation results

Description

The class estimate.adjpin is a blueprint of the S4 objects that store the results of the estimation
of the AdjPIN model using adjpin().

Usage

## S4 method for signature 'estimate.adjpin'
show(object)

Arguments

object (estimate.adjpin-class)

Slots

success (logical) takes the value TRUE when the estimation has succeeded, FALSE otherwise.

errorMessage (character) contains an error message if the estimation of the AdjPIN model has
failed, and is empty otherwise.

convergent.sets (numeric) returns the number of initial parameter sets, for which the likelihood
maximization converged.

method (character) contains a reference to the estimation method: "ECM" for expectation-conditional
maximization algorithm and ’"ML"’ for standard maximum likelihood estimation.

factorization (character) contains a reference to the factorization of the likelihood function
used: "GE"for the factorization in Ersan and Ghachem (2022b), and "NONE" for the original
likelihood function in Duarte and Young (2009).

restrictions (list) returns a binary list that contains the set of parameter restrictions on the
original AdjPIN model in the estimated AdjPIN model. The restrictions are imposed equality
constraints on model parameters. If the value of the parameter restricted is the empty list
(list()), then the model has no restrictions, and the estimated model is the unrestricted, i.e.,
the original AdjPIN model. If not empty, the list contains one or multiple of the following
four elements {theta, mu, eps, d}. For instance, If theta is set to TRUE, then the estimated
model has assumed the equality of the probability of liquidity shocks in no-information, and
information days, i.e., θ=θ′. If any of the remaining rate elements {mu, eps, d} is equal
to TRUE, (say mu=TRUE), then the estimated model imposed equality of the concerned param-
eter on the buy side, and on the sell side (µb=µs). If more than one element is equal to
TRUE, then the restrictions are combined. For instance, if the slot restrictions contains
list(theta=TRUE, eps=TRUE, d=TRUE), then the estimated AdjPIN model has three restric-
tions θ=θ′, εb=εs, and ∆b=∆s, i.e., it has been estimated with just 7 parameters, in comparison
to 10 in the original unrestricted model.

algorithm (character) returns the implemented initial parameter set determination algorithm.
"GE" is for Ersan and Ghachem (2022b), "CL" is for Cheng and Lai (2021), "RANDOM" for
random initial parameter sets, and "CUSTOM" for custom initial parameter sets.
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parameters (numeric) returns the vector of the optimal maximum-likelihood estimates ( α, δ, θ,
θ′, εb, εs, µb, µs, ∆b, ∆s).

likelihood (numeric) returns the value (of the factorization) of the likelihood function, as in
Ersan and Ghachem (2022b), evaluated at the set of optimal parameters.

adjpin (numeric) returns the value of the adjusted probability of informed trading (Duarte and
Young 2009).

psos (numeric) returns the probability of symmetric order flow shock (Duarte and Young 2009).

dataset (dataframe) returns the dataset of buys and sells used in the estimation of the AdjPIN
model.

initialsets (dataframe) returns the initial parameter sets used in the estimation of AdjPIN
model.

details (dataframe) returns a dataframe containing the estimated parameters for each initial pa-
rameter set.

hyperparams (list) returns the hyperparameters of the ECM algorithm, which are maxeval, and
tolerance.

runningtime (numeric) returns the running time of the AdjPIN estimation in seconds.

estimate.mpin-class MPIN estimation results

Description

The class estimate.mpin is the blueprint of S4 objects that store the results of the estimation of the
MPIN model, using the function mpin_ml().

Usage

## S4 method for signature 'estimate.mpin'
show(object)

Arguments

object an object of class estimate.mpin

Slots

success (logical) returns the value TRUE when the estimation has succeeded, FALSE otherwise.

errorMessage (character) returns an error message if the estimation of the MPIN model has
failed, and is empty otherwise.

convergent.sets (numeric) returns the number of initial parameter sets at which the likelihood
maximization converged.

method (character) returns the method of estimation used, and is equal to ’Maximum Likelihood
Estimation’.
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layers (numeric) returns the number of layers detected in the trading data, or provided by the
user.

detection (logical) returns a reference to the layer-detection algorithm used ("E", "EG", "ECM"),
if any algorithm is used. If the number of layers is provided by the user, detection takes the
value "USER".

parameters (list) returns the list of the maximum likelihood estimates (α, δ, µ, εb, εs), where α,
δ, and µ are numeric vectors of length layers.

aggregates (numeric) returns an aggregation of information layers’ estimated parameters along-
side with εb, and εs. The aggregated parameters are calculated as follows: αagg =

∑
αj

δagg =
∑

αj × δj , and µagg =
∑

αj × µj .

likelihood (numeric) returns the value of the (log-)likelihood function evaluated at the optimal
set of parameters.

mpinJ (numeric) returns the values of the multilayer probability of informed trading per layer,
calculated using the layer-specific estimated parameters.

mpin (numeric) returns the global value of the multilayer probability of informed trading. It is the
sum of the multilayer probabilities of informed trading per layer stored in the slot mpinJ.

mpin.goodbad (list) returns a list containing a decomposition of MPIN into good-news, and bad-
news MPIN components. The decomposition has been suggested for PIN measure in Brennan
et al. (2016). The list has four elements: mpinG, and mpinB are the global good-news, and
bad-news components of MPIN, while mpinGj, and mpinBj are two vectors containing the
good-news (bad-news) components of MPIN computed per layer.

dataset (dataframe) returns the dataset of buys and sells used in the maximum likelihood esti-
mation of the MPIN model.

initialsets (dataframe) returns the initial parameter sets used in the maximum likelihood esti-
mation of the MPIN model.

details (dataframe) returns a dataframe containing the estimated parameters of the MLE method
for each initial parameter set.

runningtime (numeric) returns the running time of the estimation of the MPIN model in seconds.

estimate.mpin.ecm-class

MPIN estimation results (ECM)

Description

The class estimate.mpin.ecm is the blueprint of S4 objects that store the results of the estimation
of the MPIN model using the Expectation-Conditional Maximization method, as implemented in the
function mpin_ecm().
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Usage

## S4 method for signature 'estimate.mpin.ecm'
show(object)

selectModel(object, criterion)

## S4 method for signature 'estimate.mpin.ecm'
selectModel(object, criterion)

getSummary(object)

## S4 method for signature 'estimate.mpin.ecm'
getSummary(object)

Arguments

object an object of class estimate.mpin.ecm.

criterion a character string specifying the model selection criterion. criterion should
take one of these values {"BIC", "AIC", "AWE"}. They stand for Bayesian
Information Criterion, Akaike Information Criterion, and Approximate Weight
of Evidence, respectively.

Functions

• selectModel(estimate.mpin.ecm): returns the optimal model among the estimated mod-
els, i.e., the model having the lowest information criterion, provided by the user.

• getSummary(estimate.mpin.ecm): returns a summary of the estimation of the MPIN model
using the ECM algorithm for different values of the argument layers. For each estimation,
the number of layers, the MPIN value, the log-likelihood value, as well as the values of the
different information criteria, namely AIC, BIC and AWE are displayed.

Slots

success (logical) returns the value TRUE when the estimation has succeeded, FALSE otherwise.

errorMessage (character) returns an error message if the MPIN estimation has failed, and is
empty otherwise.

convergent.sets (numeric) returns the number of initial parameter sets at which the likelihood
maximization converged.

method (character) returns the method of estimation, and is equal to ’Expectation-Conditional
Maximization Algorithm’.

layers (numeric) returns the number of layers estimated by the Expectation-Conditional Maxi-
mization algorithm, or provided by the user.

optimal (logical) returns whether the number of layers used for the estimation is provided by
the user (optimal=FALSE), or determined by the ECM algorithm (optimal=TRUE).

parameters (list) returns the list of the maximum likelihood estimates (α, δ, µ, εb, εs), where α,
δ, and µ are numeric vectors of length layers.
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aggregates (numeric) returns an aggregation of information layers’ parameters alongside with εb
and εs. The aggregated parameters are calculated as follows: αagg =

∑
αj δagg =

∑
αj×δj

, and µagg =
∑

αj × µj .

likelihood (numeric) returns the value of the (log-)likelihood function evaluated at the optimal
set of parameters.

mpinJ (numeric) returns the values of the multilayer probability of informed trading per layer,
calculated using the layer-specific estimated parameters.

mpin (numeric) returns the global value of the multilayer probability of informed trading. It is the
sum of the multilayer probabilities of informed trading per layer stored in the slot mpinJ.

mpin.goodbad (list) returns a list containing a decomposition of MPIN into good-news, and bad-
news MPIN components. The decomposition has been suggested for PIN measure in Brennan
et al. (2016). The list has four elements: mpinG, and mpinB are the global good-news, and
bad-news components of MPIN, while mpinGj, and mpinBj are two vectors containing the
good-news (bad-news) components of MPIN computed per layer.

dataset (dataframe) returns the dataset of buys and sells used in the ECM estimation of the MPIN
model.

initialsets (dataframe) returns the initial parameter sets used in the ECM estimation of the
MPIN model.

details (dataframe) returns a dataframe containing the estimated parameters of the ECM method
for each initial parameter set.

models (list) returns the list of estimate.mpin.ecm objects storing the results of estimation
using the function mpin_ecm() for different values of the argument layers. It returns NULL
when the argument layers of the function mpin_ecm() take a specific value.

AIC (numeric) returns the value of the Akaike Information Criterion (AIC).

BIC (numeric) returns the value of the Bayesian Information Criterion (BIC).

AWE (numeric) returns the value of the Approximate Weight of Evidence.

criterion (character) returns the model selection criterion used to find the optimal estimate for
the MPIN model. It takes one of these values 'BIC', 'AIC', 'AWE'; which stand for Bayesian
Information Criterion, Akaike Information Criterion, and Approximate Weight of Evidence,
respectively.

hyperparams (list) returns the hyperparameters of the ECM algorithm, which are minalpha, maxeval,
tolerance, and maxlayers. Check the details section of mpin_ecm() to know more about
these parameters.

runningtime (numeric) returns the running time of the estimation in seconds.

estimate.pin-class PIN estimation results

Description

The class estimate.pin is a blueprint of S4 objects that store the results of the different PIN
functions: pin(), pin_yz(), pin_gwj(), and pin_ea().
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Usage

## S4 method for signature 'estimate.pin'
show(object)

Arguments

object an object of class estimate.pin

Slots

success (logical) takes the value TRUE when the estimation has succeeded, FALSE otherwise.

errorMessage (character) contains an error message if the PIN estimation has failed, and is
empty otherwise.

convergent.sets (numeric) returns the number of initial parameter sets at which the likelihood
maximization converged.

algorithm (character) returns the algorithm used to determine the set of initial parameter sets
for the maximum likelihood estimation. It takes one of the following values:

• "YZ": Yan and Zhang (2012)
• "GWJ": Gan, Wei and Johnstone (2015)
• "YZ*": Yan and Zhang (2012) as modified by Ersan and Alici (2016)
• "EA": Ersan and Alici (2016)
• "CUSTOM": Custom initial parameter sets

factorization (character) returns the factorization of the PIN likelihood function as used in the
maximum likelihood estimation. It takes one of the following values:

• "NONE": No factorization
• "EHO": Easley, Hvidkjaer and O’Hara (2010)
• "LK": Lin and Ke (2011)
• "E": Ersan (2016)

parameters (list) returns the list of the maximum likelihood estimates (α, δ, µ, εb, εs)

likelihood (numeric) returns the value of (the factorization of) the likelihood function evaluated
at the optimal set of parameters.

pin (numeric) returns the value of the probability of informed trading.

pin.goodbad (list) returns a list containing a decomposition of PIN into good-news, and bad-
news PIN components. The decomposition has been suggested in Brennan et al. (2016). The
list has two elements: pinG, and pinB are the good-news, and bad-news components of PIN,
respectively.

dataset (dataframe) returns the dataset of buys and sells used in the maximum likelihood esti-
mation of the PIN model.

initialsets (dataframe) returns the initial parameter sets used in the maximum likelihood esti-
mation of the PIN model.

details (dataframe) returns a dataframe containing the estimated parameters by the MLE method
for each initial parameter set.

runningtime (numeric) returns the running time of the estimation of the PIN model in seconds.
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estimate.vpin-class VPIN estimation results

Description

The class estimate.vpin is a blueprint for S4 objects that store the results of the VPIN estimation
method using the function vpin().

The function show() displays a description of the estimate.vpin object: descriptive statistics of the
VPIN variable, the set of relevant parameters, and the running time.

Usage

## S4 method for signature 'estimate.vpin'
show(object)

Arguments

object an object of class estimate.vpin

Slots

success (logical) returns the value TRUE when the estimation has succeeded, FALSE otherwise.

errorMessage (character) returns an error message if the VPIN estimation has failed, and is
empty otherwise.

parameters (numeric) returns a numeric vector of estimation parameters (tbSize, buckets, sam-
plength, VBS, #days), where tbSize is the size of timebars (in seconds); buckets is the
number of buckets per average volume day; VBS is Volume Bucket Size (daily average vol-
ume/number of buckets buckets); samplength is the length of the window used to estimate
VPIN; and #days is the number of days in the dataset.

bucketdata (dataframe) returns the dataframe containing detailed information about buckets.
Following the output of Abad and Yague (2012), we report for each bucket its identifier
(bucket), the aggregate buy volume (agg.bVol), the aggregate sell volume (agg.sVol), the
absolute order imbalance (AOI=|agg.bVol-agg.sVol|), the start time (starttime), the end
time (endtime), the duration in seconds (duration) as well as the VPIN vector.

vpin (numeric) returns the vector of the volume-synchronized probabilities of informed trading.

dailyvpin (dataframe) returns the daily VPIN values. Two variants are provided for any given
day: dvpin corresponds to the unweighted average of vpin values, and dvpin.weighted cor-
responds to the average of vpin values weighted by bucket duration.

runningtime (numeric) returns the running time of the VPIN estimation in seconds.



factorizations 23

factorizations Factorizations of the different PIN likelihood functions

Description

The PIN likelihood function is derived from the original PIN model as developed by Easley and
Ohara (1992) and Easley et al. (1996). The maximization of the likelihood function as is leads
to computational problems, in particular, to floating point errors. To remedy to this issue, several
log-transformations or factorizations of the different PIN likelihood functions have been suggested.
The main factorizations in the literature are:

• fact_pin_eho(): factorization of Easley et al. (2010)

• fact_pin_lk(): factorization of Lin and Ke (2011)

• fact_pin_e(): factorization of Ersan (2016)

The factorization of the likelihood function of the multilayer PIN model, as developed in Ersan
(2016).

• fact_mpin(): factorization of Ersan (2016)

The factorization of the likelihood function of the adjusted PIN model (Duarte and Young 2009), is
derived, and presented in Ersan and Ghachem (2022b).

• fact_adjpin(): factorization in Ersan and Ghachem (2022b)

Usage

fact_pin_eho(data, parameters = NULL)

fact_pin_lk(data, parameters = NULL)

fact_pin_e(data, parameters = NULL)

fact_mpin(data, parameters = NULL)

fact_adjpin(data, parameters = NULL)

Arguments

data A dataframe with 2 variables: the first corresponds to buyer-initiated trades
(buys), and the second corresponds to seller-initiated trades (sells).

parameters In the case of the PIN likelihood factorization, it is an ordered numeric vector
(α, δ, µ, εb, εs). In the case of the MPIN likelihood factorization, it is an ordered
numeric vector (α, δ, µ, εb, εs), where α, δ, and µ are numeric vectors of size
J, where J is the number of information layers in the data. In the case of the
AdjPIN likelihood factorization, it is an ordered numeric vector (α, δ, θ, θ′, εb,
εs, µb, µs, ∆b, ∆s). The default value is NULL.
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Details

The argument ’data’ should be a numeric dataframe, and contain at least two variables. Only the first
two variables will be considered: The first variable is assumed to correspond to the total number
of buyer-initiated trades, while the second variable is assumed to correspond to the total number
of seller-initiated trades. Each row or observation correspond to a trading day. NA values will be
ignored.

Our tests, in line with Lin and Ke (2011), and Ersan and Alici (2016), demonstrate very similar
results for fact_pin_lk(), and fact_pin_e(), both having substantially better estimates than
fact_pin_eho().

Value

If the argument parameters is omitted, returns a function object that can be used with the opti-
mization functions optim(), and neldermead().

If the argument parameters is provided, returns a numeric value of the log-likelihood function
evaluated at the dataset data and the parameters parameters, where parameters is a numeric
vector following this order (α, δ, µ, εb, εs) for the factorizations of the PIN likelihood function, (α,
δ, µ, εb, εs) for the factorization of the MPIN likelihood function, and (α, δ, θ, θ′, εb, εs ,µb, µs, ∆b,
∆s) for the factorization of the AdjPIN likelihood function.

References
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Examples

# There is a preloaded quarterly dataset called 'dailytrades' with 60
# observations. Each observation corresponds to a day and contains the
# total number of buyer-initiated trades ('B') and seller-initiated
# trades ('S') on that day. To know more, type ?dailytrades

xdata <- dailytrades

# ------------------------------------------------------------------------ #
# Using fact_pin_eho(), fact_pin_lk(), fact_pin_e() to find the likelihood #
# value as factorized by Easley(2010), Lin & Ke (2011), and Ersan(2016). #
# ------------------------------------------------------------------------ #

# Choose a given parameter set to evaluate the likelihood function at a
# givenpoint = (alpha, delta, mu, eps.b, eps.s)

givenpoint <- c(0.4, 0.1, 800, 300, 200)

# Use the ouput of fact_pin_e() with the optimization function optim() to
# find optimal estimates of the PIN model.

model <- suppressWarnings(optim(givenpoint, fact_pin_e(xdata)))

# Collect the model estimates from the variable model and display them.

varnames <- c("alpha", "delta", "mu", "eps.b", "eps.s")
estimates <- setNames(model$par, varnames)
show(estimates)

# Find the value of the log-likelihood function at givenpoint

lklValue <- fact_pin_lk(xdata, givenpoint)

show(lklValue)

# ------------------------------------------------------------------------ #
# Using fact_mpin() to find the value of the MPIN likelihood function as #
# factorized by Ersan (2016). #
# ------------------------------------------------------------------------ #

# Choose a given parameter set to evaluate the likelihood function at a
# givenpoint = (alpha(), delta(), mu(), eps.b, eps.s) where alpha(), delta()
# and mu() are vectors of size 2.

givenpoint <- c(0.4, 0.5, 0.1, 0.6, 600, 1000, 300, 200)

# Use the output of fact_mpin() with the optimization function optim() to
# find optimal estimates of the PIN model.

model <- suppressWarnings(optim(givenpoint, fact_mpin(xdata)))

# Collect the model estimates from the variable model and display them.
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varnames <- c(paste("alpha", 1:2, sep = ""), paste("delta", 1:2, sep = ""),
paste("mu", 1:2, sep = ""), "eb", "es")

estimates <- setNames(model$par, varnames)
show(estimates)

# Find the value of the MPIN likelihood function at givenpoint

lklValue <- fact_mpin(xdata, givenpoint)

show(lklValue)

# ------------------------------------------------------------------------ #
# Using fact_adjpin() to find the value of the DY likelihood function as #
# factorized by Ersan and Ghachem (2022b). #
# ------------------------------------------------------------------------ #

# Choose a given parameter set to evaluate the likelihood function
# at a the initial parameter set givenpoint = (alpha, delta,
# theta, theta',eps.b, eps.s, muB, muS, db, ds)

givenpoint <- c(0.4, 0.1, 0.3, 0.7, 500, 600, 800, 1000, 300, 200)

# Use the output of fact_adjpin() with the optimization function
# neldermead() to find optimal estimates of the AdjPIN model.

low <- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
up <- c(1, 1, 1, 1, Inf, Inf, Inf, Inf, Inf, Inf)
model <- nloptr::neldermead(
givenpoint, fact_adjpin(xdata), lower = low, upper = up)

# Collect the model estimates from the variable model and display them.

varnames <- c("alpha", "delta", "theta", "thetap", "eps.b", "eps.s",
"muB", "muS", "db", "ds")

estimates <- setNames(model$par, varnames)
show(estimates)

# Find the value of the log-likelihood function at givenpoint

adjlklValue <- fact_adjpin(xdata, givenpoint)
show(adjlklValue)

generatedata_adjpin Simulation of AdjPIN model data.

Description

Generates a dataset object or a data.series object (a list of dataset objects) storing simulation
parameters as well as aggregate daily buys and sells simulated following the assumption of the
AdjPIN model of Duarte and Young (2009).
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Usage

generatedata_adjpin(series=1, days = 60, parameters = NULL, ranges = list(),
restricted = list(), verbose = TRUE)

Arguments

series The number of datasets to generate.

days The number of trading days, for which aggregated buys and sells are generated.
The default value is 60.

parameters A vector of model parameters of size 10 and it has the following form {α, δ, θ,
θ′, εb, εs, µb, µs, ∆b, ∆s}.

ranges A list of ranges for the different simulation parameters having named elements
alpha (α), delta (δ), theta (θ), thetap (θ′), eps.b (εb), eps.s (εs), mu.b
(µb), mu.s (µs), d.b (∆b), d.s (∆s). The value of each element is a vector of
two numbers: the first one is the minimal value min_v and the second one is
the maximal value max_v. If the element corresponding to a given parameter is
missing, the default range for that parameter is used, otherwise, the simulation
parameters are uniformly drawn from the interval (min_v, max_v). The default
value is list().

restricted A binary list that allows estimating restricted AdjPIN models by specifying
which model parameters are assumed to be equal. It contains one or multiple of
the following four elements {theta, mu, eps, d}. For instance, If theta is set
to TRUE, then the probability of liquidity shock in no-information days, and in
information days is assumed to be the same (θ=θ′). If any of the remaining rate
elements {mu, eps, d} is set to TRUE, (say mu=TRUE), then the rate is assumed
to be the same on the buy side, and on the sell side (µb=µs). If more than one
element is set to TRUE, then the restrictions are combined. For instance, if the
argument restricted is set to list(theta=TRUE, eps=TRUE, d=TRUE), then
the restricted AdjPIN model is estimated, where θ=θ′, εb=εs, and ∆b=∆s. If the
value of the argument restricted is the empty list (list()), then all parame-
ters of the model are assumed to be independent, and the unrestricted model is
estimated. The default value is the empty list list().

verbose A binary variable that determines whether detailed information about the progress
of the data generation is displayed. No output is produced when verbose is set
to FALSE. The default value is TRUE.

Details

If the argument parameters is missing, then the parameters are generated using the ranges specified
in the argument ranges. If the argument ranges is set to list(), default ranges are used. Using
the default ranges, the simulation parameters are obtained using the following procedure:

• α, δ: (alpha, delta) uniformly distributed on (0, 1).

• θ, θ′: (theta,thetap) uniformly distributed on (0, 1).

• εb: (eps.b) an integer uniformly drawn from the interval (100, 10000) with step 50.

• εs: (eps.s) an integer uniformly drawn from ((4/5)εb, (6/5)εb) with step 50.
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• ∆b: (d.b) an integer uniformly drawn from ((1/2)εb, 2εb).

• ∆s: (d.s) an integer uniformly drawn from ((4/5)∆b, (6/5)∆b).

• µb: (mu.b) uniformly distributed on the interval ((1/2) max(εb, εs), 5 max(εb, εs)).

• µs: (mu.s) uniformly distributed on the interval ((4/5)µb, (6/5)µb)..

Based on the simulation parameters parameters, daily buys and sells are generated by the assump-
tion that buys and sells follow Poisson distributions with mean parameters:

• (εb, εs) in a day with no information and no liquidity shock;

• (εb+∆b, εs+∆s) in a day with no information and with liquidity shock;

• (εb+µb, εs) in a day with good information and no liquidity shock;

• (εb+µb+∆b, εs+∆s) in a day with good information and liquidity shock;

• (εb, εs+µs) in a day with bad information and no liquidity shock;

• (εb+∆s, εs+µs+∆s) in a day with bad information and liquidity shock;

Value

Returns an object of class dataset if series=1, and an object of class data.series if series>1.

References

Duarte J, Young L (2009). “Why is PIN priced?” Journal of Financial Economics, 91(2), 119–138.
ISSN 0304405X.

Examples

# ------------------------------------------------------------------------ #
# Generate data following the AdjPIN model using generatedata_adjpin() #
# ------------------------------------------------------------------------ #

# With no arguments, the function generates one dataset object spanning
# 60 days, and where the parameters are chosen as described in the section
# 'Details'.

sdata <- generatedata_adjpin()

# Alternatively, simulation parameters can be provided. Recall the order of
# parameters (alpha, delta, theta, theta', eps.b, eps.s, mub, mus, db, ds).

givenpoint <- c(0.4, 0.1, 0.5, 0.6, 800, 1000, 2300, 4000, 500, 500)
sdata <- generatedata_adjpin(parameters = givenpoint)

# Data can be generated following restricted AdjPIN models, for example, with
# restrictions 'eps.b = eps.s', and 'mu.b = mu.s'.

sdata <- generatedata_adjpin(restricted = list(eps = TRUE, mu = TRUE))

# Data can be generated using provided ranges of simulation parameters as fed
# to the function using the argument 'ranges', where thetap corresponds to
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# theta'.

sdata <- generatedata_adjpin(ranges = list(
alpha = c(0.1, 0.15), delta = c(0.2, 0.2),
theta = c(0.2, 0.6), thetap = c(0.2, 0.4)

))

# The value of a given simulation parameter can be set to a specific value by
# setting the range of the desired parameter takes a unique value, instead of
# a pair of values.

sdata <- generatedata_adjpin(ranges = list(
alpha = 0.4, delta = c(0.2, 0.7),
eps.b = c(100, 7000), mu.b = 8000

))

# Display the details of the generated simulation data

show(sdata)

# ------------------------------------------------------------------------ #
# Use generatedata_adjpin() to check the accuracy of adjpin() #
# ------------------------------------------------------------------------ #

model <- adjpin(sdata@data, verbose = FALSE)

summary <- cbind(
c(sdata@emp.pin['adjpin'], model@adjpin, abs(model@adjpin -
sdata@emp.pin['adjpin'])),
c(sdata@emp.pin['psos'], model@psos, abs(model@psos -
sdata@emp.pin['psos']))

)
colnames(summary) <- c('adjpin', 'psos')
rownames(summary) <- c('Data', 'Model', 'Difference')

show(knitr::kable(summary, 'simple'))

generatedata_mpin Simulation of MPIN model data

Description

Generates a dataset object or a data.series object (a list of dataset objects) storing simulation
parameters as well as aggregate daily buys and sells simulated following the assumption of the MPIN
model of (Ersan 2016).

Usage

generatedata_mpin(series = 1, days = 60, layers = NULL,
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parameters = NULL, ranges = list(), ...,
verbose = TRUE)

Arguments

series The number of datasets to generate.

days The number of trading days for which aggregated buys and sells are generated.
Default value is 60.

layers The number of information layers to be included in the simulated data. De-
fault value is NULL. If layers is omitted or set to NULL, the number of layers is
uniformly selected from the set {1, ..., maxlayers}.

parameters A vector of model parameters of size 3J+2 where J is the number of information
layers and it has the following form {α1, ...,αJ , δ1,..., δJ , µ1,..., µJ , εb, εs}.

ranges A list of ranges for the different simulation parameters having named elements
α, δ, εb, εs, and µ. The value of each element is a vector of two numbers:
the first one is the minimal value min_v and the second one is the maximal
value max_v. If the element corresponding to a given parameter is missing, the
default range for that parameter is used. If the argument ranges is an empty
list and parameters is NULL, the default ranges for the parameters are used. The
simulation parameters are uniformly drawn from the interval (min_v, max_v) for
the specified parameters. The default value is list().

... Additional arguments passed on to the function generatedata_mpin(). The
recognized arguments are confidence, maxlayers, eps_ratio, mu_ratio.

• confidence (numeric) denotes the range of the confidence interval asso-
ciated with each layer such that all observations within the layer j lie in
the theoretical confidence interval of the Skellam distribution centered on
the mean order imbalance, at the level 'confidence'. The default value is
0.99.

• maxlayers (integer) denotes the upper limit of number of layers for the
generated datasets. If the argument layers is missing, the layers of the sim-
ulated datasets will be uniformly drawn from {1,..., maxlayers}. When
missing, maxlayers takes the default value of 5.

• eps_ratio (numeric) specifies the admissible range for the value of the ra-
tio εs/εb, It can be a two-value vector or just a single value. If eps_ratio is
a vector of two values: the first one is the minimal value and the second one
is the maximal value; and the function tries to generate εs and εb satisfy-
ing that their ratios εs/εb lies within the interval eps_ratio. If eps_ratio
is a single number, then the function tries to generate εs and εb satisfying
εs = εb x eps_ratio. If this range conflicts with other arguments such as
ranges, a warning is displayed. The default value is c(0.75, 1.25).

• mu_ratio (numeric) it is the minimal value of the ratio between two con-
secutive values of the vector mu. If mu_ratio = 1.25 e.g., then µj+1 should
be larger than 1.25* µj for all j = 1, .., J. If mu_ratio conflicts with
other arguments such as ranges or confidence, a warning is displayed.
The default value is NULL.
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verbose (logical) a binary variable that determines whether detailed information about
the progress of the data generation is displayed. No output is produced when
verbose is set to FALSE. The default value is TRUE.

Details

An information layer refers to a given type of information event existing in the data. The PIN model
assumes a single type of information events characterized by three parameters for α, δ, and µ. The
MPIN model relaxes the assumption, by relinquishing the restriction on the number of information
event types. When layers = 1, generated data fit the assumptions of the PIN model.

If the argument parameters is missing, then the simulation parameters are generated using the
ranges specified in the argument ranges. If the argument ranges is list(), default ranges are used.
Using the default ranges, the simulation parameters are obtained using the following procedure:

• α(): a vector of length layers, where each αj is uniformly distributed on (0, 1) subject to
the condition:∑

j αj ≤ 1.

• δ(): a vector of length layers, where each δj uniformly distributed on (0, 1).

• µ(): a vector of length layers, where each µj is uniformly distributed on the interval (0.5 max(εb,
εs), 5 max(εb, εs)). The µ:s are then sorted so the excess trading increases in the infor-
mation layers, subject to the condition that the ratio of two consecutive µ’s should be at least
1.25.

• εb: an integer drawn uniformly from the interval (100, 10000) with step 50.

• εs: an integer uniformly drawn from ((3/4)εb, (5/4)εb) with step 50.

Based on the simulation parameters parameters, daily buys and sells are generated by the assump-
tion that buys and sells follow Poisson distributions with mean parameters (εb, εs) on days with no
information; with mean parameters (εb + µj , εs) on days with good information of layer j and (εb,
εs + µj) on days with bad information of layer j.

Considerations for the ranges of simulation parameters: While generatedata_mpin() func-
tion enables the user to simulate data series with any set of theoretical parameters, we strongly
recommend the use of parameter sets satisfying below conditions which are in line with the nature
of empirical data and the theoretical models used within this package. When parameter values are
not assigned by the user, the function, by default, simulates data series that are in line with these
criteria.

• Consideration 1: any µ’s value separable from εb and εs values, as well as other µ values.
Otherwise, the PIN and MPIN estimation would not yield expected results.
[x] Sharp example.1: εb= 1000; µ = 1. In this case, no information layer can be captured in
a healthy way by the use of the models which relies on Poisson distributions.
[x] Sharp example.2: εs= 1000, µ1 = 1000, and µ2 = 1001. Similarly, no distinction can
be made on the two simulated layers of informed trading. In real life, this entails that there is
only one type of information which would also be the estimate of the MPIN model. However,
in the simulated data properties, there would be 2 layers which will lead the user to make a
wrong evaluation of model performance.

• Consideration 2: εb and εs being relatively close to each other. When they are far from each
other, that would indicate that there is substantial asymmetry between buyer and seller initiated
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trades, being a strong signal for informed trading. There is no theoretical evidence to indicate
that the uninformed trading in buy and sell sides deviate much from each other in real life.
Besides, numerous papers that work with PIN model provide close to each other uninformed
intensities. when no parameter values are assigned by the user, the function generates data
with the condition of sell side uninformed trading to be in the range of (4/5):=80% and
(6/5):=120% of buy side uninformed rate.
[x] Sharp example.3: εb= 1000, εs= 10000. In this case, the PIN and MPIN models would tend
to consider some of the trading in sell side to be informed (which should be the actual case).
Again, the estimation results would deviate much from the simulation parameters being a good
news by itself but a misleading factor in model evaluation. See for example Cheng and Lai
(2021) as a misinterpretation of comparative performances. The paper’s findings highly rely
on the simulations with extremely different εb and εs values (813-8124 pair and 8126-812).

Value

Returns an object of class dataset if series=1, and an object of class data.series if series>1.

References

Cheng T, Lai H (2021). “Improvements in estimating the probability of informed trading models.”
Quantitative Finance, 21(5), 771-796.

Ersan O (2016). “Multilayer Probability of Informed Trading.” Available at SSRN 2874420.

Examples

# ------------------------------------------------------------------------ #
# There are different scenarios of using the function generatedata_mpin() #
# ------------------------------------------------------------------------ #

# With no arguments, the function generates one dataset object spanning
# 60 days, containing a number of information layers uniformly selected
# from `{1, 2, 3, 4, 5}`, and where the parameters are chosen as
# described in the details.

sdata <- generatedata_mpin()

# The number of layers can be deduced from the simulation parameters, if
# fed directly to the function generatedata_mpin() through the argument
# 'parameters'. In this case, the output is a dataset object with one
# information layer.

givenpoint <- c(0.4, 0.1, 800, 300, 200)
sdata <- generatedata_mpin(parameters = givenpoint)

# The number of layers can alternatively be set directly through the
# argument 'layers'.

sdata <- generatedata_mpin(layers = 2)

# The simulation parameters can be randomly drawn from their corresponding
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# ranges fed through the argument 'ranges'.

sdata <- generatedata_mpin(ranges = list(alpha = c(0.1, 0.7),
delta = c(0.2, 0.7),
mu = c(3000, 5000)))

# The value of a given simulation parameter can be set to a specific value by
# setting the range of the desired parameter takes a unique value, instead of
# a pair of values.

sdata <- generatedata_mpin(ranges = list(alpha = 0.4, delta = c(0.2, 0.7),
eps.b = c(100, 7000),
mu = c(8000, 12000)))

# If both arguments 'parameters', and 'layers' are simultaneously provided,
# and the number of layers detected from the length of the argument
# 'parameters' is different from the argument 'layers', the former is used
# and a warning is displayed.

sim.params <- c(0.4, 0.2, 0.9, 0.1, 400, 700, 300, 200)
sdata <- generatedata_mpin(days = 120, layers = 3, parameters = sim.params)

# Display the details of the generated data

show(sdata)

# ------------------------------------------------------------------------ #
# Use generatedata_mpin() to compare the accuracy of estimation methods #
# ------------------------------------------------------------------------ #

# The example below illustrates the use of the function 'generatedata_mpin()'
# to compare the accuracy of the functions 'mpin_ml()', and 'mpin_ecm()'.

# The example will depend on three variables:
# n: the number of datasets used
# l: the number of layers in each simulated datasets
# xc : the number of extra clusters used in initials_mpin

# For consideration of speed, we will set n = 2, l = 2, and xc = 2
# These numbers can change to fit the user's preferences
n <- l <- xc <- 2

# We start by generating n datasets simulated according to the
# assumptions of the MPIN model.

dataseries <- generatedata_mpin(series = n, layers = l, verbose = FALSE)

# Store the estimates in two different lists: 'mllist', and 'ecmlist'

mllist <- lapply(dataseries@datasets, function(x)
mpin_ml(x@data, xtraclusters = xc, layers = l, verbose = FALSE))

ecmlist <- lapply(dataseries@datasets, function(x)
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mpin_ecm(x@data, xtraclusters = xc, layers = l, verbose = FALSE))

# For each estimate, we calculate the absolute difference between the
# estimated mpin, and empirical mpin computed using dataset parameters.
# The absolute differences are stored in 'mldmpin' ('ecmdpin') for the
# ML (ECM) method,

mldpin <- sapply(1:n,
function(x) abs(mllist[[x]]@mpin - dataseries@datasets[[x]]@emp.pin))

ecmdpin <- sapply(1:n,
function(x) abs(ecmlist[[x]]@mpin - dataseries@datasets[[x]]@emp.pin))

# Similarly, we obtain vectors of running times for both estimation methods.
# They are stored in 'mltime' ('ecmtime') for the ML (ECM) method.

mltime <- sapply(mllist, function(x) x@runningtime)
ecmtime <- sapply(ecmlist, function(x) x@runningtime)

# Finally, we calculate the average absolute deviation from empirical PIN
# as well as the average running time for both methods. This allows us to
# compare them in terms of accuracy, and speed.

accuracy <- c(mean(mldpin), mean(ecmdpin))
timing <- c(mean(mltime), mean(ecmtime))
comparison <- as.data.frame(rbind(accuracy, timing))
colnames(comparison) <- c("ML", "ECM")
rownames(comparison) <- c("Accuracy", "Timing")

show(round(comparison, 6))

get_posteriors Posterior probabilities for PIN and MPIN estimates

Description

Computes, for each day in the sample, the posterior probability that the day is a no-information day,
good-information day and bad-information day, respectively (Easley and Ohara (1992), Easley et
al. (1996), Ersan (2016)).

Usage

get_posteriors(object)

Arguments

object (S4 object) an object of type estimate.pin, estimate.mpin, or estimate.mpin.ecm.
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Value

If the argument object is of type estimate.pin, returns a dataframe of three variables post.N,
post.G and post.B containing in each row the posterior probability that a given day is a no-
information day (N), good-information day (G), or bad-information day (B) respectively.

If the argument object is of type estimate.mpin or estimate.mpin.ecm, with J layers, returns a
dataframe of 2*J+1 variables Post.N, and Post.G[j] and Post.B[j] for each layer j containing
in each row the posterior probability that a given day is a no-information day, good-information day
in layer j or bad-information day in layer j, for each layer j respectively.

If the argument object is of any other type, an error is returned.

References

Easley D, Kiefer NM, Ohara M, Paperman JB (1996). “Liquidity, information, and infrequently
traded stocks.” Journal of Finance, 51(4), 1405–1436. ISSN 00221082.

Easley D, Ohara M (1992). “Time and the Process of Security Price Adjustment.” The Journal
of Finance, 47(2), 577–605. ISSN 15406261.

Ersan O (2016). “Multilayer Probability of Informed Trading.” Available at SSRN 2874420.

Examples

# There is a preloaded quarterly dataset called 'dailytrades' with 60
# observations. Each observation corresponds to a day and contains the
# total number of buyer-initiated trades ('B') and seller-initiated
# trades ('S') on that day. To know more, type ?dailytrades

xdata <- dailytrades

# ------------------------------------------------------------------------ #
# Posterior probabilities for PIN estimates #
# ------------------------------------------------------------------------ #

# Estimate PIN using the Ersan and Alici (2016) algorithm and the
# factorization Lin and Ke(2011).

estimate <- pin_ea(xdata, "LK", verbose = FALSE)

# Display the estimated PIN value

estimate@pin

# Store the posterior probabilities in a dataframe variable and display its
# first 6 rows.

modelposteriors <- get_posteriors(estimate)
show(round(head(modelposteriors), 3))

# ------------------------------------------------------------------------ #
# Posterior probabilities for MPIN estimates #
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# ------------------------------------------------------------------------ #

# Estimate MPIN via the ECM algorithm, assuming that the dataset has 2
# information layers

estimate <- mpin_ecm(xdata, layers = 2, verbose = FALSE)

# Display the estimated Multilayer PIN value

show(estimate@mpin)

# Store the posterior probabilities in a dataframe variable and display its
# first six rows. The posterior probabilities are contained in a dataframe
# with 7 variables: one for no-information days, and two variables for each
# layer, one for good-information days and one for bad-information days.

modelposteriors <- get_posteriors(estimate)
show(round(head(modelposteriors), 3))

hfdata High-frequency trade-data

Description

A simulated dataset containing sample timestamp, price, volume, bid and ask for 100 000 high
frequency transactions.

Usage

hfdata

Format

A data frame with 100 000 observations with 5 variables:

• timestamp: time of the trade.

• price: transaction price.

• volume: volume of the transactions, in asset units.

• bid: best bid price.

• ask: best ask price.

Source

Artificially created data set.
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initials_adjpin AdjPIN initial parameter sets of Ersan & Ghachem (2022b)

Description

Based on the algorithm in Ersan and Ghachem (2022b), generates sets of initial parameters to be
used in the maximum likelihood estimation of AdjPIN model.

Usage

initials_adjpin(data, xtraclusters = 4, restricted = list(),
verbose = TRUE)

Arguments

data A dataframe with 2 variables: the first corresponds to buyer-initiated trades
(buys), and the second corresponds to seller-initiated trades (sells).

xtraclusters An integer used to divide trading days into #(4 + xtraclusters) clusters, thereby
resulting in #comb(4 + xtraclusters - 1, 4 - 1) initial parameter sets in line
with Ersan and Alici (2016), and Ersan and Ghachem (2022b).The default value
is 4 as chosen in Ersan (2016).

restricted A binary list that allows estimating restricted AdjPIN models by specifying
which model parameters are assumed to be equal. It contains one or multiple of
the following four elements {theta, mu, eps, d}. For instance, If theta is set
to TRUE, then the probability of liquidity shock in no-information days, and in
information days is assumed to be the same (θ=θ′). If any of the remaining rate
elements {mu, eps, d} is set to TRUE, (say mu=TRUE), then the rate is assumed
to be the same on the buy side, and on the sell side (µb=µs). If more than one
element is set to TRUE, then the restrictions are combined. For instance, if the
argument restricted is set to list(theta=TRUE, eps=TRUE, d=TRUE), then
the restricted AdjPIN model is estimated, where θ=θ′, εb=εs, and ∆b=∆s. If the
value of the argument restricted is the empty list, then all parameters of the
model are assumed to be independent, and the unrestricted model is estimated.
The default value is the empty list list().

verbose a binary variable that determines whether information messages about the initial
parameter sets, including the number of the initial parameter sets generated. No
message is shown when verbose is set to FALSE. The default value is TRUE.

Details

The argument ’data’ should be a numeric dataframe, and contain at least two variables. Only the first
two variables will be considered: The first variable is assumed to correspond to the total number
of buyer-initiated trades, while the second variable is assumed to correspond to the total number
of seller-initiated trades. Each row or observation correspond to a trading day. NA values will be
ignored.
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The function initials_adjpin() implements the algorithm suggested in Ersan and Ghachem
(2022b), and uses a hierarchical agglomerative clustering (HAC) to find initial parameter sets for
the maximum likelihood estimation.

Value

Returns a dataframe of numerical vectors of ten elements {α, δ, θ, θ′, εb, εs, µb, µs, ∆b, ∆s}.

References

Ersan O (2016). “Multilayer Probability of Informed Trading.” Available at SSRN 2874420.

Ersan O, Alici A (2016). “An unbiased computation methodology for estimating the probability
of informed trading (PIN).” Journal of International Financial Markets, Institutions and Money,
43, 74–94. ISSN 10424431.

Ersan O, Ghachem M (2022b). “A methodological approach to the computational problems in
the estimation of adjusted PIN model.” Available at SSRN 4117954.

Examples

# There is a preloaded quarterly dataset called 'dailytrades' with 60
# observations. Each observation corresponds to a day and contains the
# total number of buyer-initiated trades ('B') and seller-initiated
# trades ('S') on that day. To know more, type ?dailytrades

xdata <- dailytrades

# Obtain a dataframe of initial parameter sets for the maximum likelihood
# estimation using the algorithm of Ersan and Ghachem (2022b).

init.sets <- initials_adjpin(xdata)

# Use the list to estimate adjpin using the adjpin() method
# Show the value of adjusted PIN

estimate <- adjpin(xdata, initialsets = init.sets, verbose = FALSE)
show(estimate@adjpin)

initials_adjpin_cl AdjPIN initial parameter sets of Cheng and Lai (2021)

Description

Based on an extension of the algorithm in Cheng and Lai (2021), generates sets of initial parameters
to be used in the maximum likelihood estimation of AdjPIN model.



initials_adjpin_cl 39

Usage

initials_adjpin_cl(data, restricted = list(), verbose = TRUE)

Arguments

data A dataframe with 2 variables: the first corresponds to buyer-initiated trades
(buys), and the second corresponds to seller-initiated trades (sells).

restricted A binary list that allows estimating restricted AdjPIN models by specifying
which model parameters are assumed to be equal. It contains one or multiple of
the following four elements {theta, mu, eps, d}. For instance, If theta is set
to TRUE, then the probability of liquidity shock in no-information days, and in
information days is assumed to be the same (θ=θ′). If any of the remaining rate
elements {mu, eps, d} is set to TRUE, (say mu=TRUE), then the rate is assumed
to be the same on the buy side, and on the sell side (µb=µs). If more than one
element is set to TRUE, then the restrictions are combined. For instance, if the
argument restricted is set to list(theta=TRUE, eps=TRUE, d=TRUE), then
the restricted AdjPIN model is estimated, where θ=θ′, εb=εs, and ∆b=∆s. If the
value of the argument restricted is the empty list, then all parameters of the
model are assumed to be independent, and the unrestricted model is estimated.
The default value is the empty list list().

verbose a binary variable that determines whether information messages about the initial
parameter sets, including the number of the initial parameter sets generated. No
message is shown when verbose is set to FALSE. The default value is TRUE.

Details

The argument ’data’ should be a numeric dataframe, and contain at least two variables. Only the
first two variables will be considered: The first variable is assumed to correspond to the total num-
ber of buyer-initiated trades, while the second variable is assumed to correspond to the total number
of seller-initiated trades. Each row or observation correspond to a trading day. NA values will be
ignored.

The function implements an extension of the algorithm of Cheng and Lai (2021). In their pa-
per, the authors assume that the probability of liquidity shock is the same in no-information, and
information days, i.e., θ=θ′, and use a procedure similar to that of Yan and Zhang (2012) to generate
64 initial parameter sets. The function implements an extension of their algorithm, by relaxing the
assumption of equality of liquidity shock probabilities, and generates thereby 256 initial parameter
sets for the unrestricted AdjPIN model.

Value

Returns a dataframe of numerical vectors of ten elements {α, δ, θ, θ′, εb, εs, µb, µs, ∆b, ∆s}.

References

Cheng T, Lai H (2021). “Improvements in estimating the probability of informed trading models.”
Quantitative Finance, 21(5), 771-796.
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Yan Y, Zhang S (2012). “An improved estimation method and empirical properties of the prob-
ability of informed trading.” Journal of Banking and Finance, 36(2), 454–467. ISSN 03784266.

Examples

# There is a preloaded quarterly dataset called 'dailytrades' with 60
# observations. Each observation corresponds to a day and contains the
# total number of buyer-initiated trades ('B') and seller-initiated
# trades ('S') on that day. To know more, type ?dailytrades

xdata <- dailytrades

# The function adjpin(xdata, initialsets="CL") allows the user to directly
# estimate the AdjPIN model using the full set of initial parameter sets
# generated using the algorithm Cheng and Lai (2021)

estimate.1 <- adjpin(xdata, initialsets="CL", verbose = FALSE)

# Obtaining the set of initial parameter sets using initials_adjpin_cl
# allows us to estimate the PIN model using a subset of these initial sets.

# Use initials_adjpin_cl() to generate 256 initial parameter sets using the
# algorithm of Cheng and Lai (2021).

initials_cl <- initials_adjpin_cl(xdata, verbose = FALSE)

# Use 20 randonly chosen initial sets from the dataframe 'initials_cl' in
# order to estimate the AdjPIN model using the function adjpin() with custom
# initial parameter sets

numberofsets <- nrow(initials_cl)
selectedsets <- initials_cl[sample(numberofsets, 20),]

estimate.2 <- adjpin(xdata, initialsets = selectedsets, verbose = FALSE)

# Compare the parameters and the pin values of both specifications

comparison <- rbind(
c(estimate.1@parameters, adjpin = estimate.1@adjpin, psos = estimate.1@psos),
c(estimate.2@parameters, estimate.2@adjpin, estimate.2@psos))

rownames(comparison) <- c("all", "50")

show(comparison)

initials_adjpin_rnd AdjPIN random initial sets
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Description

Generates random initial parameter sets to be used in the estimation of the AdjPIN model of Duarte
and Young (2009).

Usage

initials_adjpin_rnd(data, restricted = list(), num_init = 20,
verbose = TRUE)

Arguments

data A dataframe with 2 variables: the first corresponds to buyer-initiated trades
(buys), and the second corresponds to seller-initiated trades (sells).

restricted A binary list that allows estimating restricted AdjPIN models by specifying
which model parameters are assumed to be equal. It contains one or multiple of
the following four elements {theta, mu, eps, d}. For instance, If theta is set
to TRUE, then the probability of liquidity shock in no-information days, and in
information days is assumed to be the same (θ=θ′). If any of the remaining rate
elements {mu, eps, d} is set to TRUE, (say mu=TRUE), then the rate is assumed
to be the same on the buy side, and on the sell side (µb=µs). If more than one
element is set to TRUE, then the restrictions are combined. For instance, if the
argument restricted is set to list(theta=TRUE, eps=TRUE, d=TRUE), then
the restricted AdjPIN model is estimated, where θ=θ′, εb=εs, and ∆b=∆s. If the
value of the argument restricted is the empty list (list()), then all parame-
ters of the model are assumed to be independent, and the unrestricted model is
estimated. The default value is the empty list list().

num_init An integer corresponds to the number of initial parameter sets to be generated.
The default value is 20.

verbose a binary variable that determines whether information messages about the initial
parameter sets, including the number of the initial parameter sets generated. No
message is shown when verbose is set to FALSE. The default value is TRUE.

Details

The argument ’data’ should be a numeric dataframe, and contain at least two variables. Only the
first two variables will be considered: The first variable is assumed to correspond to the total num-
ber of buyer-initiated trades, while the second variable is assumed to correspond to the total number
of seller-initiated trades. Each row or observation correspond to a trading day. NA values will be
ignored.

The buy rate parameters {εb, µb, ∆b} are randomly generated from the interval (minB, maxB),
where minB (maxB) is the smallest (largest) value of buys in the dataset, under the condition that
εb+µb+∆b< maxB. Analogously, the sell rate parameters {εs, µs, ∆s} are randomly generated from
the interval (minS, maxS), where minS (maxS) is the smallest(largest) value of sells in the dataset,
under the condition that εs+µs+∆s < maxS.
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Value

Returns a dataframe of numerical vectors of ten elements {α, δ, θ, θ′, εb, εs, µb, µs, ∆b, ∆s}.

References

Duarte J, Young L (2009). “Why is PIN priced?” Journal of Financial Economics, 91(2), 119–138.
ISSN 0304405X.

Examples

# There is a preloaded quarterly dataset called 'dailytrades' with 60
# observations. Each observation corresponds to a day and contains the
# total number of buyer-initiated trades ('B') and seller-initiated
# trades ('S') on that day. To know more, type ?dailytrades

xdata <- dailytrades

# Obtain a dataframe of 20 random initial parameters for the MLE of
# the AdjPIN model using the initials_adjpin_rnd().

initial.sets <- initials_adjpin_rnd(xdata, num_init = 20)

# Use the dataframe to estimate the AdjPIN model using the adjpin()
# function.

estimate <- adjpin(xdata, initialsets = initial.sets, verbose = FALSE)

# Show the value of adjusted PIN

show(estimate@adjpin)

initials_mpin MPIN initial parameter sets of Ersan (2016)

Description

Based on the algorithm in Ersan (2016), generates initial parameter sets for the maximum likelihood
estimation of the MPIN model.

Usage

initials_mpin(data, layers = NULL, detectlayers = "EG",
xtraclusters = 4, verbose = TRUE)
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Arguments

data A dataframe with 2 variables: the first corresponds to buyer-initiated trades
(buys), and the second corresponds to seller-initiated trades (sells).

layers An integer referring to the assumed number of information layers in the data. If
the value of layers is NULL, then the number of layers is automatically deter-
mined by one of the following functions: detectlayers_e(), detectlayers_eg(),
and detectlayers_ecm(). The default value is NULL.

detectlayers A character string referring to the layer detection algorithm used to determine
the number of layers in the data. It takes one of three values: "E", "EG", and
"ECM". "E" refers to the algorithm in Ersan (2016), "EG" refers to the algorithm
in Ersan and Ghachem (2022a); while "ECM" refers to the algorithm in Ghachem
and Ersan (2022a). The default value is "EG". Comparative results between the
layer detection algorithms can be found in Ersan and Ghachem (2022a).

xtraclusters An integer used to divide trading days into #(1 + layers + xtraclusters)
clusters, thereby resulting in #comb(layers + xtraclusters, layers) initial
parameter sets in line with Ersan and Alici (2016), and Ersan (2016). The default
value is 4 as chosen in Ersan (2016).

verbose a binary variable that determines whether information messages about the initial
parameter sets, including the number of the initial parameter sets generated. No
message is shown when verbose is set to FALSE. The default value is TRUE.

Details

The argument ’data’ should be a numeric dataframe, and contain at least two variables. Only the first
two variables will be considered: The first variable is assumed to correspond to the total number
of buyer-initiated trades, while the second variable is assumed to correspond to the total number
of seller-initiated trades. Each row or observation correspond to a trading day. NA values will be
ignored.

Value

Returns a dataframe of initial parameter sets each consisting of 3J + 2 variables {α, δ, µ, εb, εs}.
α, δ, and µ are vectors of length J where J is the number of layers in the MPIN model.

References

Ersan O (2016). “Multilayer Probability of Informed Trading.” Available at SSRN 2874420.

Ersan O, Alici A (2016). “An unbiased computation methodology for estimating the probability
of informed trading (PIN).” Journal of International Financial Markets, Institutions and Money,
43, 74–94. ISSN 10424431.

Ersan O, Ghachem M (2022a). “Identifying information types in probability of informed trad-
ing (PIN) models: An improved algorithm.” Available at SSRN 4117956.

Ghachem M, Ersan O (2022a). “Estimation of the probability of informed trading models via an
expectation-conditional maximization algorithm.” Available at SSRN 4117952.
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Examples

# There is a preloaded quarterly dataset called 'dailytrades' with 60
# observations. Each observation corresponds to a day and contains the
# total number of buyer-initiated trades ('B') and seller-initiated
# trades ('S') on that day. To know more, type ?dailytrades

xdata <- dailytrades

# Obtain a dataframe of initial parameter sets for estimation of the MPIN
# model using the algorithm of Ersan (2016) with 3 extra clusters.
# By default, the number of layers in the data is detected using the
# algorithm of Ersan and Ghachem (2022a).

initparams <- initials_mpin(xdata, xtraclusters = 3, verbose = FALSE)

# Show the six first initial parameter sets

print(round(t(head(initparams)), 3))

# Use 10 randomly selected initial parameter sets from initparams to
# estimate the probability of informed trading via mpin_ecm. The number
# of information layers will be detected from the initial parameter sets.

numberofsets <- nrow(initparams)
selectedsets <- initparams[sample(numberofsets, 10),]

estimate <- mpin_ecm(xdata, initialsets = selectedsets, verbose = FALSE)

# Display the estimated MPIN value

show(estimate@mpin)

# Display the estimated parameters as a numeric vector.

show(unlist(estimate@parameters))

# Store the posterior probabilities in a variable, and show the first 6 rows.

modelposteriors <- get_posteriors(estimate)
show(round(head(modelposteriors), 3))

initials_pin_ea Initial parameter sets of Ersan & Alici (2016)

Description

Based on the algorithm in Ersan and Alici (2016), generates initial parameter sets for the maximum
likelihood estimation of the PIN model.
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Usage

initials_pin_ea(data, xtraclusters = 4, verbose = TRUE)

Arguments

data A dataframe with 2 variables: the first corresponds to buyer-initiated trades
(buys), and the second corresponds to seller-initiated trades (sells).

xtraclusters An integer used to divide trading days into #(2 + xtraclusters) clusters, thereby
resulting in #comb(1 + xtraclusters, 1) initial parameter sets in line with
Ersan and Alici (2016). The default value is 4.

verbose a binary variable that determines whether information messages about the initial
parameter sets, including the number of the initial parameter sets generated. No
message is shown when verbose is set to FALSE. The default value is TRUE.

Details

The argument ’data’ should be a numeric dataframe, and contain at least two variables. Only the first
two variables will be considered: The first variable is assumed to correspond to the total number
of buyer-initiated trades, while the second variable is assumed to correspond to the total number
of seller-initiated trades. Each row or observation correspond to a trading day. NA values will be
ignored.

The function initials_pin_ea() uses a hierarchical agglomerative clustering (HAC) to find ini-
tial parameter sets for the maximum likelihood estimation. The steps in Ersan and Alici (2016)
algorithm differ from those used by Gan et al. (2015), and are summarized below.

Via the use of HAC, daily absolute order imbalances (AOIs) are grouped in 2+J (default J=4) clus-
ters. After sorting the clusters based on AOIs, they are combined into two larger groups of days
(event and no-event) by merging neighboring clusters with each other. Consequently, those groups
are formed in #comb(5, 1) = 5 different ways. For each of the 5 configurations with which, days
are grouped into two (event group and no-event group), the procedure below is applied to obtain
initial parameter sets.

Days in the event group (the one with larger mean AOI) are distributed into two groups, i.e. good-
event days (days with positive OI) and bad-event days (days with negative OI). Initial parameters
are obtained from the frequencies, and average trade rates of three types of days. See Ersan and
Alici (2016) for further details.

The higher the number of the additional clusters (xtraclusters), the better is the estimation. Ersan
and Alici (2016), however, have shown the benefit of increasing this number beyond 4 is marginal,
and statistically insignificant.

Value

Returns a dataframe of initial sets each consisting of five variables {α, δ, µ, εb, εs}.

References

Ersan O, Alici A (2016). “An unbiased computation methodology for estimating the probability of
informed trading (PIN).” Journal of International Financial Markets, Institutions and Money, 43,



46 initials_pin_gwj

74–94. ISSN 10424431.

Gan Q, Wei WC, Johnstone D (2015). “A faster estimation method for the probability of informed
trading using hierarchical agglomerative clustering.” Quantitative Finance, 15(11), 1805–1821.

Examples

# There is a preloaded quarterly dataset called 'dailytrades' with 60
# observations. Each observation corresponds to a day and contains the
# total number of buyer-initiated trades ('B') and seller-initiated
# trades ('S') on that day. To know more, type ?dailytrades

xdata <- dailytrades

# Obtain a dataframe of initial parameters for the maximum likelihood
# estimation using the algorithm of Ersan and Alici (2016).

init.sets <- initials_pin_ea(xdata)

# Use the obtained dataframe to estimate the PIN model using the function
# pin() with custom initial parameter sets

estimate.1 <- pin(xdata, initialsets = init.sets, verbose = FALSE)

# pin_ea() directly estimates the PIN model using initial parameter sets
# generated using the algorithm of Ersan & Alici (2016).

estimate.2 <- pin_ea(xdata, verbose = FALSE)

# Check that the obtained results are identical

show(estimate.1@parameters)
show(estimate.2@parameters)

initials_pin_gwj Initial parameter set of Gan et al.(2015)

Description

Based on the algorithm in Gan et al. (2015), generates an initial parameter set for the maximum
likelihood estimation of the PIN model.

Usage

initials_pin_gwj(data, verbose = TRUE)
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Arguments

data A dataframe with 2 variables: the first corresponds to buyer-initiated trades
(buys), and the second corresponds to seller-initiated trades (sells).

verbose a binary variable that determines whether information messages about the initial
parameter sets, including the number of the initial parameter sets generated. No
message is shown when verbose is set to FALSE. The default value is TRUE.

Details

The argument ’data’ should be a numeric dataframe, and contain at least two variables. Only the first
two variables will be considered: The first variable is assumed to correspond to the total number
of buyer-initiated trades, while the second variable is assumed to correspond to the total number
of seller-initiated trades. Each row or observation correspond to a trading day. NA values will be
ignored.

Value

Returns a dataframe containing numerical vector of five elements {α, δ, µ, εb, εs}.

References

Gan Q, Wei WC, Johnstone D (2015). “A faster estimation method for the probability of informed
trading using hierarchical agglomerative clustering.” Quantitative Finance, 15(11), 1805–1821.

Examples

# There is a preloaded quarterly dataset called 'dailytrades' with 60
# observations. Each observation corresponds to a day and contains the
# total number of buyer-initiated trades ('B') and seller-initiated
# trades ('S') on that day. To know more, type ?dailytrades

xdata <- dailytrades

# Obtain the initial parameter set for the maximum likelihood estimation
# using the algorithm of Gan et al.(2015).

initparams <- initials_pin_gwj(xdata)

# Use the obtained dataframe to estimate the PIN model using the function
# pin() with custom initial parameter sets

estimate.1 <- pin(xdata, initialsets = initparams, verbose = FALSE)

# pin_gwj() directly estimates the PIN model using an initial parameter set
# generated using the algorithm of Gan et al.(2015).

estimate.2 <- pin_gwj(xdata, "E", verbose = FALSE)

# Check that the obtained results are identical

show(estimate.1@parameters)
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show(estimate.2@parameters)

initials_pin_yz Initial parameter sets of Yan and Zhang (2012)

Description

Based on the grid search algorithm of Yan and Zhang (2012), generates initial parameter sets for
the maximum likelihood estimation of the PIN model.

Usage

initials_pin_yz(data, grid_size = 5, ea_correction = FALSE,
verbose = TRUE)

Arguments

data A dataframe with 2 variables: the first corresponds to buyer-initiated trades
(buys), and the second corresponds to seller-initiated trades (sells).

grid_size An integer between 1, and 20; representing the size of the grid. The default
value is 5. See more in details.

ea_correction A binary variable determining whether the modifications of the algorithm of Yan
and Zhang (2012) suggested by Ersan and Alici (2016) are implemented. The
default value is FALSE.

verbose a binary variable that determines whether information messages about the initial
parameter sets, including the number of the initial parameter sets generated. No
message is shown when verbose is set to FALSE. The default value is TRUE.

Details

The argument ’data’ should be a numeric dataframe, and contain at least two variables. Only the first
two variables will be considered: The first variable is assumed to correspond to the total number
of buyer-initiated trades, while the second variable is assumed to correspond to the total number
of seller-initiated trades. Each row or observation correspond to a trading day. NA values will be
ignored.

The argument grid_size determines the size of the grid of the variables: alpha, delta, and eps.b.
If grid_size is set to a given value m, the algorithm creates a sequence starting from 1/2m, and
ending in 1 - 1/2m, with a step of 1/m. The default value of 5 corresponds to the size of the grid in
Yan and Zhang (2012). In that case, the sequence starts at 0.1 = 1/(2 x 5), and ends in 0.9 = 1 -
1/(2 x 5) with a step of 0.2 = 1/m.

The function initials_pin_yz() implements, by default, the original Yan and Zhang (2012) algo-
rithm as the default value of ea_correction takes the value FALSE. When the value of ea_correction
is set to TRUE; then, sets with irrelevant mu values are excluded, and sets with boundary values are
reintegrated in the initial parameter sets.
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Value

Returns a dataframe of initial sets each consisting of five variables {α, δ, µ, εb, εs}.

References

Ersan O, Alici A (2016). “An unbiased computation methodology for estimating the probability of
informed trading (PIN).” Journal of International Financial Markets, Institutions and Money, 43,
74–94. ISSN 10424431.

Yan Y, Zhang S (2012). “An improved estimation method and empirical properties of the prob-
ability of informed trading.” Journal of Banking and Finance, 36(2), 454–467. ISSN 03784266.

Examples

# There is a preloaded quarterly dataset called 'dailytrades' with 60
# observations. Each observation corresponds to a day and contains the
# total number of buyer-initiated trades ('B') and seller-initiated
# trades ('S') on that day. To know more, type ?dailytrades

xdata <- dailytrades

# The function pin_yz() allows the user to directly estimate the PIN model
# using the full set of initial parameter sets generated using the algorithm
# of Yan and # Zhang (2012).

estimate.1 <- pin_yz(xdata, verbose = FALSE)

# Obtaining the set of initial parameter sets using initials_pin_yz allows
# us to estimate the PIN model using a subset of these initial sets.

initparams <- initials_pin_yz(xdata, verbose = FALSE)

# Use 10 randonly chosen initial sets from the dataframe 'initparams' in
# order to estimate the PIN model using the function pin() with custom
# initial parameter sets

numberofsets <- nrow(initparams)
selectedsets <- initparams[sample(numberofsets, 10),]

estimate.2 <- pin(xdata, initialsets = selectedsets, verbose = FALSE)

# Compare the parameters and the pin values of both specifications

comparison <- rbind(c(estimate.1@parameters, pin = estimate.1@pin),
c(estimate.2@parameters, estimate.2@pin))

rownames(comparison) <- c("all", "10")

show(comparison)
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mpin_ecm MPIN model estimation via an ECM algorithm

Description

Estimates the multilayer probability of informed trading (MPIN) using an Expectation Conditional
Maximization algorithm, as in Ghachem and Ersan (2022a).

Usage

mpin_ecm(data, layers = NULL, xtraclusters = 4, initialsets = NULL,
..., verbose = TRUE)

Arguments

data A dataframe with 2 variables: the first corresponds to buyer-initiated trades
(buys), and the second corresponds to seller-initiated trades (sells).

layers An integer referring to the assumed number of information layers in the data.
If the argument layers is given, then the ECM algorithm will use the number
of layers provided. If layers is omitted, the function mpin_ecm() will simul-
taneously optimize the number of layers as well as the parameters of the MPIN
model.

xtraclusters An integer used to divide trading days into #(1 + layers + xtraclusters)
clusters, thereby resulting in #comb((layers + xtraclusters, layers) initial
parameter sets in line with Ersan and Alici (2016), and Ersan (2016). The default
value is 4 as chosen in Ersan (2016).

initialsets A dataframe containing initial parameter sets for estimation of the MPIN model.
The default value is NULL. If initialsets is NULL, the initial parameter sets are
provided by the function initials_mpin().

... Additional arguments passed on to the function mpin_ecm. The recognized ar-
guments are hyperparams, and is_parallel.

• hyperparams is a list containing the hyperparameters of the ECM algo-
rithm. When not empty, it contains one or more of the following elements:
minalpha, maxeval, tolerance, criterion, and maxlayers. More about
these elements are in the details section.

• is_parallel is a logical variable that specifies whether the computation
is performed using parallel or sequential processing. The default value is
FALSE. For more details, please refer to the vignette ’Parallel processing’ in
the package, or online.

verbose (logical) a binary variable that determines whether detailed information about
the steps of the estimation of the MPIN model is displayed. No output is pro-
duced when verbose is set to FALSE. The default value is TRUE.

https://pinstimation.com/articles/parallel_processing.html
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Details

The argument ’data’ should be a numeric dataframe, and contain at least two variables. Only the first
two variables will be considered: The first variable is assumed to correspond to the total number
of buyer-initiated trades, while the second variable is assumed to correspond to the total number
of seller-initiated trades. Each row or observation correspond to a trading day. NA values will be
ignored.

The initial parameters for the expectation-conditional maximization algorithm are computed using
the function initials_mpin() with default settings. The factorization of the MPIN likelihood func-
tion used is developed by Ersan (2016), and is implemented in fact_mpin().

The argument hyperparams contains the hyperparameters of the ECM algorithm. It is either empty
or contains one or more of the following elements:

• minalpha (numeric) It stands for the minimum share of days belonging to a given layer, i.e.,
layers falling below this threshold are removed during the iteration, and the model is estimated
with a lower number of layers. When missing, minalpha takes the default value of 0.001.

• maxeval: (integer) It stands for maximum number of iterations of the ECM algorithm for
each initial parameter set. When missing, maxeval takes the default value of 100.

• tolerance (numeric) The ECM algorithm is stopped when the (relative) change of log-
likelihood is smaller than tolerance. When missing, tolerance takes the default value of
0.001.

• criterion (character) It is the model selection criterion used to find the optimal estimate
for the MPIN model. It take one of these values "BIC", "AIC" and "AWE"; which stand for
Bayesian Information Criterion, Akaike Information Criterion and Approximate Weight of
Evidence, respectively (Akogul and Erisoglu 2016). When missing, criterion takes the
default value of "BIC".

• maxlayers (integer) It is the upper limit of number of layers used for estimation in the ECM
algorithm. If the argument layers is missing, the ECM algorithm will estimate MPIN models
for all layers in the integer set from 1 to maxlayers. When missing, maxlayers takes the
default value of 8.

• maxinit (integer) It is the maximum number of initial sets used for each individual estima-
tion in the ECM algorithm. When missing, maxinit takes the default value of 100.

If the argument layers is given, then the Expectation Conditional Maximization algorithm will use
the number of layers provided. If layers is omitted, the function mpin_ecm() will simultaneously
optimize the number of layers as well as the parameters of the MPIN model. Practically, the function
mpin_ecm() uses the ECM algorithm to optimize the MPIN model parameters for each number of
layers within the integer set from 1 to 8 (or to maxlayers if specified in the argument hyperparams);
and returns the optimal model with the lowest Bayesian information criterion (BIC) (or the lowest
information criterion criterion if specified in the argument hyperparams).

Value

Returns an object of class estimate.mpin.ecm.
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References

Akogul S, Erisoglu M (2016). “A comparison of information criteria in clustering based on mixture
of multivariate normal distributions.” Mathematical and Computational Applications, 21(3), 34.

Ersan O (2016). “Multilayer Probability of Informed Trading.” Available at SSRN 2874420.

Ersan O, Alici A (2016). “An unbiased computation methodology for estimating the probability
of informed trading (PIN).” Journal of International Financial Markets, Institutions and Money,
43, 74–94. ISSN 10424431.

Ghachem M, Ersan O (2022a). “Estimation of the probability of informed trading models via an
expectation-conditional maximization algorithm.” Available at SSRN 4117952.

Examples

# There is a preloaded quarterly dataset called 'dailytrades' with 60
# observations. Each observation corresponds to a day and contains the
# total number of buyer-initiated trades ('B') and seller-initiated
# trades ('S') on that day. To know more, type ?dailytrades

xdata <- dailytrades

# Estimate the MPIN model using the expectation-conditional maximization
# (ECM) algorithm.

# ------------------------------------------------------------------------ #
# Estimate the MPIN model, assuming that there exists 2 information layers #
# in the dataset #
# ------------------------------------------------------------------------ #

estimate <- mpin_ecm(xdata, layers = 2, verbose = FALSE)

# Show the estimation output

show(estimate)

# Display the optimal parameters from the Expectation Conditional
# Maximization algorithm

show(estimate@parameters)

# Display the global multilayer probability of informed trading

show(estimate@mpin)

# Display the multilayer probability of informed trading per layer

show(estimate@mpinJ)

# Display the first five rows of the initial parameter sets used in the
# expectation-conditional maximization estimation
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show(round(head(estimate@initialsets, 5), 4))

# ------------------------------------------------------------------------ #
# Omit the argument 'layers', so the ECM algorithm optimizes both the #
# number of layers and the MPIN model parameters. #
# ------------------------------------------------------------------------ #

estimate <- mpin_ecm(xdata, verbose = FALSE)

# Show the estimation output

show(estimate)

# Display the optimal parameters from the estimation of the MPIN model using
# the expectation-conditional maximization (ECM) algorithm

show(estimate@parameters)

# Display the multilayer probability of informed trading

show(estimate@mpin)

# Display the multilayer probability of informed trading per layer

show(estimate@mpinJ)

# Display the first five rows of the initial parameter sets used in the
# expectation-conditional maximization estimation.

show(round(head(estimate@initialsets, 5), 4))

# ------------------------------------------------------------------------ #
# Tweak in the hyperparameters of the ECM algorithm #
# ------------------------------------------------------------------------ #

# Create a variable ecm.params containing the hyperparameters of the ECM
# algorithm. This will surely make the ECM algorithm take more time to give
# results

ecm.params <- list(tolerance = 0.0000001)

# If we suspect that the data contains more than eight information layers, we
# can raise the number of models to be estimated to 10 as an example, i.e.,
# maxlayers = 10.

ecm.params$maxlayers <- 10

# We can also choose Approximate Weight of Evidence (AWE) for model
# selection instead of the default Bayesian Information Criterion (BIC)

ecm.params$criterion <- 'AWE'



54 mpin_ml

# We can also increase the maximum number of initial sets to 200, in
# order to obtain higher level of accuracy for models with high number of
# layers. We set the sub-argument 'maxinit' to `200`. Remember that its
# default value is `100`.

ecm.params$maxinit <- 200

estimate <- mpin_ecm(xdata, xtraclusters = 2, hyperparams = ecm.params,
verbose = FALSE)

# We can change the model selection criterion by calling selectModel()

estimate <- selectModel(estimate, "AIC")

# We get the mpin_ecm estimation results for the MPIN model with 2 layers
# using the slot models. We then show the first five rows of the
# corresponding slot details.

models <- estimate@models
show(round(head(models[[2]]@details, 5), 4))

# We can also use the function getSummary to get an idea about the change in
# the estimation parameters as a function of the number of layers in the
# MPIN model. The function getSummary returns a dataframe that contains,
# among others, the number of layers of the model, the number of layers in
# the optimal model,the MPIN value, and the values of the different
# information criteria, namely AIC, BIC and AWE.

summary <- getSummary(estimate)

# We can plot the MPIN value and the layers at the optimal model as a
# function of the number of layers to see whether additional layers in the
# model actually contribute to a better precision in the probability of
# informed trading. Remember that the hyperparameter 'minalpha' is
# responsible for dropping layers with "frequency" lower than 'minalpha'.

plot(summary$layers, summary$MPIN,
type = "o", col = "red",
xlab = "MPIN model layers", ylab = "MPIN value"

)

plot(summary$layers, summary$em.layers,
type = "o", col = "blue",
xlab = "MPIN model layers", ylab = "layers at the optimal model"

)

mpin_ml MPIN model estimation via standard ML methods
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Description

Estimates the multilayer probability of informed trading (MPIN) using the standard Maximum Like-
lihood method.

Usage

mpin_ml(data, layers = NULL, xtraclusters = 4, initialsets = NULL,
detectlayers = "EG", ..., verbose = TRUE)

Arguments

data A dataframe with 2 variables: the first corresponds to buyer-initiated trades
(buys), and the second corresponds to seller-initiated trades (sells).

layers An integer referring to the assumed number of information layers in the data. If
the argument layers is given, then the maximum likelihood estimation will use
the number of layers provided. If layers is omitted, the function mpin_ml()
will find the optimal number of layers using the algorithm developed in Ersan
and Ghachem (2022a) (as default).

xtraclusters An integer used to divide trading days into (1 + layers + xtraclusters) clus-
ters, thereby resulting in #comb(layers + xtraclusters, layers) initial pa-
rameter sets in line with Ersan and Alici (2016), and Ersan (2016). The default
value is 4 as chosen in Ersan (2016).

initialsets A dataframe containing initial parameter sets for the estimation of the MPIN
model. The default value is NULL. If initialsets is NULL, the initial param-
eter sets are determined by the function initials_mpin().

detectlayers A character string referring to the layer detection algorithm used to determine
the number of layer in the data. It takes one of three values: "E", "EG", and
"ECM". "E" refers to the algorithm in Ersan (2016), "EG" refers to the algorithm
in Ersan and Ghachem (2022a); while "ECM" refers to the algorithm in Ghachem
and Ersan (2022a). The default value is "EG". Comparative results between the
layer detection algorithms can be found in Ersan and Ghachem (2022a).

... Additional arguments passed on to the function mpin_ml. The recognized argu-
ment is is_parallel. is_parallel is a logical variable that specifies whether
the computation is performed using parallel processing. The default value is
FALSE.

verbose A binary variable that determines whether detailed information about the steps
of the estimation of the MPIN model is displayed. No output is produced when
verbose is set to FALSE. The default value is TRUE.

Details

The argument ’data’ should be a numeric dataframe, and contain at least two variables. Only the
first two variables will be considered: The first variable is assumed to correspond to the total num-
ber of buyer-initiated trades, while the second variable is assumed to correspond to the total number
of seller-initiated trades. Each row or observation correspond to a trading day. NA values will be
ignored.
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Value

Returns an object of class estimate.mpin

References

Ersan O (2016). “Multilayer Probability of Informed Trading.” Available at SSRN 2874420.

Ersan O, Alici A (2016). “An unbiased computation methodology for estimating the probability
of informed trading (PIN).” Journal of International Financial Markets, Institutions and Money,
43, 74–94. ISSN 10424431.

Ersan O, Ghachem M (2022a). “Identifying information types in probability of informed trad-
ing (PIN) models: An improved algorithm.” Available at SSRN 4117956.

Ghachem M, Ersan O (2022a). “Estimation of the probability of informed trading models via an
expectation-conditional maximization algorithm.” Available at SSRN 4117952.

Examples

# There is a preloaded quarterly dataset called 'dailytrades' with 60
# observations. Each observation corresponds to a day and contains the
# total number of buyer-initiated trades ('B') and seller-initiated
# trades ('S') on that day. To know more, type ?dailytrades

xdata <- dailytrades

# ------------------------------------------------------------------------ #
# Estimate MPIN model using the standard ML method #
# ------------------------------------------------------------------------ #

# Estimate the MPIN model using mpin_ml() assuming that there is a single
# information layer in the data. The model is then equivalent to the PIN
# model. The argument 'layers' takes the value '1'.
# We use two extra clusters to generate the initial parameter sets.

estimate <- mpin_ml(xdata, layers = 1, xtraclusters = 2, verbose = FALSE)

# Show the estimation output

show(estimate)

# Estimate the MPIN model using the function mpin_ml(), without specifying
# the number of layers. The number of layers is then detected using Ersan and
# Ghachem (2022a).
# -------------------------------------------------------------

estimate <- mpin_ml(xdata, xtraclusters = 2, verbose = FALSE)

# Show the estimation output

show(estimate)
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# Display the likelihood-maximizing parameters

show(estimate@parameters)

# Display the global multilayer probability of informed trading

show(estimate@mpin)

# Display the multilayer probabilities of informed trading per layer

show(estimate@mpinJ)

# Display the first five initial parameters sets used in the maximum
# likelihood estimation

show(round(head(estimate@initialsets, 5), 4))

pin PIN estimation - custom initial parameter sets

Description

Estimates the Probability of Informed Trading (PIN) using custom initial parameter sets

Usage

pin(data, initialsets, factorization = "E", verbose = TRUE)

Arguments

data A dataframe with 2 variables: the first corresponds to buyer-initiated trades
(buys), and the second corresponds to seller-initiated trades (sells).

initialsets A dataframe with the following variables in this order (α, δ, µ, εb, εs).
factorization A character string from {"EHO", "LK", "E", "NONE"} referring to a given fac-

torization. The default value is set to "E".
verbose A binary variable that determines whether detailed information about the steps

of the estimation of the PIN model is displayed. No output is produced when
verbose is set to FALSE. The default value is TRUE.

Details

The argument ’data’ should be a numeric dataframe, and contain at least two variables. Only the first
two variables will be considered: The first variable is assumed to correspond to the total number
of buyer-initiated trades, while the second variable is assumed to correspond to the total number
of seller-initiated trades. Each row or observation correspond to a trading day. NA values will be
ignored.

The factorization variable takes one of four values:
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• "EHO" refers to the factorization in Easley et al. (2010)

• "LK" refers to the factorization in Lin and Ke (2011)

• "E" refers to the factorization in Ersan (2016)

• "NONE" refers to the original likelihood function - with no factorization

Value

Returns an object of class estimate.pin

References

Easley D, Hvidkjaer S, Ohara M (2010). “Factoring information into returns.” Journal of Financial
and Quantitative Analysis, 45(2), 293–309. ISSN 00221090.

Ersan O (2016). “Multilayer Probability of Informed Trading.” Available at SSRN 2874420.

Lin H, Ke W (2011). “A computing bias in estimating the probability of informed trading.” Journal
of Financial Markets, 14(4), 625-640. ISSN 1386-4181.

Examples

# There is a preloaded quarterly dataset called 'dailytrades' with 60
# observations. Each observation corresponds to a day and contains the
# total number of buyer-initiated trades ('B') and seller-initiated
# trades ('S') on that day. To know more, type ?dailytrades

xdata <- dailytrades

#--------------------------------------------------------------
# Using generic function pin()
#--------------------------------------------------------------

# Define initial parameters:
# initialset = (alpha, delta, mu, eps.b, eps.s)

initialset <- c(0.3, 0.1, 800, 300, 200)

# Estimate the PIN model using the factorization of the PIN likelihood
# function by Ersan (2016)

estimate <- pin(xdata, initialsets = initialset, verbose = FALSE)

# Display the estimated PIN value

show(estimate@pin)

# Display the estimated parameters

show(estimate@parameters)

# Store the initial parameter sets used for MLE in a dataframe variable,
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# and display its first five rows

initialsets <- estimate@initialsets
show(head(initialsets, 5))

pin_bayes PIN estimation - Bayesian approach

Description

Estimates the Probability of Informed Trading (PIN) using Bayesian Gibbs sampling as in Griffin
et al. (2021) and the initial sets from the algorithm in Ersan and Alici (2016).

Usage

pin_bayes(data, xtraclusters = 4, sweeps = 1000, burnin = 500,
prior.a = 1, prior.b = 2, verbose = TRUE)

Arguments

data A dataframe with 2 variables: the first corresponds to buyer-initiated trades
(buys), and the second corresponds to seller-initiated trades (sells).

xtraclusters An integer used to divide trading days into #(2 + xtraclusters) clusters, thereby
resulting in #comb(1 + xtraclusters, 1) initial parameter sets in line with Er-
san and Alici (2016). The default value is 4.

sweeps An integer referring to the number of iterations for the Gibbs Sampler. This
has to be large enough to ensure convergence of the Markov chain. The default
value is 1000.

burnin An integer referring to the number of initial iterations for which the parameter
draws should be discarded. This is to ensure that we keep the draws at the point
where the MCMC has converged to the parameter space in which the parameter
estimate is likely to fall. This figure must always be less than the sweeps. The
default value is 500.

prior.a An integer controlling the mean number of informed trades, such as the prior of
informed buys and sells is the Gamma density function with µ ~ Ga(prior.a,
η). The default value is 1. For more details, please refer to Griffin et al. (2021).

prior.b An integer controlling the mean number of uninformed trades, such as the prior
of uninformed buys and sells is the Gamma density function with εb ~ Ga(prior.b,
η), and εs ~ Ga(prior.b, η). The default value is 2. For more details, please
refer to Griffin et al. (2021).

verbose A binary variable that determines whether detailed information about the steps
of the estimation of the PIN model is displayed. No output is produced when
verbose is set to FALSE. The default value is TRUE.
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Details

The argument ’data’ should be a numeric dataframe, and contain at least two variables. Only the first
two variables will be considered: The first variable is assumed to correspond to the total number
of buyer-initiated trades, while the second variable is assumed to correspond to the total number
of seller-initiated trades. Each row or observation correspond to a trading day. NA values will be
ignored.

The function pin_bayes() implements the algorithm detailed in Ersan and Alici (2016). The higher
the number of the additional clusters (xtraclusters), the better is the estimation. Ersan and Alici
(2016), however, have shown the benefit of increasing this number beyond 5 is marginal, and sta-
tistically insignificant.

The function initials_pin_ea() provides the initial parameter sets obtained through the imple-
mentation of the Ersan and Alici (2016) algorithm. For further information on the initial parameter
set determination, see initials_pin_ea().

Value

Returns an object of class estimate.pin

References

Ersan O, Alici A (2016). “An unbiased computation methodology for estimating the probability of
informed trading (PIN).” Journal of International Financial Markets, Institutions and Money, 43,
74–94. ISSN 10424431.

Griffin J, Oberoi J, Oduro SD (2021). “Estimating the probability of informed trading: A Bayesian
approach.” Journal of Banking & Finance, 125, 106045.

Examples

# Use the function generatedata_mpin() to generate a dataset of
# 60 days according to the assumptions of the original PIN model.

sdata <- generatedata_mpin(layers = 1)
xdata <- sdata@data

# Estimate the PIN model using the Bayesian approach developed in
# Griffin et al. (2021), and initial parameter sets generated using the
# algorithm of Ersan and Alici (2016). The argument xtraclusters is
# set to 1. We also leave the arguments 'sweeps' and 'burnin' at their
# default values.

estimate <- pin_bayes(xdata, xtraclusters = 1, verbose = FALSE)

# Display the empirical PIN value at the data, and the PIN value
# estimated using the bayesian approach

setNames(c(sdata@emp.pin, estimate@pin), c("data", "estimate"))
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# Display the empirial and the estimated parameters

show(unlist(sdata@empiricals))
show(estimate@parameters)

# Find the initial set that leads to the optimal estimate
optimal <- which.max(estimate@details$likelihood)

# Store the matrix of Monte Carlo simulation for the optimal
# estimate, and display its last five rows

mcmatrix <- estimate@details$markovmatrix[[optimal]]
show(tail(mcmatrix, 5))

# Display the summary of Geweke test for the Monte Carlo matrix above.
show(estimate@details$summary[[optimal]])

pin_ea PIN estimation - initial parameter sets of Ersan & Alici (2016)

Description

Estimates the Probability of Informed Trading (PIN) using the initial sets from the algorithm in
Ersan and Alici (2016).

Usage

pin_ea(data, factorization, xtraclusters = 4, verbose = TRUE)

Arguments

data A dataframe with 2 variables: the first corresponds to buyer-initiated trades
(buys), and the second corresponds to seller-initiated trades (sells).

factorization A character string from {"E", "EHO", "LK", "NONE"} referring to a given fac-
torization. The default value is "E".

xtraclusters An integer used to divide trading days into #(2 + xtraclusters) clusters, thereby
resulting in #comb(1 + xtraclusters, 1) initial parameter sets in line with Er-
san and Alici (2016). The default value is 4.

verbose A binary variable that determines whether detailed information about the steps
of the estimation of the PIN model is displayed. No output is produced when
verbose is set to FALSE. The default value is TRUE.
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Details

The argument ’data’ should be a numeric dataframe, and contain at least two variables. Only the first
two variables will be considered: The first variable is assumed to correspond to the total number
of buyer-initiated trades, while the second variable is assumed to correspond to the total number
of seller-initiated trades. Each row or observation correspond to a trading day. NA values will be
ignored.

The factorization variable takes one of four values:

• "EHO" refers to the factorization in Easley et al. (2010)

• "LK" refers to the factorization in Lin and Ke (2011)

• "E" refers to the factorization in Ersan (2016)

• "NONE" refers to the original likelihood function - with no factorization

The function pin_ea() implements the algorithm detailed in Ersan and Alici (2016). The higher
the number of the additional layers (xtraclusters), the better is the estimation. Ersan and Alici
(2016), however, have shown the benefit of increasing this number beyond 5 is marginal, and sta-
tistically insignificant.

The function initials_pin_ea() provides the initial parameter sets obtained through the imple-
mentation of the Ersan and Alici (2016) algorithm. For further information on the initial parameter
set determination, see initials_pin_ea().

Value

Returns an object of class estimate.pin

References

Easley D, Hvidkjaer S, Ohara M (2010). “Factoring information into returns.” Journal of Financial
and Quantitative Analysis, 45(2), 293–309. ISSN 00221090.

Ersan O (2016). “Multilayer Probability of Informed Trading.” Available at SSRN 2874420.

Ersan O, Alici A (2016). “An unbiased computation methodology for estimating the probability
of informed trading (PIN).” Journal of International Financial Markets, Institutions and Money,
43, 74–94. ISSN 10424431.

Lin H, Ke W (2011). “A computing bias in estimating the probability of informed trading.” Journal
of Financial Markets, 14(4), 625-640. ISSN 1386-4181.

Examples

# There is a preloaded quarterly dataset called 'dailytrades' with 60
# observations. Each observation corresponds to a day and contains the
# total number of buyer-initiated trades ('B') and seller-initiated
# trades ('S') on that day. To know more, type ?dailytrades

xdata <- dailytrades
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# Estimate the PIN model using the factorization of Ersan (2016), and initial
# parameter sets generated using the algorithm of Ersan and Alici (2016).
# The argument xtraclusters is omitted so will take its default value 4.

estimate <- pin_ea(xdata, verbose = FALSE)

# Display the estimated PIN value

show(estimate@pin)

# Display the estimated parameters

show(estimate@parameters)

# Store the initial parameter sets used for MLE in a dataframe variable,
# and display its first five rows

initialsets <- estimate@initialsets
show(head(initialsets, 5))

pin_gwj PIN estimation - initial parameter set of Gan et al. (2015)

Description

Estimates the Probability of Informed Trading (PIN) using the initial set from the algorithm in Gan
et al.(2015).

Usage

pin_gwj(data, factorization = "E", verbose = TRUE)

Arguments

data A dataframe with 2 variables: the first corresponds to buyer-initiated trades
(buys), and the second corresponds to seller-initiated trades (sells).

factorization A character string from {"EHO", "LK", "E", "NONE"} referring to a given fac-
torization. The default value is set to "E".

verbose A binary variable that determines whether detailed information about the steps
of the estimation of the PIN model is displayed. No output is produced when
verbose is set to FALSE. The default value is TRUE.

Details

The argument ’data’ should be a numeric dataframe, and contain at least two variables. Only the first
two variables will be considered: The first variable is assumed to correspond to the total number
of buyer-initiated trades, while the second variable is assumed to correspond to the total number
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of seller-initiated trades. Each row or observation correspond to a trading day. NA values will be
ignored.

The factorization variable takes one of four values:

• "EHO" refers to the factorization in Easley et al. (2010)

• "LK" refers to the factorization in Lin and Ke (2011)

• "E" refers to the factorization in Ersan (2016)

• "NONE" refers to the original likelihood function - with no factorization

The function pin_gwj() implements the algorithm detailed in Gan et al. (2015). You can use the
function initials_pin_gwj() in order to get the initial parameter set.

Value

Returns an object of class estimate.pin

References

Easley D, Hvidkjaer S, Ohara M (2010). “Factoring information into returns.” Journal of Financial
and Quantitative Analysis, 45(2), 293–309. ISSN 00221090.

Ersan O (2016). “Multilayer Probability of Informed Trading.” Available at SSRN 2874420.

Gan Q, Wei WC, Johnstone D (2015). “A faster estimation method for the probability of informed
trading using hierarchical agglomerative clustering.” Quantitative Finance, 15(11), 1805–1821.

Lin H, Ke W (2011). “A computing bias in estimating the probability of informed trading.” Journal
of Financial Markets, 14(4), 625-640. ISSN 1386-4181.

Examples

# There is a preloaded quarterly dataset called 'dailytrades' with 60
# observations. Each observation corresponds to a day and contains the
# total number of buyer-initiated trades ('B') and seller-initiated
# trades ('S') on that day. To know more, type ?dailytrades

xdata <- dailytrades

# Estimate the PIN model using the factorization of Ersan (2016), and initial
# parameter sets generated using the algorithm of Gan et al. (2015).
# The argument xtraclusters is omitted so will take its default value 4.

estimate <- pin_gwj(xdata, verbose = FALSE)

# Display the estimated PIN value

show(estimate@pin)

# Display the estimated parameters
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show(estimate@parameters)

# Store the initial parameter sets used for MLE in a dataframe variable,
# and display its first five rows

initialsets <- estimate@initialsets
show(head(initialsets, 5))

pin_yz PIN estimation - initial parameter sets of Yan & Zhang (2012)

Description

Estimates the Probability of Informed Trading (PIN) using the initial parameter sets generated using
the grid search algorithm of Yan and Zhang (2012).

Usage

pin_yz(data, factorization, ea_correction = FALSE, grid_size = 5,
verbose = TRUE)

Arguments

data A dataframe with 2 variables: the first corresponds to buyer-initiated trades
(buys), and the second corresponds to seller-initiated trades (sells).

factorization A character string from {"EHO", "LK", "E", "NONE"} referring to a given fac-
torization. The default value is "E".

ea_correction A binary variable determining whether the modifications of the algorithm of Yan
and Zhang (2012) suggested by Ersan and Alici (2016) are implemented. The
default value is FALSE.

grid_size An integer between 1, and 20; representing the size of the grid. The default
value is 5. See more in details.

verbose A binary variable that determines whether detailed information about the steps
of the estimation of the PIN model is displayed. No output is produced when
verbose is set to FALSE. The default value is TRUE.

Details

The argument ’data’ should be a numeric dataframe, and contain at least two variables. Only the first
two variables will be considered: The first variable is assumed to correspond to the total number
of buyer-initiated trades, while the second variable is assumed to correspond to the total number
of seller-initiated trades. Each row or observation correspond to a trading day. NA values will be
ignored.

The factorization variable takes one of four values:

• "EHO" refers to the factorization in Easley et al. (2010)



66 pin_yz

• "LK" refers to the factorization in Lin and Ke (2011)

• "E" refers to the factorization in Ersan (2016)

• "NONE" refers to the original likelihood function - with no factorization

The argument grid_size determines the size of the grid of the variables: alpha, delta, and eps.b.
If grid_size is set to a given value m, the algorithm creates a sequence starting from 1/2m, and
ending in 1 - 1/2m, with a step of 1/m. The default value of 5 corresponds to the size of the grid in
Yan and Zhang (2012). In that case, the sequence starts at 0.1 = 1/(2 x 5), and ends in 0.9 = 1 -
1/(2 x 5) with a step of 0.2 = 1/m.

The function pin_yz() implements, by default, the original Yan and Zhang (2012) algorithm as
the default value of ea_correction takes the value FALSE. When the value of ea_correction is
set to TRUE; then, sets with irrelevant mu values are excluded, and sets with boundary values are
reintegrated in the initial parameter sets.

Value

Returns an object of class estimate.pin

References

Easley D, Hvidkjaer S, Ohara M (2010). “Factoring information into returns.” Journal of Financial
and Quantitative Analysis, 45(2), 293–309. ISSN 00221090.

Ersan O (2016). “Multilayer Probability of Informed Trading.” Available at SSRN 2874420.

Ersan O, Alici A (2016). “An unbiased computation methodology for estimating the probability
of informed trading (PIN).” Journal of International Financial Markets, Institutions and Money,
43, 74–94. ISSN 10424431.

Lin H, Ke W (2011). “A computing bias in estimating the probability of informed trading.” Journal
of Financial Markets, 14(4), 625-640. ISSN 1386-4181.

Yan Y, Zhang S (2012). “An improved estimation method and empirical properties of the prob-
ability of informed trading.” Journal of Banking and Finance, 36(2), 454–467. ISSN 03784266.

Examples

# There is a preloaded quarterly dataset called 'dailytrades' with 60
# observations. Each observation corresponds to a day and contains the
# total number of buyer-initiated trades ('B') and seller-initiated
# trades ('S') on that day. To know more, type ?dailytrades

xdata <- dailytrades

# Estimate the PIN model using the factorization of Lin and Ke(2011), and
# initial parameter sets generated using the algorithm of Yan & Zhang (2012).
# In contrast to the original algorithm, we set the grid size for the grid
# search algorithm at 3. The original algorithm assumes a grid of size 5.

estimate <- pin_yz(xdata, "LK", grid_size = 3, verbose = FALSE)
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# Display the estimated PIN value

show(estimate@pin)

# Display the estimated parameters

show(estimate@parameters)

# Store the initial parameter sets used for MLE in a dataframe variable,
# and display its first five rows

initialsets <- estimate@initialsets
show(head(initialsets, 5))

set_display_digits Package-wide number of digits

Description

Sets the number of digits to display in the output of the different package functions.

Usage

set_display_digits(digits = list())

Arguments

digits A list of numbers corresponding to the different display digits. The default value
is list().

Details

The parameter digits is a named list. It will be containing:

• d1: contains the number of display digits for the values of probability estimates such as α, δ,
pin, mpin, mpin(j), adjpin, psos, θ, and θ′.

• d2: contains the number of display digits for the values of µ, εb and εs, as well as information
criteria: AIC, BIC, and AWE.

• d3: contains the number of display digits for the remaining values such as vpin statistics and
likelihood value .

If the function is called with no arguments, the display digits will be reset to the default values,
i.e., list(d1 = 6, d2 = 2, d3 = 3)). If the argument digits is not omitted, the function will only
accept a list containing exactly three numerical values, each ranging between 0 and 10. The list
can be named or unnamed. If the numbers in the argument digits are not integers, they will be
rounded.
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Value

No return value, called for side effects.

Examples

# There is a preloaded quarterly dataset called 'dailytrades' with 60
# observations. Each observation corresponds to a day and contains the
# total number of buyer-initiated trades ('B') and seller-initiated
# trades ('S') on that day. To know more, type ?dailytrades

xdata <- dailytrades

# We show the output of the function pin_ea() using the default values
# of display digits. We then change these values using the function
# set_display_digits(), before displaying the same estimate.pin object
# again to see the difference.

model <- pin_ea(xdata, verbose = FALSE)
show(model)

# Change the number of digits for d1 to 3, of d2 to 0 and of d3 to 2

set_display_digits(list(3, 0, 2))

# No need to run the function mpin_ml() again to update the display of an
# estimate.mpin object.This holds for all estimate* S4 objects.

show(model)

trade_classification Classification and aggregation of high-frequency data

Description

classify_trades() classifies high-frequency trading data into buyer-initiated and seller-initiated
trades using different algorithms, and different time lags.
aggregate_trades() aggregates high-frequency trading data into aggregated data for provided
frequency of aggregation. The aggregation is preceded by a trade classification step which classifies
trades using different trade classification algorithms and time lags.

Usage

classify_trades(data, algorithm = "Tick", timelag = 0, ..., verbose = TRUE)

aggregate_trades(
data,
algorithm = "Tick",
timelag = 0,
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frequency = "day",
unit = 1,
...,
verbose = TRUE

)

Arguments

data A dataframe with 4 variables in the following order (timestamp, price, bid,
ask).

algorithm A character string refers to the algorithm used to determine the trade initiator, a
buyer or a seller. It takes one of four values ("Tick", "Quote", "LR", "EMO").
The default value is "Tick". For more information about the different algo-
rithms, check the details section.

timelag A number referring to the time lag in milliseconds used to calculate the lagged
midquote, bid and ask for the algorithms "Quote", "EMO" and "LR".

... Additional arguments passed on to the functions classify_trades() aggregate_trades().
The recognized arguments are fullreport, and is_parallel. Other argu-
ments will be ignored.

• fullreport is binary variable passed to aggregate_trades() that speci-
fies whether the variable freq is returned. The default value is FALSE.

• is_parallel is a logical variable passed to classify_trades() that spec-
ifies whether the computation is performed using parallel or sequential pro-
cessing. #’ The default value is TRUE. For more details, please refer to the
vignette ’Parallel processing’ in the package, or online.

verbose A binary variable that determines whether detailed information about the progress
of the trade classification is displayed. No output is produced when verbose is
set to FALSE. The default value is TRUE.

frequency The frequency used to aggregate intraday data. It takes one of the following
values: "sec", "min", "hour", "day", "week", "month". The default value is
"day".

unit An integer referring to the size of the aggregation window used to aggregate in-
traday data. The default value is 1. For example, when the parameter frequency
is set to "min", and the parameter unit is set to 15, then the intraday data is ag-
gregated every 15 minutes.

Details

The argument algorithm takes one of four values:

• "Tick" refers to the tick algorithm: Trade is classified as a buy (sell) if the price of the trade
to be classified is above (below) the closest different price of a previous trade.

• "Quote" refers to the quote algorithm: it classifies a trade as a buy (sell) if the trade price
of the trade to be classified is above (below) the mid-point of the bid and ask spread. Trades
executed at the mid-spread are not classified.

https://pinstimation.com/articles/parallel_processing.html
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• "LR" refers to LR algorithm as in Lee and Ready (1991). It classifies a trade as a buy (sell) if
its price is above (below) the mid-spread (quote algorithm), and uses the tick algorithm if the
trade price is at the mid-spread.

• "EMO" refers to EMO algorithm as in Ellis et al. (2000). It classifies trades at the bid (ask) as
sells (buys) and uses the tick algorithm to classify trades within the then prevailing bid-ask
spread.

LR recommend the use of mid-spread five-seconds earlier (’5-second’ rule) mitigating trade mis-
classifications for many of the 150 NYSE stocks they analyze. On the other hand, in more recent
studies such as Piwowar and Wei (2006) and Aktas and Kryzanowski (2014), the use of 1-second
lagged midquotes are shown to yield lower rates of misclassifications. The default value is set to
0 seconds (no time-lag). Considering the ultra-fast nature of today’s financial markets, time-lag is
in the unit of milliseconds. Shorter than 1-second lags can also be implemented by entering values
such as 100 or 500.

Value

The function classify_trades() returns a dataframe of five variables. The first four variables are
obtained from the argument data: timestamp, price, bid, ask. The fifth variable is isbuy, which
takes the value TRUE, when the trade is classified as a buyer-initiated trade, and FALSE when the
trade is classified as a seller-initiated trade.

The function aggregate_trades() returns a dataframe of two (or three) variables. If fullreport is
set to TRUE, then the returned dataframe has three variables {freq, b, s}. If fullreport is set to
FALSE, then the returned dataframe has two variables {b, s}, and, therefore, can be #’directly used
for the estimation of the PIN and MPIN models.

References

Aktas OU, Kryzanowski L (2014). “Trade classification accuracy for the BIST.” Journal of Inter-
national Financial Markets, Institutions and Money, 33, 259-282. ISSN 1042-4431.

Ellis K, Michaely R, Ohara M (2000). “The Accuracy of Trade Classification Rules: Evidence
from Nasdaq.” The Journal of Financial and Quantitative Analysis, 35(4), 529–551.

Lee CMC, Ready MJ (1991). “Inferring Trade Direction from Intraday Data.” The Journal of
Finance, 46(2), 733–746. ISSN 00221082, 15406261.

Piwowar MS, Wei L (2006). “The Sensitivity of Effective Spread Estimates to Trade-Quote Match-
ing Algorithms.” Electronic Markets, 16(2), 112-129.

Examples

# There is a preloaded dataset called 'hfdata' contained in the package.
# It is an artificially created high-frequency trading data. The dataset
# contains 100 000 trades and five variables 'timestamp', 'price',
# 'volume', 'bid', and 'ask'. For more information, type ?hfdata.

xdata <- hfdata
xdata$volume <- NULL
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# Use the EMO algorithm with a timelag of 500 milliseconds to classify
# high-frequency trades in the dataset 'xdata'

ctrades <- classify_trades(xdata, algorithm = "EMO", timelag = 500, verbose = FALSE)

# Use the LR algorithm with a timelag of 1 second to aggregate intraday data
# in the dataset 'xdata' at a frequency of 15 minutes.

lrtrades <- aggregate_trades(xdata, algorithm = "LR", timelag = 1000,
frequency = "min", unit = 15, verbose = FALSE)

# Use the Quote algorithm with a timelag of 1 second to aggregate intraday data
# in the dataset 'xdata' at a daily frequency.

qtrades <- aggregate_trades(xdata, algorithm = "Quote", timelag = 1000,
frequency = "day", unit = 1, verbose = FALSE)

# Since the argument 'fullreport' is set to FALSE by default, then the
# output 'qtrades' can be used directly for the estimation of the PIN
# model, namely using pin_ea().

estimate <- pin_ea(qtrades, verbose = FALSE)

# Show the estimate

show(estimate)

vpin Estimation of Volume-Synchronized PIN model

Description

Estimates the Volume-Synchronized Probability of Informed Trading as developed in Easley et al.
(2011) and Easley et al. (2012).

Usage

vpin(data, timebarsize = 60, buckets = 50, samplength = 50,
tradinghours = 24, verbose = TRUE)

Arguments

data A dataframe with 3 variables: {timestamp, price, volume}.

timebarsize An integer referring to the size of timebars in seconds. The default value is 60.

buckets An integer referring to the number of buckets in a daily average volume. The
default value is 50.
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samplength An integer referring to the sample length or the window size used to calculate
the VPIN vector. The default value is 50.

tradinghours An integer referring to the length of daily trading sessions in hours. The default
value is 24.

verbose A binary variable that determines whether detailed information about the steps
of the estimation of the VPIN model is displayed. No output is produced when
verbose is set to FALSE. The default value is TRUE.

Details

The dataframe data should contain at least three variables. Only the first three variables will be
considered and in the following order {timestamp, price, volume}.

The property @bucketdata is created as in Abad and Yague (2012).

The argument timebarsize is in seconds enabling the user to implement shorter than 1 minute
intervals. The default value is set to 1 minute (60 seconds) following Easley et al. (2011, 2012).

The parameter tradinghours is used to eventually correct the duration per bucket. The duration of
a given bucket is the difference between the timestamp of the last trade endtime and the timestamp
of the first trade stime in the bucket. If the first trade and the last trade in a bucket occur in two dif-
ferent days, and the market trading session does not cover a full day (24 hours); then the duration
of the bucket will be inflated. Assume that the daily trading session is 8 hours (tradinghours=8),
the start time of a bucket is 2018-10-12 17:06:40 and its end time is 2018-10-13 09:36:00. A
straightforward calculation gives that the duration of this bucket is 59,360 secs. However, this
duration includes the time during which the market is closed (16 hours). The corrected duration
takes into consideration only the time of market activity: duration=59,360-16*3600= 1760 secs,
i.e., about 30 minutes.

Value

Returns an object of class estimate.vpin.

References

Abad D, Yague J (2012). “From PIN to VPIN: An introduction to order flow toxicity.” The Spanish
Review of Financial Economics, 10(2), 74–83.

Easley D, De Prado MML, Ohara M (2011). “The microstructure of the \"flash crash\": flow toxi-
city, liquidity crashes, and the probability of informed trading.” The Journal of Portfolio Manage-
ment, 37(2), 118–128.

Easley D, Lopez De Prado MM, OHara M (2012). “Flow toxicity and liquidity in a high-frequency
world.” Review of Financial Studies, 25(5), 1457–1493. ISSN 08939454.

Examples

# There is a preloaded dataset called 'hfdata' contained in the package.
# It is an artificially created high-frequency trading data. The dataset
# contains 100 000 trades and five variables 'timestamp', 'price',
# 'volume', 'bid' and 'ask'. For more information, type ?hfdata.
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xdata <- hfdata

# Estimate VPIN model, using the following parameter set where the time
# bar size is 5 minutes, i.e., 300 seconds (timebarsize = 300), 50
# buckets per average daily volume (buckets = 50), and a window size of
# 250 for the VPIN calculation (samplength = 250).

estimate <- vpin(xdata, timebarsize = 300, buckets = 50, samplength = 250)

# Display a description of the estimate

show(estimate)

# Plot the estimated VPIN vector

plot(estimate@vpin, type = "l", xlab = "time", ylab = "VPIN", col = "blue")

# Display the parameters of VPIN estimates

show(estimate@parameters)

# Store the computed data of the different buckets in a dataframe 'buckets'.
# Display the first 10 rows of the dataframe 'buckets'.

buckets <- estimate@bucketdata
show(head(buckets, 10))

# Store the daily VPIN values (weighted and unweighted) in a dataframe
# 'dayvpin'.

# Display the first 10 rows of the dataframe 'dayvpin'.

dayvpin <- estimate@dailyvpin
show(head(dayvpin, 10))
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