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1 Introduction

Heuristics often manipulate and evolve solutions through functions: new solutions are created as
functions of existing solutions; solutions are evaluated through the objective function; whether
new solutions are accepted is a function of (typically) the quality of the new solutions; and so on.
This gives us much flexibility in how solutions are represented; in essence, any data structure (eg,
a graph) could be directly handled, provided we define appropriate functions to work with it.

Yet a number of (quite successful) heuristics, such as Differential Evolution (DE) or Particle
Swarm (PS), prescribe precisely how solutions are represented and manipulated. In fact, these
specific prescriptions essentially define those heuristics. For DE and PS, for instance, a solution
is a numeric vector; new solutions are created as (noisy) linear combinations of existing solutions.
While this reduces the algorithms’ flexibility, it allows for a simpler (and more efficient) generic
implementation.

Let us be more concrete here. Since both DE and PS represent solutions as numerical vectors,
a natural way to store the solutions is a matrix P. In this matrix, each column is one solution; each
row represents a specific decision variable. When we compute the objective function values for
these solutions, a straightforward strategy is to loop over the columns of P and call the objective
function for each solution. In this case, the objective function should take as arguments a single
numeric vector (and possibly other data passed through ...); the function should return a single
number.

In somes cases, however, it may be preferable to actually write the objective function such
that it expects the whole population as an argument, and then returns a vector of objective func-
tion values. To accommodate this behaviour, the functions DEopt, GAopt and PSopt have set-
tings algo$loopFun, in which ‘Fun’ can be ‘OF’ for objective function, but also, for instance,
‘repair’. These settings default to TRUE, so the functions will loop over the solutions. When
such a loop-setting is FALSE, the respective function receives the whole population as an argu-
ment.

In the next section we give three examples when this ‘evaluation in one step’ can be advan-
tegeous. The functions DEopt, GAopt and PSopt allow to implement the objective function (and
also repair and penalty functions) like this. For more details and examples, see Gilli et al. [2011].

2 Examples for vectorised computations

We attach the package.

> require("NMOF")

2.1 A test function

As an example, we use the Rosenbrock function, given by

n−1

∑
i=1

(
100(xi+1 − x2

i )
2 +(1− xi)

2) .

1



This test function is available in the package as the function tfRosenbrock (see ?testFunctions).
The Rosenbrock function has a minimum of zero when all elements of x are one. (In higher di-
mensions, this minimum may not be unique.)

> tfRosenbrock

function (x)

{

n <- length(x)

xi <- x[seq_len(n - 1L)]

sum(100 * (x[2L:n] - xi * xi)^2 + (1 - xi)^2)

}

<bytecode: 0x60b029286330>

<environment: namespace:NMOF>

So we define the objective function OF and test it with the known solution.

> OF <- tfRosenbrock ## see ?testFunctions

> size <- 5L ## set dimension

> x <- rep.int(1, size) ## the known solution ...

> OF(x) ## ... should give zero

[1] 0

We set the parameters for DEopt. Note that in this example we are only concerned with the speed
of the computation, so the actual settings do not matter so much.

> algo <- list(printBar = FALSE,

nP = 50L,

nG = 500L,

F = 0.6,

CR = 0.9,

min = rep(-100, size),

max = rep( 100, size))

Suppose we have several solutions, put into a matrix such that every column is one solution. Then
we could rewrite the function like so:

> ## a vectorised OF: works only with *matrix* x

> OF2 <- function(x) {

n <- dim(x)[1L]

xi <- x[1L:(n - 1L), ]

colSums(100 * (x[2L:n, ] - xi * xi)^2 + (1 - xi)^2)

}

We can test it by creating a number of random solutions.

> x <- matrix(rnorm(size * algo$nP), size, algo$nP)

> c(OF(x[ ,1L]), OF(x[ ,2L]), OF(x[ ,3L]))

[1] 438.77 7185.79 1060.08

> OF2(x)[1L:3L] ## should give the same result

[1] 438.77 7185.79 1060.08
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> all.equal(OF2(x)[1L:3L], c(OF(x[ ,1L]), OF(x[ ,2L]), OF(x[ ,3L])))

[1] TRUE

As pointed out above, DEopt either can loop over the solutions, or it can evaluate the whole
population in one step. The first behaviour is triggered when algo$loopOF is set to TRUE, which
is the default setting.

When we want to use OF2, we need to set algo$loopOF to FALSE.

> set.seed(1223445)

> (t1 <- system.time(sol <- DEopt(OF = OF, algo = algo)))

Differential Evolution.

Best solution has objective function value 3.2536e-16 ;

standard deviation of OF in final population is 7.0667e-16 .

user system elapsed

0.090 0.000 0.089

> algo$loopOF <- FALSE

> set.seed(1223445)

> (t2 <- system.time(sol2 <- DEopt(OF = OF2, algo = algo)))

Differential Evolution.

Best solution has objective function value 3.2536e-16 ;

standard deviation of OF in final population is 7.0667e-16 .

user system elapsed

0.019 0.000 0.019

We can compare the solutions, and compute the speedup.

> sol$OFvalue ## both should be zero (with luck)

[1] 3.2536e-16

> sol2$OFvalue

[1] 3.2536e-16

> t1[[3L]]/t2[[3L]] ## speedup

[1] 4.6842

2.2 Portfolio optimisation

A portfolio can be described by a weight vector w. Given a variance–covariance matrix Σ, we can
calculate the variance of such a portfolio like so:

w′
Σw .

Suppose now that we have a number of solutions, and we collect them in a matrix W , such that
every column is one solution w. One approach would be now to loop over the columns, and for
every column compute the variance. But we can use a one-line computation as well: the variances
of the solutions are given by

diag(W ′
ΣW ) .
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This can be written consisely, but we are unnessarily computing the off-diagonal elements of the
resulting matrix. One solution, then, is to recognise that diag(W ′ΣW ) is equivalent to

ι
′

matrix
multiplication︷︸︸︷

ΣW W︸ ︷︷ ︸
elementwise

multiplication

which is consise and more efficient. The following example illustrates this. We start by setting up
a variance–covariance matrix Sigma and a population W. (We would not need to include the budget
constraint here since we are only interested in computing time.)

> na <- 100L ## number of assets

> np <- 100L ## size of population

> trials <- seq_len(100L) ## for speed test

> ## a covariance matrix

> Sigma <- array(0.7, dim = c(na, na)); diag(Sigma) <- 1

> ## set up population

> W <- array(runif(na * np), dim = c(na, np))

> ## budget constraint

> scaleFun <- function(x) x/sum(x); W <- apply(W, 2L, scaleFun)

Now we can test the three variants described above.

> ## variant 1

> t1 <- system.time({

for (i in trials) {

res1 <- numeric(np)

for (j in seq_len(np)) {

w <- W[ ,j]

res1[j] <- w %*% Sigma %*% w

}

}

})

> ## variant 2

> t2 <- system.time({

for (i in trials) res2 <- diag(t(W) %*% Sigma %*% W)

})

> ## variant 3

> t3 <- system.time({

for (i in trials) res3 <- colSums(Sigma %*% W * W)

})

All three computations should give the same result.

> all.equal(res1,res2)

[1] TRUE

> all.equal(res2,res3)

[1] TRUE

But the first variant requires more code than the others, and it is slower.
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> ## time required

> # ... variant 1

> t1

user system elapsed

0.990 0.008 0.086

> ## ... variant 2

> t2

user system elapsed

0.112 0.004 0.011

> ## ... variant 3

> t3

user system elapsed

0.074 0.000 0.008

2.3 Residuals in a linear model

We wish to compute the residuals r of a linear model, y = Xθ + r. Suppose we have a population
Θ of solution vectors; each column in Θ is one particular solution θ . Now, as before we could
compute

r = y−Xθi

for every i ∈ {1, . . . ,population size}. Alternatively, we may replace the loop over those solutions
with the computation

R = yι
′−XΘ ,

in which R is the matrix of residuals.
Again, an example. As before, we set up random data and a random population of solutions.

> n <- 100L # number of observation

> p <- 5L # number of regressors

> np <- 100L # population size

> trials <- seq_len(1000L)

> ## random data

> X <- array(rnorm(n * p), dim = c(n, p))

> y <- rnorm(n)

> ## random population

> Theta <- array(rnorm(p * np), dim = c(p, np))

> ## empty residuals matrix

> R1 <- array(NA, dim = c(n, np))

Now we can compare both variants.

> system.time({

for (i in trials)

for (j in seq_len(np))

R1[ ,j] <- y - X %*% Theta[ ,j]

})
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user system elapsed

0.166 0.000 0.165

> system.time({

for (i in trials)

R2 <- y - X %*% Theta

})

user system elapsed

0.024 0.008 0.032

Note that we have not explicitly computed yι ′ but have used R’s recycling rule.
We check whether we actually obtain the same result.

> all.equal(R1, R2) ## ... should be TRUE

[1] TRUE

See Chapter 14 in Gilli et al. [2011].
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