Package 'MLMusingR'

January 20, 2025

Type Package

Title Practical Multilevel Modeling

Version 0.4.0

Date 2025-01-06

Maintainer Francis Huang <f1huang2000@yahoo.com>

Description Convenience functions and datasets to be used with Practical Multilevel Modeling using R. The package includes functions for calculating group means, group mean centered variables, and displaying some basic missing data information. A function for computing robust standard errors for linear mixed models based on Liang and Zeger (1986) <doi:10.1093/biomet/73.1.13> and Bell and 'McCaffrey' (2002) <https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2002002/article/9058-eng.pdf?st=NxMjN1YZ> is included as well as a function for checking for level-one homoskedasticity (Raudenbush & Bryk, 2002, ISBN:076191904X).

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

URL https://github.com/flh3/MLMusingR

BugReports https://github.com/flh3/MLMusingR/issues

Depends R (>= 3.5)

Imports lme4, stats, nlme, Matrix, methods, magrittr, broom, generics, dplyr, performance, tibble, WeMix

NeedsCompilation no

Author Francis Huang [aut, cre]

Repository CRAN

Date/Publication 2025-01-09 12:30:09 UTC

Contents

cdata.ex	2
engage	3
engage.miss	3
glance.CR2	4
group_center	5
group_mean	5
hdp	6
Htest	7
lrtPV	8
MatSqrtInverse	9
mixPV	9
nmiss	10
pisa2012	11
pool_pv	12
ri_test1	12
ri_test2	13
robust_mixed	13
satdf	14
sch29	15
summary.mixPV	16
summary_all	16
suspend	17
thai	17
thai.sm	18
tidy.CR2	19
tidy.mixPV	19
wide	20
wscale	20
	21

Index

cdata.ex

Clustered dataset for centering example

Description

Dataset of 60 observations from 3 clusters.

Usage

cdata.ex

engage

Format

A wide data frame of 60 observations. Used for discussing within and between group effects.

- x The predictor.
- y The outcome of interest.

engage

Student engagement dataset (complete data).

Description

Example data used to investigate missing data (this is the complete dataset).

Usage

data(engage)

Format

A data frame with 528 observations from 40 groups and 7 variables:

eng Student engagement.

mot Student motivation.

gpa Student grade point average.

grade Student grade level (6-8; a factor).

rural School level rural variable indicator; 1 = yes/0 = no.

frpm Percent of students eligible for free or reduced price meals at the school.

school School indicator (clustering variable).

engage.miss Student engagement dataset (with missing data).

Description

Example data used to investigate missing data (this has missing data).

Usage

data(engage.miss)

Format

A data frame with 528 observations from 40 groups and 7 variables:

eng Student engagement.

mot Student motivation.

gpa Student grade point average.

grade Student grade level (6-8; a factor).

rural School level rural variable indicator; 1 = yes/0 = no.

frpm Percent of students eligible for free or reduced price meals at the school.

school School indicator (clustering variable).

glance.CR2 Glance at goodness-of-fit statistics

Description

Helper function used to obtain supporting fit statistics for multilevel models. The R2s are computed using the 'performance' package.

Usage

S3 method for class 'CR2'
glance(x, ...)

Arguments

Х	A 'CR2' object.
	Unused, included for generic consistency only.

Value

glance returns one row with the columns:

nobs	the number of observations
sigma	the square root of the estimated residual variance
logLik	the data's log-likelihood under the model
AIC	Akaike Information Criterion
BIC	Bayesian Information Criterion
r2.marginal	marginal R2 based on fixed effects only using method of Nakagawa and Schielzeth (2013)
r2.conditional	conditional R2 based on fixed and random effects using method of Nakagawa and Schielzeth (2013)

4

group_center

Description

Also referred to as centering within cluster (or within context) or demeaning the variable. By default, uses na.rm = TRUE when computing group means.

Usage

group_center(x, grp)

Arguments

х	Variable to center (e.g., dataframe\$varname).
grp	$Cluster/grouping \ variable \ (e.g., \ dataframe \ cluster).$

Value

A vector of group-mean centered variables.

Examples

```
data(mtcars)
#create a group centered variable
mtcars$mpg.gpc <- group_center(mtcars$mpg, mtcars$cyl)</pre>
```

group_mean

Computes the group mean of a variable

Description

Computes the group means of a variable by a specified cluster/group. Can also be used with factors that have two levels.

Usage

group_mean(x, grp, lm = FALSE)

Arguments

Х	Variable to compute the mean for (e.g., dataframe $varname$).
grp	Cluster/grouping variable (e.g., dataframe\$cluster).
lm	Compute reliability (lambda) adjusted means.

Value

Outputs a vector of group means.

Examples

```
data(mtcars)
#create a group mean aggregated variable
mtcars$mpg.barj <- group_mean(mtcars$mpg, mtcars$cyl)</pre>
```

```
hdp
```

Hospital, doctor, patient (hdp) dataset

Description

This dataset has a three-level, hierarchical structure with patients nested within doctors within hospitals. The simulation code can be found at https://stats.idre.ucla.edu/r/codefragments/mesimulation/#setup.

Usage

data(hdp)

Format

A data frame with 8,525 rows and 17 variables:

Age Continuous in years but recorded at a higher degree of accuracy.

Married Binary, married/living with partner or single.

FamilyHx Binary (yes/no), does the patient have a family history (Hx) of cancer?

SmokingHx Categorical with three levels, current smoker, former smoker, never smoked.

Sex Binary (female/male).

CancerStage Categorical with four levels, stages 1-4.

LengthofStay Count number of days patients stayed in the hospital after surgery.

WBC Continuous, white blood count. Roughly 3,000 is low, 10,000 is middle, and 30,000 per microliter is high.

RBC Continuous, red blood count.

BMI Body mass index given by the formula $(kg/meters^2)$.

- **IL6** Continuous, interleukin 6, a proinflammatory cytokine commonly examined as an indicator of inflammation, cannot be lower than zero.
- **CRP** Continuous, C-reactive protein, a protein in the blood also used as an indicator of inflammation. It is also impacted by BMI.
- HID Hospital identifier.

DID Doctor identifier

Experience Years as a doctor.

School Whether the school doctor trained at was high quality or not.

remission Cancer in remission? 1 = yes, 0 = no.

Htest

Source

https://stats.oarc.ucla.edu/r/codefragments/mesimulation/

Htest

Test for homoskedasticity at level one

Description

Based on Raudenbush and Bryk (2002) and Hoffman (2007). A statistically significant Chisq indicates heteroskedasticity. Output shows the H statistic, degrees of freedom, and p value.

Usage

Htest(newdata, fml, group)

Arguments

newdata	data to be used.
fml	level 1 formula.
group	grouping variable (in quotes).

Value

Returns a data frame which contains:

Н	The computed H statistic.
df	The degrees of freedom.
р	The p-value (< .05 indicates heteroskedasticity is present).

References

Hoffman, L. (2007). Multilevel models for examining individual differences in within-person variation and covariation over time. Multivariate Behavioral Research, 42(4), 609–629. Raudenbush, S., & Bryk, A. (2002). Hierarchical linear models: Applications and data analysis methods (2nd ed.). Sage.

Examples

```
set.seed(123)
x1 <- rnorm(400)
y <- x1 * .3 + rnorm(400)
gr <- rep(1:20, each = 20)
dat <- data.frame(x1, y, gr)
Htest(dat, y ~ x1, 'gr') #no violation
y <- x1 * .3 + rnorm(400, 0, sqrt(x1^2)) #add violation
dat <- data.frame(x1, y, gr)
Htest(dat, y ~ x1, 'gr')</pre>
```

lrtPV

Description

Compares two nested models (a full and a reduced model). Results in an F statistic (not the traditional chi-square) with a p-value (see Huang, 2024). The full model must come first. Statistically significant results indicate that the full model fits better than the reduced model. Uses computations shown by Li et al. (1991).

Usage

lrtPV(mf, mr)

Arguments

mf	The full model object fit using mixPV.
mr	The reduced model object fit using mixPV.

References

Huang, F. (2024). Using plausible values when fitting multilevel models with large-scale assessment data using R. Large-scale Assessments in Education, 12(7). (link)

Li, K. H., Meng, X.L., Raghunathan, T. E., & Rubin, D. B. (1991). Significance levels from repeated p-values with multiply imputed data. Statistica Sinica, 65–92.

Examples

```
## Not run:
data(pisa2012, package = 'MLMusingR')
reduced <- mixPV(pv1math + pv2math + pv3math + pv4math + pv5math ~
escs + (1|schoolid), data = pisa2012,
weights = c('w_fstuwt', 'w_fschwt'))
full <- mixPV(pv1math + pv2math + pv3math + pv4math + pv5math ~
escs + (escs|schoolid), data = pisa2012,
weights = c('w_fstuwt', 'w_fschwt'))
lrtPV(full, reduced)
```

End(Not run)

MatSqrtInverse Compute the inverse square root of a matrix

Description

From Imbens and Kolesar (2016).

Usage

MatSqrtInverse(A)

Arguments

А

The matrix object.

mixPV

Fit Weighted Multilevel Models Using Plausible Values

Description

Helper function to fit multilevel models with plausible values using weights at different levels using the mix function from the WeMix package (Bailey et al., 2023): see https://cran.r-project.org/web/packages/WeMix/WeMix.p

Usage

mixPV(fml, data = NULL, mc = FALSE, silent = FALSE, ...)

Arguments

fml	The model formula. Multiple plausible values are specified using the form: $pv1 + pv2 + pv3 \sim x1$ (depending how many PVs are present).
data	Merged dataset to analyze (containing variables at different levels).
mc	Option to use multiple cores to speed up processing (set to FALSE by default).
silent	Option to show which plausible value is being analyzed (set to FALSE by default).
	Options that are used by the mix function in the WeMix package.

Value

A list object of mix results. Results are pooled using the summary function.

Author(s)

Francis Huang, <huangf@missouri.edu>

nmiss

References

Huang, F. (2024). Using plausible values when fitting multilevel models with large-scale assessment data using R. Large-scale Assessments in Education, 12(7). (link)

Examples

```
## Not run:
data(pisa2012, package = 'MLMusingR')
m1 <- mixPV(pv1math + pv2math + pv3math + pv4math + pv5math ~ escs + (1|schoolid),
weights = c('w_fstuwt', 'w_fschwt'), data = pisa2012)
summary(m1)
```

End(Not run)

nmiss

Amount of missing data per variable

Description

Amount of missing data per variable

Usage

nmiss(dat)

Arguments

dat Data frame that you want to inspect.

Value

By default, this function will print the following items to the console

- The percent of missing data per variable.
- The percent of complete cases (range: 0 to 1).
- Suggested number of datasets to impute when using multiple imputation.

Examples

```
data(mtcars)
mtcars[c(2:3), 4] <- NA #create NAs
nmiss(mtcars)</pre>
```

10

pisa2012

Description

Example data for mixPV.

Usage

data(pisa2012)

Format

A data frame with 3136 rows and 14 variables:

pv1math Plausible value #1 for mathematics

pv2math Plausible value #2 for mathematics

pv3math Plausible value #3 for mathematics

pv4math Plausible value #4 for mathematics

pv5math Plausible value #5 for mathematics

escs Index of economic, social, and cultural status.

schoolid School identifier

st29q03 Maths interest- Look forward to lessons.

st04q01 Student gender.

w_fstuwt Final student weight (total).

w_fschwt School weight.

sc14q02 Shortage- Maths teachers

pwt1 Student weight (conditional).

noise1 Random noise.

Source

https://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2014028

pool_pv

Description

Pool plausible values using Rubin's rules

Usage

pool_pv(Bs, SEs, ns2, dfadj = TRUE)

Arguments

Bs	The regression coefficients.
SEs	The standard errors.
ns2	The number of observations.
dfadj	If set to TRUE (default), uses newer df computation. If FALSE, uses standard Rubin pooling formula.

ri_test1	Sample dataset 1 for testing the likelihood ratio test	
----------	--	--

Description

Example data for testing the need for a random intercept. Illustrates the need to adjust the p values for a modified LRT.

Usage

data(ri_test1)

Format

A data frame with 900 observations from 30 groups and 4 variables:

- y The outcome variable.
- w1 A level-2 predictor.
- x1 A level-1 predictor
- group The cluster identifier

Description

Example data for testing the need for a random intercept. LRT results show that a random slope is not warranted.

Usage

data(ri_test2)

Format

A data frame with 3,000 observations from 30 groups and 4 variables:

y The outcome variable.

w1 A level-2 predictor.

x1 A level-1 predictor

group The cluster identifier

robust_mixed	Cluster robust standard errors with degrees of freedom adjustments
	for lmerMod/lme objects

Description

Function to compute the CR2/CR0 cluster robust standard errors (SE) with Bell and McCaffrey (2002) degrees of freedom (dof) adjustments. Suitable even with a low number of clusters. The model based (mb) and cluster robust standard errors are shown for comparison purposes.

Usage

```
robust_mixed(m1, digits = 3, type = "CR2", satt = TRUE, Gname = NULL)
```

Arguments

m1	The lmerMod or lme model object.
digits	Number of decimal places to display.
type	Type of cluster robust standard error to use ("CR2" or "CR0").
satt	If Satterthwaite degrees of freedom are to be computed (if not, between-within df are used).
Gname	Group/cluster name if more than two levels of clustering (does not work with lme).

satdf

Value

A data frame (results) with the cluster robust adjustments with p-values.

Estimate	The regression coefficient.
mb.se	The model-based (regular, unadjusted) SE.
cr.se	The cluster robust standard error.
df	degrees of freedom: Satterthwaite or between-within.
p.val	p-value using CR0/CR2 standard error.
stars	stars showing statistical significance.

Author(s)

Francis Huang, <huangf@missouri.edu> Bixi Zhang, <bixizhang@missouri.edu>

References

Bell, R., & McCaffrey, D. (2002). Bias reduction in standard errors for linear regression with multi-stage samples. Survey Methodology, 28, 169-182. (link)

Liang, K.Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73(1), 13-22. (doi:10.1093/biomet/73.1.13)

Examples

```
require(lme4)
data(sch29, package = 'MLMusingR')
robust_mixed(lmer(math ~ male + minority + mses + mhmwk + (1|schid), data = sch29))
```

satdf

Compute Satterthwaite degrees of freedom

Description

Function to compute empirical degrees of freedom based on Bell and McCaffrey (2002).

Usage

satdf(m1, type = "none", Vinv2, Vm2, br2, Gname = NULL)

Arguments

m1	The lmerMod or lme model object.
type	The type of cluster robust correction used (i.e., CR2 or none).
Vinv2	Inverse of the variance matrix.
Vm2	The variance matrix.
br2	The bread component.
Gname	The group (clustering variable) name'

14

sch29

Author(s)

Francis Huang, <huangf@missouri.edu>

Bixi Zhang, <bixizhang@missouri.edu>

sch29 Data from 29 schools (based on the NELS dataset) used for regression diagnostics

Description

For examining the association between amount homework done per week and math outcome.

Usage

data(sch29)

Format

A data frame with 648 rows and 8 variables:

schid The school identifier (the grouping variable)

ses Student-level socioeconomic status

- **byhomewk** Total amount of time the student spent on homework per week. 1 = None, 2 = Less than one hour, 3 = 1 hour, 4 = 2 hours, 5 = 3 hours, 6 = 4-6 hours, 7 = 7 9 hours, 8 = 10 or more
- math Mathematics score.

male Dummy coded gender, 1 = male, 0 = female

minority Dummy coded minority status, 1 = yes, 0 = no

mses Aggregated socioeconomic status at the school level

mhmwk Aggregated time spent on homework at the school level

Source

https://nces.ed.gov/pubs92/92030.pdf

summary.mixPV

Description

Create summary output from the mixPV function

Usage

```
## S3 method for class 'mixPV'
summary(object, dfadj = TRUE, ...)
```

Arguments

object	The mixPV object
dfadj	If set to TRUE (default), uses newer df computation. If FALSE, uses standard Rubin pooling formula.
	Additional unspecified options.

summary_all Use the summary function on a saved list of mixPV results	;
---	---

Description

Use the summary function on a saved list of mixPV results

Usage

summary_all(x)

Arguments

x The mixPV object.

suspend

Description

Data from 8465 students from 100 schools in Virginia

Usage

data(suspend)

Format

Dataset:

school School identifier

pminor Percent minority enrollment at school

male 1 = male, 0 = female

sus Whether the student was suspended (1 = yes) in the school year or not (0 = no). Self reported.

fight If the student got into one or more fights (1 = yes) in the school year

gpa Students self-reported GPA; 1 = D to 4 = A

thai

Thai data from PISA

Description

Example data to be used for centering

Usage

data(thai)

Format

A data frame with 6606 rows and 18 variables:

pv1math First plausible value in mathematics.
escs Index of economic, social, and cultural status.
hisei Highest parent occupational status.
sex Student gender. 1 = Female, 2 = Male.
intmat Mathematics interest.
matheff Mathematics self-efficacy.

thai.sm

schoolid School identifier
othl Spoke another language at home other than Thai. 1 = yes, 0 = no.
books How many books at home.
pared Highest parental education in years.
w_fstuwt Student weight.
pv1read Plausible value #1 for reading.
pv2read Plausible value #2 for reading.
pv3read Plausible value #3 for reading.
pv4read Plausible value #4 for reading.
pv5read Plausible value #5 for reading.
private Private school. 1 = yes, 0 = no.
schsize Total school enrolment.

Source

https://gpseducation.oecd.org/CountryProfile?primaryCountry=THA

thai.sm

Thai data from PISA (reduced)

Description

Example data to be used for centering

Usage

data(thai)

Format

A data frame with 4271 rows and 7 variables:

math First plausible value in mathematics.

escs Index of economic, social, and cultural status.

intmat Mathematics interest.

schoolid School identifier

oth Spoke another language at home other than Thai. 1 = yes, 0 = no.

private Private school. 1 = yes, 0 = no.

schsize Total school enrolment.

Source

https://gpseducation.oecd.org/CountryProfile?primaryCountry=THA

tidy.CR2

Description

Tidy a CR2 object

Usage

S3 method for class 'CR2'
tidy(x, conf.int = FALSE, conf.level = 0.95, ...)

Arguments

х	A 'CR2' object.
conf.int	Logical indicating whether or not to include a confidence interval in the tidied output. Defaults to FALSE.
conf.level	The confidence level to use for the confidence interval if conf.int = TRUE. Must be strictly greater than 0 and less than 1. Defaults to 0.95, which corresponds to a 95 percent confidence interval.
	Unused, included for generic consistency only.

Value

A tidy [tibble::tibble()] summarizing component-level information about the model

tidy.mixPV

Helper function to allow use with modelsummary

Description

Helper function to allow use with modelsummary

Usage

```
## S3 method for class 'mixPV'
tidy(x, dfadj = TRUE, ...)
```

Arguments

х	The mixPV model object.
dfadj	If set to TRUE (default), uses newer df computation. If FALSE, uses standard Rubin pooling formula.
	Additional unspecified options.

wide

Description

A dataset containing 30 observations with reading scores taken in the fall kindergarten, spring kindergarten, and spring first grade

Usage

wide

Format

A wide data frame of 30 observations:

studentid Factor indicating student identification

int treatment or control

female 1 =female, 0 =male

 $fall_k$ Reading scores in fall kindergarten

spring_k Reading scores in spring kindergarten

spring_g1 Reading scores in spring first grade

wscale

Scale of Sampling Weights

Description

Uses the cluster and ecluster (cluster size and effective cluster size) options specified in Mplus. See note from the Mplus website. If there is no variation in weights within a cluster, the weights will scale to 1.

Usage

wscale(cluster, data, wt, type = "cluster")

Arguments

cluster	The cluster variable.
data	The original dataset.
wt	The weight variable to scale.
type	Either cluster or ecluster. See pdf from Mplus website.

Examples

```
data(pisa2012, package = 'MLMusingR')
pisa2012$clustwt <- wscale('schoolid', pisa2012, 'w_fschwt')</pre>
```

Index

* datasets cdata.ex, 2 engage, 3 engage.miss, 3 hdp, 6 pisa2012, 11 ri_test1, 12 ri_test2, 13 sch29, 15 suspend, 17 thai, 17 thai.sm, 18 wide, 20cdata.ex, 2engage, 3 engage.miss, 3 glance.CR2,4 group_center, 5 group_mean, 5 hdp, 6 Htest, 7 lrtPV,8 MatSqrtInverse, 9 mixPV,9 nmiss, 10 pisa2012, 11 pool_pv, 12 ri_test1, 12 ri_test2, 13 $robust_mixed, 13$ satdf, 14

sch29, 15 summary.mixPV, 16 summary_all, 16 suspend, 17 thai, 17 thai.sm, 18 tidy.CR2, 19 tidy.mixPV, 19 wide, 20 wscale, 20