Package 'MDFS'

January 20, 2025

Title MultiDimensional Feature Selection

Version 1.5.5

Date 2024-12-11

URL https://www.mdfs.it/

 Description Functions for MultiDimensional Feature Selection (MDFS): calculating multidimensional information gains, scoring variables, finding important variables, plotting selection results. This package includes an optional CUDA implementation that speeds up information gain calculation using NVIDIA GPGPUs.
 R. Piliszek et al. (2019) <doi:10.32614/RJ-2019-019>.

Depends R (>= 3.4.0)

License GPL-3

SystemRequirements C++17

NeedsCompilation yes

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Author Radosław Piliszek [aut, cre], Krzysztof Mnich [aut], Paweł Tabaszewski [aut], Szymon Migacz [aut], Andrzej Sułecki [aut], Witold Remigiusz Rudnicki [aut]

Maintainer Radosław Piliszek <radek@piliszek.it>

Repository CRAN

Date/Publication 2024-12-12 08:30:12 UTC

Contents

AddContrastVariables

18

as.data.frame.MDFS	3
ComputeInterestingTuples	3
ComputeInterestingTuplesDiscrete	5
ComputeMaxInfoGains	7
ComputeMaxInfoGainsDiscrete	8
ComputePValue	9
Discretize	1
GenContrastVariables	2
GetRange	2
madelon	3
MDFS	4
mdfs_omp_set_num_threads	5
plot.MDFS	6
RelevantVariables	6
RelevantVariables.MDFS	7

Index

AddContrastVariables Add contrast variables to data

Description

This function is deprecated. Please use GenContrastVariables instead.

Usage

```
AddContrastVariables(data, n.contrast = max(ncol(data)/10, 30))
```

Arguments

data	data organized in matrix with separate variables in columns
n.contrast	number of constrast variables (defaults to max of 1/10 of variables number and 30)

Value

A list with the following key names:

- indices vector of indices of input variables used to construct contrast variables
- x data with constrast variables appended to it
- mask vector of booleans making it easy to select just contrast variables

as.data.frame.MDFS as.data.frame S3 method implementation for MDFS

Description

as.data.frame S3 method implementation for MDFS

Usage

S3 method for class 'MDFS'
as.data.frame(x, ...)

Arguments

х	an MDFS object
	ignored

Value

data.frame

```
ComputeInterestingTuples
```

Interesting tuples

Description

Interesting tuples

Usage

```
ComputeInterestingTuples(
   data,
   decision = NULL,
   dimensions = 2,
   divisions = 1,
   discretizations = 1,
   seed = NULL,
   range = NULL,
   pc.xi = 0.25,
   ig.thr = 0,
   I.lower = NULL,
   interesting.vars = vector(mode = "integer"),
   require.all.vars = FALSE,
   return.matrix = FALSE,
```

```
stat_mode = "MI",
average = FALSE
)
```

Arguments

data	input data where columns are variables and rows are observations (all numeric)	
decision	decision variable as a binary sequence of length equal to number of observations	
dimensions	number of dimensions (a positive integer; 5 max)	
divisions	number of divisions (from 1 to 15)	
discretization	5	
	number of discretizations	
seed	seed for PRNG used during discretizations (NULL for random)	
range	discretization range (from 0.0 to 1.0; NULL selects probable optimal number)	
pc.xi	parameter xi used to compute pseudocounts (the default is recommended not to be changed)	
ig.thr	IG threshold above which the tuple is interesting (0 and negative mean no filter- ing)	
I.lower	IG values computed for lower dimension (1D for 2D, etc.)	
interesting.vars		
	variables for which to check the IGs (none = all)	
require.all.vars		
	boolean whether to require tuple to consist of only interesting.vars	
return.matrix	boolean whether to return a matrix instead of a list (ignored if not using the optimised method variant)	
stat_mode	character, one of: "MI" (mutual information, the default; becomes information gain when decision is given), "H" (entropy; becomes conditional entropy when decision is given), "VI" (variation of information; becomes target information difference when decision is given); decides on the value computed	
average	boolean whether to average over discretisations instead of maximising (the default)	

Details

If running in 2D and no filtering is applied, this function is able to run in an optimised fashion. It is recommended to avoid filtering in 2D if only it is feasible.

This function calculates what stat_mode dictates. When decision is omitted, the stat_mode is calculated on the descriptive variables. When decision is given, the stat_mode is calculated on the decision variable, conditional on the other variables. Translate "IG" to that value in the rest of this function's description.

Value

A data.frame or NULL (following a warning) if no tuples are found.

The following columns are present in the data.frame:

- Var interesting variable index
- Tuple.1, Tuple.2, ... corresponding tuple (up to dimensions columns)
- IG information gain achieved by var in Tuple.*

Additionally attribute named run.params with run parameters is set on the result.

Examples

ComputeInterestingTuplesDiscrete Interesting tuples (discrete)

Description

Interesting tuples (discrete)

Usage

```
ComputeInterestingTuplesDiscrete(
  data,
  decision = NULL,
  dimensions = 2,
  pc.xi = 0.25,
  ig.thr = 0,
  I.lower = NULL,
  interesting.vars = vector(mode = "integer"),
  require.all.vars = FALSE,
  return.matrix = FALSE,
  stat_mode = "MI"
)
```

data	input data where columns are variables and rows are observations (all discrete with the same number of categories)
decision	decision variable as a binary sequence of length equal to number of observations

dimensions	number of dimensions (a positive integer; 5 max)	
pc.xi	parameter xi used to compute pseudocounts (the default is recommended not to be changed)	
ig.thr	IG threshold above which the tuple is interesting (0 and negative mean no filter- ing)	
I.lower	IG values computed for lower dimension (1D for 2D, etc.)	
interesting.vars		
	variables for which to check the IGs (none = all)	
require.all.vars		
	boolean whether to require tuple to consist of only interesting.vars	
return.matrix	boolean whether to return a matrix instead of a list (ignored if not using the optimised method variant)	
stat_mode	character, one of: "MI" (mutual information, the default; becomes information gain when decision is given), "H" (entropy; becomes conditional entropy when decision is given), "VI" (variation of information; becomes target information difference when decision is given); decides on the value computed	

Details

If running in 2D and no filtering is applied, this function is able to run in an optimised fashion. It is recommended to avoid filtering in 2D if only it is feasible.

This function calculates what stat_mode dictates. When decision is omitted, the stat_mode is calculated on the descriptive variables. When decision is given, the stat_mode is calculated on the decision variable, conditional on the other variables. Translate "IG" to that value in the rest of this function's description.

Value

A data.frame or NULL (following a warning) if no tuples are found.

The following columns are present in the data.frame:

- Var interesting variable index
- Tuple.1, Tuple.2, ... corresponding tuple (up to dimensions columns)
- IG information gain achieved by var in Tuple.*

Additionally attribute named run.params with run parameters is set on the result.

Examples

ComputeMaxInfoGains Max information gains

Description

Max information gains

Usage

```
ComputeMaxInfoGains(
    data,
    decision,
    contrast_data = NULL,
    dimensions = 1,
    divisions = 1,
    discretizations = 1,
    seed = NULL,
    range = NULL,
    pc.xi = 0.25,
    return.tuples = FALSE,
    interesting.vars = vector(mode = "integer"),
    require.all.vars = FALSE,
    use.CUDA = FALSE
)
```

data	input data where columns are variables and rows are observations (all numeric)	
decision	decision variable as a binary sequence of length equal to number of observations	
contrast_data	the contrast counterpart of data, has to have the same number of observations - not supported with CUDA	
dimensions	number of dimensions (a positive integer; 5 max)	
divisions	number of divisions (from 1 to 15; additionally limited by dimensions if using CUDA)	
discretizations		
	number of discretizations	
seed	seed for PRNG used during discretizations (NULL for random)	
range	discretization range (from 0.0 to 1.0 ; NULL selects probable optimal number)	
pc.xi	parameter xi used to compute pseudocounts (the default is recommended not to be changed)	
return.tuples	whether to return tuples (and relevant discretization number) where max IG was observed (one tuple and relevant discretization number per variable) - not supported with CUDA nor in 1D	

interesting.var	S
	variables for which to check the IGs (none = all) - not supported with CUDA
require.all.var	S
	boolean whether to require tuple to consist of only interesting.vars
use.CUDA	whether to use CUDA acceleration (must be compiled with CUDA)

Value

A data.frame with the following columns:

- IG max information gain (of each variable)
- Tuple.1, Tuple.2, ... corresponding tuple (up to dimensions columns, available only when return.tuples == T)
- Discretization.nr corresponding discretization number (available only when return.tuples == T)

Additionally attribute named run.params with run parameters is set on the result.

Examples

ComputeMaxInfoGainsDiscrete

Max information gains (discrete)

Description

Max information gains (discrete)

Usage

```
ComputeMaxInfoGainsDiscrete(
   data,
   decision,
   contrast_data = NULL,
   dimensions = 1,
   pc.xi = 0.25,
   return.tuples = FALSE,
   interesting.vars = vector(mode = "integer"),
   require.all.vars = FALSE
)
```

ComputePValue

Arguments

data	input data where columns are variables and rows are observations (all discrete with the same number of categories)	
decision	decision variable as a binary sequence of length equal to number of observations	
contrast_data	the contrast counterpart of data, has to have the same number of observations	
dimensions	number of dimensions (a positive integer; 5 max)	
pc.xi	parameter xi used to compute pseudocounts (the default is recommended not to be changed)	
return.tuples	whether to return tuples where max IG was observed (one tuple per variable) - not supported with CUDA nor in 1D $$	
interesting.vars		
	variables for which to check the IGs (none = all) - not supported with CUDA	
require.all.vars		
	boolean whether to require tuple to consist of only interesting.vars	

Value

A data.frame with the following columns:

- IG max information gain (of each variable)
- Tuple.1, Tuple.2, ... corresponding tuple (up to dimensions columns, available only when return.tuples == T)
- Discretization.nr always 1 (for compatibility with the non-discrete function; available only when return.tuples == T)

Additionally attribute named run.params with run parameters is set on the result.

Examples

ComputeMaxInfoGainsDiscrete(madelon\$data > 500, madelon\$decision, dimensions = 2)

ComputePValue

Compute p-values from information gains and return MDFS

Description

Compute p-values from information gains and return MDFS

Usage

```
ComputePValue(
  IG,
 dimensions,
 divisions,
 response.divisions = 1,
 df = NULL,
  contrast.mask = NULL,
  ig.in.bits = TRUE,
  ig.doubled = FALSE,
 one.dim.mode = "exp",
  irr.vars.num = NULL,
  ign.low.ig.vars.num = NULL,
 min.irr.vars.num = NULL,
 max.ign.low.ig.vars.num = NULL,
 search.points = 8,
 level = 0.05
)
```

Arguments

IG	max conditional information gains	
dimensions	number of dimensions	
divisions response.divis:	number of divisions ions	
	number of response divisions (i.e. categories-1)	
df	vector of degrees of freedom for each variable (optional)	
contrast.mask	boolean mask on IG specifying which variables are contrast variables (or NULL if none, otherwise at least 3 variables must be marked)	
ig.in.bits	TRUE if input is in binary log (as opposed to natural log)	
ig.doubled	TRUE if input is doubled (to follow the chi-squared distribution)	
one.dim.mode	'exp' for exponential distribution, 'lin' for linear function of chi-squared or 'raw' for raw chi-squared	
irr.vars.num	if not NULL, number of irrelevant variables, specified by the user	
ign.low.ig.vars.num		
	if not NULL, number of ignored low IG variables, specified by the user	
min.irr.vars.num		
	minimum number of irrelevant variables (NULL selects probable optimal number)	
max.ign.low.ig.vars.num		
	maximum number of ignored low IG variables (NULL selects probable optimal number)	
search.points	number of points in search procedure for the optimal number of ignored variables	
level	acceptable error level of goodness-of-fit one-sample Kolmogorov-Smirnov test (used only for warning)	

Discretize

Value

A data.frame with class set to MDFS. Can be coerced back to data.frame using as.data.frame. The following columns are present:

- IG information gains (input copy)
- chi.squared.p.value chi-squared p-values
- p.value theoretical p-values

Additionally the following attributes are set:

- run.params run parameters
- sq.dev vector of square deviations used to estimate the number of irrelevant variables
- dist.param distribution parameter
- err.param squared error of the distribution parameter
- fit.p.value p-value of fit

Examples

ComputePValue(madelon\$IG.2D, dimensions = 2, divisions = 1)

Discretize

Discretize variable on demand

Description

Discretize variable on demand

Usage

```
Discretize(data, variable.idx, divisions, discretization.nr, seed, range)
```

Arguments

data	input data where columns are variables and rows are observations (all numeric)
variable.idx	variable index (as it appears in data)
divisions discretization	number of divisions .nr
	discretization number (positive integer)
seed	seed for PRNG
range	discretization range

Value

Discretized variable.

Examples

```
Discretize(madelon$data, 3, 1, 1, 0, 0.5)
```

GenContrastVariables Generate contrast variables from data

Description

Generate contrast variables from data

Usage

```
GenContrastVariables(data, n.contrast = max(ncol(data), 30))
```

Arguments

data	data organized in matrix with separate variables in columns
n.contrast	number of constrast variables (defaults to max of 1/10 of variables number and
	30)

Value

A list with the following key names:

- indices vector of indices of input variables used to construct contrast variables
- x data with constrast variables appended to it
- mask vector of booleans making it easy to select just contrast variables

Examples

GenContrastVariables(madelon\$data)

```
GetRange
```

Get the recommended range for multiple discretisations

Description

Get the recommended range for multiple discretisations

Usage

```
GetRange(k = 3, n, dimensions, divisions = 1)
```

k	the assumed minimum number of objects in a bucket (the default is the recom- mended value)
n	the total number of objects considered
dimensions	the number of dimensions of analysis
divisions	the number of divisions of discretisations

madelon

Value

The recommended range value (a floating point number).

Examples

GetRange(n = 250, dimensions = 2)

madelon

An artificial dataset called MADELON

Description

An artificial dataset containing data points grouped in 32 clusters placed on the vertices of a five dimensional hypercube and randomly labeled 0/1.

Usage

madelon

Format

A list of two elements:

data 2000 by 500 matrix of 2000 objects with 500 features

decision vector of 2000 decisions (labels 0/1)

IG.2D example 2D IG computed using ComputeMaxInfoGains

Details

The five dimensions constitute 5 informative features. 15 linear combinations of those features are added to form a set of 20 (redundant) informative features. There are 480 distractor features called 'probes' having no predictive power.

Included is the original training set with label -1 changed to 0.

Source

https://archive.ics.uci.edu/ml/datasets/Madelon

MDFS

Description

Run end-to-end MDFS

Usage

```
MDFS(
    data,
    decision,
    n.contrast = max(ncol(data), 30),
    dimensions = 1,
    divisions = 1,
    discretizations = 1,
    range = NULL,
    pc.xi = 0.25,
    p.adjust.method = "holm",
    level = 0.05,
    seed = NULL,
    use.CUDA = FALSE
)
```

data	input data where columns are variables and rows are observations (all numeric)	
decision	decision variable as a boolean vector of length equal to number of observations	
n.contrast	number of constrast variables (defaults to max of 1/10 of variables number and 30)	
dimensions	number of dimensions (a positive integer; on CUDA limited to 2-5 range)	
divisions	number of divisions (from 1 to 15)	
discretizations		
	number of discretizations	
range	discretization range (from 0.0 to 1.0; NULL selects probable optimal number)	
pc.xi	parameter xi used to compute pseudocounts (the default is recommended not to be changed)	
p.adjust.method		
	method as accepted by p.adjust ("BY" is recommended for FDR, see Details)	
level	statistical significance level	
seed	seed for PRNG used during discretizations (NULL for random)	
use.CUDA	use.CUDA whether to use CUDA acceleration (must be compiled with CUDA; NOTE: CUDA version might provide a slightly lower sensitivity due to a lack of nar support for contrast_data)	

Details

In case of FDR control it is recommended to use Benjamini-Hochberg-Yekutieli p-value adjustment method ("BY" in p.adjust) due to unknown dependencies between tests.

Value

A list with the following fields:

- contrast.indices indices of variables chosen to build contrast variables
- contrast.variables built contrast variables
- MIG.Result result of ComputeMaxInfoGains
- MDFS result of ComputePValue (the MDFS object)
- statistic vector of statistic's values (IGs) for corresponding variables
- p.value vector of p-values for corresponding variables
- adjusted.p.value vector of adjusted p-values for corresponding variables
- relevant.variables vector of relevant variables indices

Examples

```
MDFS(madelon$data, madelon$decision, dimensions = 2, divisions = 1,
    range = 0, seed = 0)
```

mdfs_omp_set_num_threads

Call omp_set_num_threads

Description

Call omp_set_num_threads

Usage

mdfs_omp_set_num_threads(num_threads)

Arguments

num_threads input data where columns are variables and rows are observations (all numeric)

Value

No return value, called for side effects.

plot.MDFS

Description

Plot MDFS details

Usage

```
## S3 method for class 'MDFS'
plot(x, plots = c("ig", "c", "p"), ...)
```

Arguments

х	an MDFS object
plots	plots to plot (ig for max IG, c for chi-squared p-values, p for p-values)
	passed on to plot

Value

No return value, called for side effects.

RelevantVariables Find indices of relevant variables

Description

Find indices of relevant variables

Usage

```
RelevantVariables(fs, ...)
```

Arguments

fs	feature selector
	arguments passed to methods

Value

indices of important variables

RelevantVariables.MDFS

Find indices of relevant variables from MDFS

Description

Find indices of relevant variables from MDFS

Usage

```
## S3 method for class 'MDFS'
RelevantVariables(fs, level = 0.05, p.adjust.method = "holm", ...)
```

Arguments

an MDFS object		
statistical significance level		
p.adjust.method		
method as accepted by p.adjust ("BY" is recommended for FDR, see Details)		
ignored		

Details

In case of FDR control it is recommended to use Benjamini-Hochberg-Yekutieli p-value adjustment method ("BY" in p.adjust) due to unknown dependencies between tests.

Value

indices of relevant variables

Index

* datasets madelon, 13

AddContrastVariables, 2 as.data.frame, *11* as.data.frame.MDFS, 3 attributes, *11*

ComputeInterestingTuples, 3 ComputeInterestingTuplesDiscrete, 5 ComputeMaxInfoGains, 7 ComputeMaxInfoGainsDiscrete, 8 ComputePValue, 9

data.frame, *5*, *6*, *8*, *9*, *11* Discretize, 11

GenContrastVariables, 12 GetRange, 12

list, **15**

madelon, 13
MDFS, 14
mdfs_omp_set_num_threads, 15

NULL, 5, 6

p.adjust, *14*, *15*, *17* plot, *16* plot.MDFS, 16

RelevantVariables, 16 RelevantVariables.MDFS, 17