Package 'IndGenErrors'

January 31, 2025

Type Package

Title Tests of Independence Between Innovations of Generalized Error Models

Version 0.1.6

Description Computation of test statistics of independence between (continuous) innovations of time series. They can be used with stochastic volatility models and Hidden Markov Models (HMM). This improves the results in Duchesne, Ghoudi & Remillard (2012) <doi:10.1002/cjs.11141>.

Depends R (>= 3.5.0), stats

Imports ggplot2, MixedIndTests

License GPL (>= 2)

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation yes

Author Kilani Ghoudi [aut, ctb, cph], Bouchra R. Nasri [aut, ctb, cph], Bruno N Remillard [aut, cre, cph], Pierre Duchesne [aut, ctb, cph]

Maintainer Bruno N Remillard <bruno.remillard@hec.ca>

Repository CRAN

Date/Publication 2025-01-31 14:30:04 UTC

Contents

CrossCorrelogram	 	 2
crosscor_2series	 	 3
crosscor_3series	 	 4
crossdep_2series	 	 5
crossdep_3series	 	 6
cvm_2series	 	 7
cvm_3series	 	 8

Index																															11
	romano_ex	• •	• •	 •	•	 •	•	•	•	•••	•	•	•	•	•	 •	•	•	•	•	•••	•	•	•	•	•	•		•	•	10
	gas			 •	•	 •			•		•		•	•	•		•	•	•	•			•	•	•		•			•	9
	dependogram			 •	•				•						•												•				9

CrossCorrelogram Cross-correlogram

Description

This function, used in crosscor_2series and crosscor_3series plots the graphs of the cross-correlation statistics.

Usage

```
CrossCorrelogram(object, comb, rot = 0)
```

Arguments

object	List of the output (statistics, pvalues) from crosscor_2series and crosscor_3series
comb	Name (string) of series, e.g., comb="(x,y)"
rot	Rotation of labels (default=0)

Value

Output No values are returned; only the graph is printed

References

Duchesne, Ghoudi & Remillard (2012). On Testing for independence between the innovations of several time series. CJS, vol. 40, 447-479.

```
#Romano-Siegel's example #
data(romano_ex)
outr = crosscor_3series(romano_ex$x,romano_ex$y,romano_ex$z,5,2)
CrossCorrelogram(outr$out123,"{x,y,z}",rot=90)
```

crosscor_2series

Cross-correlations for testing independence between the innovations of 2 series of same length

Description

This function computes the cross-correlations between x(t) and y(t-1), for l=-lag,..., lag, and also the combination (Wald's type) of these statistics.

Usage

crosscor_2series(x, y, lag, graph = TRUE)

Arguments

х	Pseudo-observations (or residuals) of first series
У	Pseudo-observations (or residuals) of second series
lag	Maximum number of lags around 0
graph	Set to TRUE for a correlogram for all possible lags.

Value

stat	Cross-correlations for all lags
LB	Sum of squares of cross-correlations
pvalue	P-value of LB
subsets	c(-lag:lag)
n	length of the time series

References

Duchesne, Ghoudi & Remillard (2012). On Testing for independence between the innovations of several time series. CJS, vol. 40, 447-479.

```
data(gas)
outr <-crosscor_2series(gas$xres,gas$yres,3)</pre>
```

crosscor_3series

Description

This function computes the cross-correlations for all lags = -lag2, ... lag2, for all pairs, and for pair of lags = (-lag3, -lag3),...(lag3, lag3) for the three series.

Usage

```
crosscor_3series(x, y, z, lag2, lag3)
```

Arguments

x	Pseudo-observations (or residuals) of first series.
У	Pseudo-observations (or residuals) of second series.
z	Pseudo-observations (or residuals) of third series.
lag2	Maximum number of lags around 0 for pairs of series.
lag3	Maximum number of lags around 0 for the three series.

Value

stat	Cross-correlations for all lags and for all subsets
Н	Sum of squares of cross-correlations for all subsets
pvalue	P-value of stat for all subsets and H
n	length of the time series

References

Duchesne, Ghoudi & Remillard (2012). On Testing for independence between the innovations of several time series. CJS, vol. 40, 447-479.

```
# Romano-Siegel's example #
data(romano_ex)
outr = crosscor_3series(romano_ex$x,romano_ex$y,romano_ex$z,5,2)
```

crossdep_2series

Cross-dependences for testing independence between the innovations of 2 series of same length

Description

This function computes the cross-dependence between x(t) and y(t-1), for Spearman, van der Waerden and Savage dependence measures, for l=-lag,..., lag, and also the combination (Wald's type) of these statistics.

Usage

crossdep_2series(x, y, lag, graph = TRUE)

Arguments

x	Pseudo-observations (or residuals) of first series
У	Pseudo-observations (or residuals) of second series
lag	Maximum number of lags around 0
graph	Set to TRUE for a correlogram for all possible lags.

Value

stat	Cross-dependences for all lags
Н	Sum of squares of cross-dependences
pvalue	P-value of H
subsets	c(-lag:lag)
n	length of the time series

References

Duchesne, Ghoudi & Remillard (2012). On Testing for independence between the innovations of several time series. CJS, vol. 40, 447-479.

Nasri & Remillard (2024). Tests of independence and randomness for arbitrary data using copulabased covariances. JMVA, vol. 201, 105273.

```
data(gas)
outr <-crossdep_2series(gas$xres,gas$yres,3)</pre>
```

crossdep_3series

Cross-dependence statistics for testing independence between the innovations of 3 series of same length

Description

This function computes the cross-dependence for Spearman, van der Waerden and Savage dependence measures, for all lags = -lag2, ... lag2, for all pairs, and for pair of lags = (-lag3, -lag3),...(lag3,lag3) for the three series.

Usage

crossdep_3series(x, y, z, lag2, lag3)

Arguments

х	Pseudo-observations (or residuals) of first series.
У	Pseudo-observations (or residuals) of second series.
z	Pseudo-observations (or residuals) of third series.
lag2	Maximum number of lags around 0 for pairs of series.
lag3	Maximum number of lags around 0 for the three series.
0	e

Value

stat	Cross-dependences for all lags and for all subsets
Н	Sum of squares of cross-correlations for all subsets
pvalue	P-value of LB for all subsets and H
n	length of the time series

References

Duchesne, Ghoudi & Remillard (2012). On Testing for independence between the innovations of several time series. CJS, vol. 40, 447-479.

Nasri & Remillard (2024). Tests of independence and randomness for arbitrary data using copulabased covariances. JMVA, vol. 201, 105273.

```
#Romano-Siegel's example #
data(romano_ex)
outr = crossdep_3series(romano_ex$x,romano_ex$y,romano_ex$z,5,2)
CrossCorrelogram(outr$spearman$out123,"Savage for {1,2,3}",rot=90)
```

cvm_2series

Cramer-von Mises Moebius statistics for testing independence between the innovations of 2 series of same length

Description

This function computes the Cramer-von Mises statistics between x(t) and y(t-1), for l=-lag,..., lag, and also the combinations of the p-values of these statistics.

Usage

cvm_2series(x, y, lag, graph = TRUE)

Arguments

х	Pseudo-observations (or residuals) of first series
У	Pseudo-observations (or residuals) of second series
lag	Maximum number of lags around 0
graph	Set to TRUE for a dependogram for all possible lags.

Value

CVM	Cramer-von Mises statistics for all lags
Wstat	Sum of (unbiased) Cramer-von Mises statistics
Fstat	Combination of p-values of the Cramer-von Mises statistics
pvalue	List of p-values for the cvm, Wstat, and Fstat

References

Duchesne, Ghoudi & Remillard (2012). On Testing for independence between the innovations of several time series. CJS, vol. 40, 447-479.

```
data(gas)
out <-cvm_2series(gas$xres,gas$yres,3)</pre>
```

cvm_3series

Description

This function computes the Cramer-von Mises statistics between x(t), y(t-12), z(t-13), for 12=-lag2,..., lag2, 13=-lag3,..., lag3, and also the combinations of these statistics.

Usage

cvm_3series(x, y, z, lag2, lag3)

Arguments

x	Pseudo-observations (or residuals) of first series.
У	Pseudo-observations (or residuals) of second series.
z	Pseudo-observations (or residuals) of third series.
lag2	Maximum number of lags around 0 for pairs of series.
lag3	Maximum number of lags around 0 for the three series.

Value

CVM	Cramer-von Mises statistics for all lags and for all subsets
Wstat	Sum of (unbiased) Cramer-von Mises statistics for all subsets
Fstat	Combination of p-values of the Cramer-von Mises statistics
pvalue	List of p-values for the cvm, Wstat, and Fstat

References

Duchesne, Ghoudi & Remillard (2012). On Testing for independence between the innovations of several time series. CJS, vol. 40, 447-479.

```
set.seed(1)
x0 = rnorm(100); y = rnorm(100); z = rnorm(100);
```

dependogram

Description

This function, used in cvm_2series and cvm_3series draws the P-values of the Moebius Cramer-von Mises statistics.

Usage

```
dependogram(object, stat, rot = 0)
```

Arguments

object	List of the output (statistics, pvalues) from cvm_2series and cvmr_3series
stat	Name (string) of statistics to be used
rot	Rotation of labels (default=0)

Value

Output No values are returned; only the graph is printed

References

Duchesne, Ghoudi & Remillard (2012). On Testing for independence between the innovations of several time series. CJS, vol. 40, 447-479.

Examples

```
#Romano-Siegel's example #
data(romano_ex)
out = cvm_3series(romano_ex$x,romano_ex$y,romano_ex$z,5,2)
dependogram(out$out123,"{x,y,z}",rot=90)
```

gas

Standardized residuals of weekly log-returns of gas and oil prices in Canada from 2008 to end of February 2011

Description

Data frame containg xres (standardized residuals of gas prices from a ARMA(2,2) model) and yres (standardized residuals of oil prices from a ARMA(1,1)-GARCH(1,1) model).

Usage

data(gas)

Format

Residuals

Examples

data(gas) plot(gas\$xres)

romano_ex

Simulated values of a Romano & Siegel example

Description

Data frame containing 100 values of x,y,z generated as follows: x0 = rnorm(100); y = rnorm(100); z = rnorm(100); x = abs(x0)*sign(y*z). All pairs are independent but the three series are not.

Usage

data(romano_ex)

Format

dataframe

Examples

```
data(romano_ex)
plot(romano_ex$x)
```

10

Index

* datasets gas, 9 romano_ex, 10 crosscor_2series, 3 crosscor_3series, 4 CrossCorrelogram, 2 crossdep_2series, 5 crossdep_3series, 6 cvm_2series, 7 cvm_3series, 8 dependogram, 9

gas, 9

 $\texttt{romano_ex, 10}$