Package ‘I1CBioMark’

January 20, 2025
Title Data-Driven Design of Targeted Gene Panels for Estimating
Immunotherapy Biomarkers
Version 0.1.4

Description Implementation of the methodology proposed in 'Data-driven design of tar-
geted gene panels for estimating immunotherapy biomarkers', Bradley and Can-
nings (2021) <arXiv:2102.04296>. This package allows the user to fit generative models of mu-
tation from an annotated mutation dataset, and then further to produce tunable linear estima-
tors of exome-wide biomarkers. It also contains functions to simulate mutation annotated for-
mat (MAF) data, as well as to analyse the output and performance of models.

License MIT + file LICENSE
Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Suggests testthat (>=2.1.0)

Imports stats, utils, glmnet, Matrix, dplyr, purrr, latex2exp,
matrixStats, ggplot2, gglasso, PRROC

Depends R (>=2.10)
NeedsCompilation no

Author Jacob R. Bradley [aut, cre] (<https://orcid.org/0000-0003-1616-4969>),
Timothy I. Cannings [aut] (<https://orcid.org/0000-0002-2111-4168>)

Maintainer Jacob R. Bradley <cobrbradley@gmail.com>
Repository CRAN
Date/Publication 2021-11-15 12:00:02 UTC

Contents

ensembl_gene_lengths oL oL
example_first_pred_tmb
example_gen_model
example_maf data
example_predictions

https://arxiv.org/abs/2102.04296
https://orcid.org/0000-0003-1616-4969
https://orcid.org/0000-0002-2111-4168

Index

ensembl_gene_lengths

example_refit_panel 5
example_refit_range 6
example_tables L 6
example_tib_tables oL 7
example_tmb_tables L 7
fit_gen_model 8
fit_gen_model_uninteract L. 9
fit_gen_model_unisamp 11
generate_maf_data L e 12
GELLAUPIC .« « o o v v v e e e e e e e e e e e e e e e 14
get_biomarker_from_maf oo 15
get_biomarker_tables 16
GEL_gEeNn_estiMates v v i e e e e e e e e e e e e e e e 17
get K o e e 18
get_mutation_dictionaryo 19
get_mutation_tables L 20
CELP o e e e e 21
get_panels_from_fit L 22
get_predictions e 23
get_r_squared e e e e e e 24
L SLALS e e e e e e e e e e e e e 25
get_table_from_maf 26
ICBioMark e e e e 27
nsclc_maf L e 27
nscle_survival e e 28
pred_first_fit. e 29
pred_intervals L e e e e e 31
pred_refit_panel 32
pred_refit_range L e 34
vis_model_fit e e e e e 35
37

ensembl_gene_lengths Gene Lengths from the Ensembl Database

Description

Pre-imported length data from the Ensembl database for all genes on chromosomes 1-22, X and Y.

Usage

ensembl_gene_lengths

example_first_pred_tmb 3

Format

A dataframe with three columns:

Hugo_Symbol The names of all nuclear genes in humans for which ensembl entries with coding
sequence lengths exist.

max_cds The maximum coding sequence for each gene as given by the ensembl database.

Chromosome The chromosome where each gene is located.

Source

See the folder data-raw.

example_first_pred_tmb
First-Fit Predictive Model Fitting on Example Data

Description

An example output from the function pred_first_fit(), applied to pre-loaded example mutation data.

Usage

example_first_pred_tmb

Format

A list with six entries:

fit A gglasso fit.

panel_genes A matrix where each row corresponds to a gene, each column to an iteration of the
group lasso with a different penalty factor, and the elements booleans specifying whether that
gene was selected to be included in that iteration.

panel_lengths A vector giving total panel length for each gglasso iteration.
p The vector of weights used in the optimisation procedure.
K The bias penalty factor used in the optimisation procedure.

names Gene and mutation type information as used when fitting the generative model.

4 example_maf_data

example_gen_model Generative Model from Simulated Data

Description

An example of the output produced by fit_gen_model() on simulated data.

Usage

example_gen_model

Format
A list with two entries:

fit A glmnet fit object.

dev A table containing the average deviance of each cross-validation fold, for each penalisation
factor in fit$lambda.

s_min The index of the regularisation penalty minimising average deviance across folds.

example_maf_data Simulated MAF Data

Description

An example dataset generated by the function generate_maf_data(), with n_sample = 100 and
n_genes = 20.

Usage

example_maf_data

Format
A list with two entries:

maf An annotated mutation dataframe with 3 columns and 1346 rows:
Tumor_Sample_Barcode A sample id for each mutation.
Hugo_Symbol The name of the gene location for each mutation.
Variant_Classification The mutation type for each mutation.

gene_lengths A data frame with two rows:
Hugo_Symbol The name of each gene.
max_cds The length of each gene, as defined by maximum coding sequence.

example_predictions 5

example_predictions Example Predictions

Description

An example output from use of the function get_predictions(), applied to the pre-loaded datasets
example_refit_range and example_tables$val .
Usage

example_predictions

Format

A list with two entries:

predictions A a matrix containing a row for each sample and a column for each panel.

panel_lengths A vector giving total panel lengths.

example_refit_panel Refitted Predictive Model Fitted on Example Data

Description

An example output from use of the function pred_refit_panel(), applied to example gene length data
and generative model fit.

Usage

example_refit_panel

Format

A list with three entries:

fit A list with a single element "beta’, a matrix with prediction weights.

panel_genes A matrix (in this case with a single column) where each row corresponds to a gene,
and each entry corresponds to whether the gene is included in the panel.

panel_lengths A vector of length 1 giving total panel length.

6 example_tables

example_refit_range Refitted Predictive Models Fitted on Example Data

Description
An example output from use of the function pred_refit_range(), applied to example gene length data
and generative model fit.

Usage

example_refit_range

Format
A list with six entries:

fit A list with a single element ’beta’, a matrix with prediction weights.

panel_genes A matrix where each row corresponds to a gene, and each entry corresponds to
whether the gene is included in the panel.

panel_lengths A vector giving total panel length.

example_tables Mutation Matrices from Simulated Data

Description
Mutation data extracted from the pre-loaded example mutation data example_maf data, using the
function get_mutation_tables().

Usage

example_tables

Format
A list with three entries:

train An object ’train’.
val An object ’val’.

test An object test’.

Each of these three objects is a list with the following entries (for more detail see the documentation
for the function get_table_from_maf()):

matrix A sparse matrix of mutations.

example_tib_tables 7

sample_list A character vector of sample IDs, corresponding to the rows of the mutation matrix.
gene_list A character vector of gene names.
mut_types_list A character vector of mutation types.

colnames A character vector of gene name/mutation type combinations (in each case separated by
the character "_"), corresponding to the columns of the mutation matrix.

example_tib_tables Tumour Indel Burden of Example Train, Validation and Test Data.

Description
An example output produced by using the function get_biomarker_tables(), applied to the example
MAF data pre-loaded in example_maf_data$maf.

Usage

example_tib_tables

Format

A list with threeobjects: ’train’, "val’ and ’test’. Each is a dataframe with two columns:

Tumor_Sample_Barcode A unique ID for each sample.

TIB The value of Tumour Indel Burden for that sample.

example_tmb_tables Tumour Mutation Burden of Example Train, Validation and Test Data.

Description
An example output produced by using the function get_biomarker_tables(), applied to the example
MAF data pre-loaded in example_maf_data$maf.

Usage

example_tmb_tables

Format

A list with threeobjects: ’train’, ’val’ and ’test’. Each is a dataframe with two columns:

Tumor_Sample_Barcode A unique ID for each sample.

TMB The value of Tumour Mutation Burden for that sample.

8 fit_gen_model

fit_gen_model Fit Generative Model

Description

A function to fit a generative model to a mutation dataset. At its heart, requires a gene_lengths

dataframe (for examples of the correct format for this see the pre-loaded datasets example_maf_data$gene_lengths
and ensembl_gene_lengths), and a mutation dataset. This is best supplied through the ’table’ argu-

ment, and constructed via the function get_mutation_tables().

Usage

fit_gen_model(
gene_lengths,
matrix = NULL,
sample_list = NULL,
gene_list = NULL,
mut_types_list = NULL,
col_names = NULL,

table = NULL,
nlambda = 100,
n_folds = 10,

maxit = 1e+09,
seed_id = 1234,
progress = FALSE,
alt_model_type = NULL

Arguments

gene_lengths (dataframe) A table with two columns: Hugo_Symbol and max_cds, providing
the lengths of the genes to be modelled.

matrix (Matrix::sparseMatrix) A mutation matrix, such as produced by the function
get_table_from_maf().

sample_list (character) The set of samples to be modelled.

gene_list (character) The set of genes to be modelled.

mut_types_list (character) The set of mutation types to be modelled.
col_names (character) The column names of the *matrix’ parameter.

table (list) Optional parameter combining matrix, sample_list, gene_list, mut_types_list,
col_names, as is produced by the function get_tables().

nlambda (numeric) The length of the vector of penalty weights, passed to the function
glmnet::glmnet().

n_folds (numeric) The number of cross-validation folds to employ.

maxit (numeric) Technical parameter passed to the function glmnet::glmnet().

fit_gen_model_uninteract 9

seed_id (numeric) Input value for the function set.seed().
progress (logical) Show progress bars and text.

alt_model_type (character) Used to call an alternative generative model type such as "US" (no
sample-dependent parameters) or "UI" (no gene/variant-type interactions).

Value
A list comprising three objects:

* An object ’fit’, a fitted glmnet model.

* A table ’dev’, giving average deviances for each regularisation penalty factor and cross-
validation fold.

* An integer ’s_min’, the index of the regularsisation penalty minimising cross-validation de-
viance.

* A list ’names’, containing the sample, gene, and mutation type information of the training
data.

Examples

example_gen_model <- fit_gen_model(example_maf_data$gene_lengths, table = example_tables$train)
print(names(example_gen_model))

fit_gen_model_uninteract
Fit Generative Model Without Gene/Variant Type-Specific Interactions

Description

A function to fit a generative model to a mutation dataset that does not incorporate gene/variant-
specific effects. Otherwise acts similarly to the function fit_gen_model().

NOTE: fits produced by this model will not be compatible with predictive model fits downstream -
it is purely for comparing with full models.

Usage

fit_gen_model_uninteract(
gene_lengths,
matrix = NULL,
sample_list = NULL,
gene_list = NULL,
mut_types_list = NULL,
col_names = NULL,

table = NULL,
nlambda = 100,
n_folds = 10,

maxit = 1e+0Q9,

10

fit_gen_model_uninteract

seed_id = 1234,
progress = FALSE

)

Arguments

gene_lengths

matrix

sample_list
gene_list
mut_types_list
col_names

table

nlambda

n_folds
maxit
seed_id

progress

Value

(dataframe) A table with two columns: Hugo_Symbol and max_cds, providing
the lengths of the genes to be modelled.

(Matrix::sparseMatrix) A mutation matrix, such as produced by the function
get_table_from_maf().

(character) The set of samples to be modelled.
(character) The set of genes to be modelled.

(character) The set of mutation types to be modelled.
(character) The column names of the *matrix’ parameter.

(list) Optional parameter combining matrix, sample_list, gene_list, mut_types_list,
col_names, as is produced by the function get_tables().

(numeric) The length of the vector of penalty weights, passed to the function
glmnet::glmnet().

(numeric) The number of cross-validation folds to employ.
(numeric) Technical parameter passed to the function glmnet::glmnet().
(numeric) Input value for the function set.seed().

(logical) Show progress bars and text.

A list comprising three objects:

* An object ’fit’, a fitted glmnet model.

* A table ’dev’, giving average deviances for each regularisation penalty factor and cross-
validation fold.

* An integer ’s_min’, the index of the regularsisation penalty minimising cross-validation de-

viance.

* A list 'names’, containing the sample, gene, and mutation type information of the training

data.

Examples

example_gen_model_unisamp <- fit_gen_model_unisamp(example_maf_data$gene_lengths,

table = example_tables$train)

print(names(example_gen_model))

fit_gen_model_unisamp 11

fit_gen_model_unisamp Fit Generative Model Without Sample-Specific Effects

Description

A function to fit a generative model to a mutation dataset that does not incorporate sample-specific
effects. Otherwise acts similarly to the function fit_gen_model().

NOTE: fits produced by this model will not be compatible with predictive model fits downstream -
it is purely for comparing with full models.

Usage

fit_gen_model_unisamp(

gene_lengths,

matrix = NULL,
sample_list = NULL,
gene_list = NULL,
mut_types_list = NULL,
col_names = NULL,
table = NULL,

nlambda = 100,

n_folds = 10,

maxit = 1e+0Q9,
seed_id = 1234,
progress = FALSE

Arguments

gene_lengths
matrix

sample_list
gene_list
mut_types_list

(dataframe) A table with two columns: Hugo_Symbol and max_cds, providing
the lengths of the genes to be modelled.

(Matrix::sparseMatrix) A mutation matrix, such as produced by the function
get_table_from_maf().

(character) The set of samples to be modelled.
(character) The set of genes to be modelled.

(character) The set of mutation types to be modelled.

col_names (character) The column names of the *matrix’ parameter.

table (list) Optional parameter combining matrix, sample_list, gene_list, mut_types_list,
col_names, as is produced by the function get_tables().

nlambda (numeric) The length of the vector of penalty weights, passed to the function
glmnet::glmnet().

n_folds (numeric) The number of cross-validation folds to employ.

maxit (numeric) Technical parameter passed to the function glmnet::glmnet().

seed_id (numeric) Input value for the function set.seed().

progress (logical) Show progress bars and text.

12

Value

A list comprising three objects:

* An object ’fit’, a fitted glmnet model.

validation fold.

generate_maf_data

A table ’dev’, giving average deviances for each regularisation penalty factor and cross-

* An integer ’s_min’, the index of the regularsisation penalty minimising cross-validation de-

viance.

* A list 'names’, containing the sample, gene, and mutation type information of the training

data.

Examples

example_gen_model _unisamp <- fit_gen_model_unisamp(example_maf_data$gene_lengths,

print(names(example_gen_model))

table

example_tables$train)

generate_maf_data

Generate mutation data.

Description

A function to randomly simulate an (abridged) annotated mutation file, containing information on
sample of origin, gene and mutation type, as well as a dataframe of gene lengths.

Usage

generate_maf_data(
n_samples = 100,
n_genes = 20,
mut_types = NULL,
data_dist = NULL,

sample_rates = NULL,
gene_rates = NULL,
gene_lengths = NULL,
sample_rates_dist = NULL,
gene_rates_dist = NULL,
gene_lengths_dist = NULL,
bmr_genes_prop = 0.7,
output_rates = FALSE,
seed_id = 1234

generate_maf_data 13

Arguments

n_samples (numeric) The number of samples to generate mutation data for - each will have
a unique value in the *'Tumor_Sample_Barcode’ column of the simulated MAF
table. Note that if no mutations are simulated for an example, they will not
appear in the table.

n_genes (numeric) The number of genes to generate mutation data for - each will have
a unique value in the "Hugo_Symbol’ column of the simulated MAF table. A
length will also be generated for each gene, and stored in the table ’gene_lengths’.

mut_types (numeric) A vector of positive values giving the relative average abundance
of each mutation type. The names of each mutation type are stored in the
names attribute of the vector, and will form the entries of the column ’Vari-
ant_Classification’ in the output MAF table.

data_dist (function) Directly provide the probability distribution of mutations, as a func-
tion on n_samples, n_genes, mut_types, and gene_lengths.

sample_rates (numeric) Directly provide sample-specific rates.

gene_rates (numeric) Directly provide gene-specific rates.

gene_lengths (numeric) Directly provide gene lengths, in the form of a vector of numerics
with names attribute corresponding to gene names.

sample_rates_dist

(function) Directly provide the distribution of sample-specific rates, as a func-
tion of the number of samples.
gene_rates_dist

(function) Directly provide the distribution of gene-specific rates, as a function
of the number of genes.

gene_lengths_dist
(function) Directly provide the distribution of gene lengths, as a function of the
number of genes.

bmr_genes_prop (numeric) The proportion of genes that follow the background mutation rate. If
specified (as is automatic), this proportion of genes will have gene-specific rates
equal to 1. By setting to be NULL, can avoid applying this step.

output_rates (logical) If TRUE, will include the sample and gene rates in the output.

seed_id (numeric) Input value for the function set.seed().

Value
A list with two elements, 'maf’ and ’gene_lengths’. These are (respectively):

* A table with three columns: *Tumor_Sample_Barcode’, "Hugo_Symbol’ and ’Variant_Classification’,
listing the mutations occurring in the simulated example. gene_lengths (dataframe)

* A table with two rows: "Hugo_Symbol’ and ’gene_lengths’.

Examples

Generate some random data
data <- generate_maf_data(n_samples = 10, n_genes = 20)

14 get_auprc

See the first rows of the maf table.
print(head(data$maf))

See the first rows of the gene_lengths table.
print(head(data$gene_lengths))

get_auprc AUPRC Metrics for Predictions

Description

A function to return AUPRC metrics for predictions vs actual values. Works well when piped to
straight from get_predictions().

Usage

get_auprc(predictions, biomarker_values, model = "", threshold = 300)
Arguments

predictions (list) A list with two elements, "predictions’ and ’panel_lengths’, as produced

by the function get_predictions().

biomarker_values
(dataframe) A dataframe with two columns, *Tumor_Sample_Barcode’ and a
column with the name of the biomarker in question containing values.

model (character) The name of the model type producing these predictions.
threshold (numeric) The threshold for biomarker high/low categorisation.
Value

A dataframe with 5 columns:

* panel_length: the length of each panel.

* model: the model that produced the predictions.

* biomarker: the name of the biomarker in question.
* stat: the AUPRC values for each panel.

e metric: a constant character "AUPRC".

Examples

example_auprc <- get_auprc(predictions = get_predictions(example_refit_panel,
new_data = example_tables$val), biomarker_values = example_tmb_tables$val,
model = "Refitted T"”, threshold = 10)

get_biomarker_from_maft 15

get_biomarker_from_maf
Produce a Table of Biomarker Values from a MAF

Description

A function to recover true biomarker values from a mutation annotation file.

Usage

get_biomarker_from_maf (
maf,
biomarker = "TIB",
sample_list = NULL,
gene_list = NULL,
biomarker_name = NULL

)
Arguments

maf (dataframe) A table of annotated mutations containing the columns *Tumor_Sample_Barcode’,
"Hugo_Symbol’, and *Variant_Classification’.

biomarker (character) Which biomarker needs calculating? If "TMB" or "TIB", then ap-
propriate mutation types will be selected. Otherwise, will be interpreted as a
vector of characters denoting mutation types to include.

sample_list (character) Vector of characters giving a list of values of Tumor_Sample_Barcode
to include.

gene_list (character) Vector of characters giving a list of genes to include in calculation of
biomarker.

biomarker_name (character) Name of biomarker. Only needed if biomarker is not "TMB" or
"TIBH

Value

A dataframe with two columns, *Tumor_Sample_Barcode’ and values of the biomarker specified.

Examples

print(head(get_biomarker_from_maf (example_maf_data$maf, sample_list = paste@(”"SAMPLE_", 1:100))))

16 get_biomarker_tables

get_biomarker_tables Get True Biomarker Values on Training, Validation and Test Sets

Description

A function, similar to get_mutation_tables(), but returning the true biomarker values for a training,
validation and test sets.

Usage

get_biomarker_tables(
maf,
biomarker = "TIB",
sample_list = NULL,
gene_list = NULL,
biomarker_name = NULL,
tables = NULL,
split = c(train = 0.7, val = 0.15, test = 0.15),
seed_id = 1234

)
Arguments

maf (dataframe) A table of annotated mutations containing the columns *Tumor_Sample_Barcode’,
"Hugo_Symbol’, and ’Variant_Classification’.

biomarker (character) Which biomarker needs calculating? If "TMB" or "TIB", then ap-
propriate mutation types will be selected. Otherwise, will be interpreted as a
vector of characters denoting mutation types to include.

sample_list (character) Vector of characters giving a list of values of Tumor_Sample_Barcode
to include.

gene_list (character) Vector of characters giving a list of genes to include in calculation of
biomarker.

biomarker_name (character) Name of biomarker. Only needed if biomarker is not "TMB" or

YVTIBH
tables (list) Optional parameter, the output of a call to get_mutation_tables(), which
already has a train/val/test split.
split (numeric) Optional parameter directly specifying the proportions of a train/test/val
split.
seed_id (numeric) Input value for the function set.seed().
Value

A list of three objects: ’train’, ’val’ and ’test. Each comprises a dataframe with two columns,
denoting sample ID and biomarker value.

get_gen_estimates 17

Examples

print(head(get_biomarker_tables(example_maf_data$maf, sample_list = paste@(”"SAMPLE_", 1:100))))

get_gen_estimates Investigate Generative Model Comparisons

Description

Given a generative model of the type we propose, and an alternate version (saturated "S", sample-
independent "US", gene-independent "UG" or gene/variant interaction independent "UI"), either
produces the estimated observations on the training dataset or calculates residual deviance between
models.

Usage

get_gen_estimates(
training_data,
gen_model,
alt_gen_model = NULL,
alt_model_type = "S",
gene_lengths = NULL,
calculate_deviance = FALSE

Arguments

training_data (list) Likely the ’train’ component of a call to get_mutation_tables().
gen_model (list) A generative model - result of a call to fit_gen_model*().
alt_gen_model (list) An alternative generative model.

alt_model_type (character) One of "S" (saturated), "US" (sample-independent), "UG", (gene-
independent), "UI" (gene/variant-interaction independent).

gene_lengths (dataframe) A gene lengths data frame.

calculate_deviance
(logical) If TRUE, returns residual deviance statistics. If FALSE, returns train-
ing data predictions.

Value

If calculate_deviance = FALSE:

A list with two entries, est_mut_vec and alt_est_mut_vec, each of length n_samples x n_genes x
n_mut_types, giving expected mutation value for each combination of sample, gene and variant
type in the training dataset under the two models being compared.

If calculate_deviance = TRUE:

A list with two entries, deviance and df, corresponding to the residual deviance and residual degrees
of freedom between the two models on the training set.

18 get K

Examples

sat_dev <- get_gen_estimates(training_data = example_tables$train,
gen_model = example_gen_model,
alt_model_type = "S",
gene_lengths = example_maf_data$gene_lengths,
calculate_deviance = TRUE)

get_K Construct Bias Penalisation

Description

An internal function, producing the correct bias penalisation for use in predictive model fitting.

Usage

get_K(
gen_model,
p_norm,
training_matrix,
marker_training_values = NULL,
method = max

)
Arguments
gen_model (list) A generative mutation model, fitted by fit_gen_model().
p_norm (numeric) Scaling factor between coefficients of p and parameters of generative

model (see paper for details).

training_matrix
(sparse matrix) A sparse matrix of mutations in the training dataset, produced
by get_mutation_tables().

marker_training_values
(dataframe) A dataframe containing training values for the biomarker in ques-
tion.

method (function) How to select a representative biomarker value from the training
dataset. Defaults to max().

Value

A numerical value, to be used as a penalty weighting in the subsequent group lasso optimisation.

Examples

K <- get_K(example_gen_model, 1, example_tables$train$matrix)
print(K)

get_mutation_dictionary 19

get_mutation_dictionary
Group and Filter Mutation Types

Description

A function to create a mutation dictionary to group and filter mutation types: this can be useful for
computational practicality. It is often not practical to model each distinct mutation type together,
so for practicality one may group multiple classes together (e.g. all indel mutations, all nonsyn-
onymous mutations). Additionally, some mutation types may be excluded from modelling (for
example, one may wish not to use synonymous mutations in the model fitting process).

Usage

get_mutation_dictionary(
for_biomarker = "TIB",
include_synonymous = TRUE,

maf = NULL,
dictionary = NULL
)
Arguments

for_biomarker (string) Specify some standard groupings of mutation types, corresponding the
the coarsest groupings of nonsynonymous mutations required to evaluate the
biomarkers TMB and TIB. If "TMB", groups all nonsynonymous mutations to-
gether, if "TIB" groups indel mutations together and all other mutations together.

include_synonymous
(logical) Determine whether synonymous mutations should be included in the
dictionary.

maf (dataframe) An annotated mutation table containing the column *Variant_Classification’,
only used to check if the dictionary specified does not contain all the variant
types in your dataset.

dictionary (character) Directly specify the dictionary, in the form of a vector of grouping
values. The names of the vector should correspond to the set of variant classifi-
cations of interest in the mutation annotated file (MAF).

Value

A vector of characters, with values corresponding to the grouping labels for mutation types, and
with names corresponding to the mutation types as they will be referred to in a mutation annotated
file (MAF). See examples.

20 get_mutation_tables

Examples

To understand the dictionary format, note that the following code
dictionary <- get_mutation_dictionary(for_biomarker = "TMB")

is equivalent to

dictionary <- c(rep(”"NS",9), rep("S", 8))

names(dictionary) <- c('Missense_Mutation', 'Nonsense_Mutation',
'Splice_Site', 'Translation_Start_Site',
'"Nonstop_Mutation', 'In_Frame_Ins',

'"In_Frame_Del', 'Frame_Shift_Del',

'Frame_Shift_Ins', 'Silent',

'Splice_Region', '3\'Flank', '5\'Flank’,

"Intron', 'RNA', '3\'UTR', '5\'UTR')

where the grouping levels are chosen to be "NS" and "S" for

nonsynonymous and synonymous mutations respectively.

the code

dictionary <- get_mutation_dictionary(for_biomarker = "TIB", include_synonymous = FALSE)
is equivalent to

dictionary <- dictionary <- c(rep(”NS",7), rep("I", 2))

names(dictionary) <- c('Missense_Mutation', 'Nonsense_Mutation',
'Splice_Site', 'Translation_Start_Site',
'"Nonstop_Mutation', 'In_Frame_Ins',

'"In_Frame_Del', 'Frame_Shift_Del',
'"Frame_Shift_Ins')
where now "I" is used as a label to refer to indel mutations,
and synonymous mutations are filtered out.

get_mutation_tables Produce Training, Validation and Test Matrices

Description

This function allows for i) separation of a mutation dataset into training, validation and testing
components, and ii) conversion from annotated mutation format to sparse mutation matrices, as
described in the function get_table_from_maf().

Usage

get_mutation_tables(
maf,
split = c(train = 0.7, val = 0.15, test = 0.15),
sample_list = NULL,
gene_list = NULL,
acceptable_genes = NULL,
for_biomarker = "TIB",
include_synonymous = TRUE,
dictionary = NULL,
seed_id = 1234

get_p 21

Arguments

maf (dataframe) A table of annotated mutations containing the columns ’Tumor_Sample_Barcode’,
"Hugo_Symbol’, and *Variant_Classification’.

split (double) A vector of three positive values with names ’train’, ’val’ and ’test’.
Specifies the proportions into which to split the dataset.

sample_list sample_list (character) Optional parameter specifying the set of samples to in-
clude in the mutation matrices.

gene_list (character) Optional parameter specifying the set of genes to include in the mu-

tation matrices.

acceptable_genes
(character) Optional parameter specifying a set of acceptable genes, for example
those which are in an ensembl databse.

for_biomarker (character) Used for defining a dictionary of mutations. See the function get_mutation_dictionary()
for details.

include_synonymous
(logical) Optional parameter specifying whether to include synonymous muta-
tions in the mutation matrices.

dictionary (character) Optional parameter directly specifying the mutation dictionary to
use. See the function get_mutation_dictionary() for details.
seed_id (numeric) Input value for the function set.seed().
Value

A list of three items with names ’train’, *val’ and "test’. Each element will contain a sparse mutation
matrix for the samples in that branch, alongside other information as described as the output of the
function get_table_from_maf().

Examples
tables <- get_mutation_tables(example_maf_data$maf, sample_list = paste@("SAMPLE_", 1:100))

print(names(tables))
print(names(tables$train))

get_p Construct Optimisation Parameters.

Description

An internal function. From the learned generative model and training data, produces a vector of
weights p to be used in the subsequent group lasso optimisation, alongside a biomarker-dependent
normalisation quantity p_norm.

Usage

get_p(gen_model, training_matrix, marker_mut_types, gene_lengths)

22 get_panels_from_fit

Arguments

gen_model (list) A generative mutation model, fitted by fit_gen_model().

training_matrix
(sparse matrix) A sparse matrix of mutations in the training dataset, produced
by get_mutation_tables().

marker_mut_types
(character) A character vector listing which mutation types (of the set specified
in the generative model attribute *names’) constitute the biomarker in question.

gene_lengths (dataframe) A table with two columns: Hugo_Symbol and max_cds, providing
the lengths of the genes to be modelled.

Value

A list with three entries:

* A vector p, with an entry corresponding to each combination of gene and mutation type spec-
ified in the generative model fitted. Each component is a non-negative value corresponding to
a weighting p to be supplied to a group lasso optimisation.

* A numeric p_norm, giving the factor between p_gs and phi_0gs (see paper for details).

» A vector biomarker_columns, detailing which of the elements of p correspond to gene/mutation
type combinations contributing to the biomarker in question.

Examples

p <- get_p(example_gen_model, example_tables$train$matrix,
marker_mut_types = c("I"), gene_lengths = example_maf_data$gene_lengths)
print(p$pl1:5]1)
print(p$p_norm)
print(p$bc[1:5])

get_panels_from_fit Extract Panel Details from Group Lasso Fit

Description

An internal function for analysing a group Lasso fit as part of the predictive model learning proce-
dure, which returns the sets of genes identified by different iterations of the group Lasso algorithm.

Usage

get_panels_from_fit(gene_lengths, fit, gene_list, mut_types_list)

get_predictions 23

Arguments
gene_lengths (dataframe) A table with two columns: Hugo_Symbol and max_cds, providing
the lengths of the genes to be modelled.

fit (list) A fit from the group lasso algorithm, produced by the function gglasso
(package: gglasso).

gene_list (character) A character vector of genes listing the genes (in order) included in
the model pred_fit.

mut_types_list (character) A character vector listing the mutation type groupings (in order) in-
cluded in the model pred_fit.

Value

A list of two elements:

* panel_genes: A matrix where each row corresponds to a gene, each column to an iteration of
the group lasso with a different penalty factor, and the elements booleans specifying whether
that gene was selected to be included in that iteration.

* panel_lengths:

Examples

panels <- get_panels_from_fit(example_maf_data$gene_lengths, example_first_pred_tmb$fit,
example_gen_model$names$gene_list, mut_types_list = example_gen_model$names$mut_types_list)

print(panels$fit)

get_predictions Produce Predictions on an Unseen Dataset

Description
A function taking a predictive model(s) and new observations, and applying the predictive model to
them to return predicted biomarker values.

Usage

get_predictions(pred_model, new_data, s = NULL, max_panel_length = NULL)

Arguments
pred_model (list) A predictive model as fitted by pred_first_fit(), pred_refit_panel() or pred_refit_range().
new_data (list) A new dataset, containing a matrix of observations and a list of sam-
ple IDs. Likely comes from the ’train’, ’val’ or ’test’ argument of a call to
get_mutation_tables().
s (numeric) If producing predictions for a single panel, s chooses which panel

(column in a pred_fit object) to produce predictions for.

24 get_r_squared

max_panel_length
(numeric) If producing predictions for a single panel, maximum panel length to
specify that panel.
Value

A list with two elements:

* predictions, a matrix containing a row for each sample and a column for each panel.

* panel_lengths, a vector containing the length of each panel.

Examples

example_predictions <- get_predictions(example_refit_range, new_data =
example_tables$val)

get_r_squared R Squared Metrics for Predictions

Description

A function to return R*2 metrics for predictions vs actual values. Works well when piped to straight
from get_predictions().

Usage

get_r_squared(predictions, biomarker_values, model = "", threshold = 10)
Arguments

predictions (list) A list with two elements, “predictions’ and “panel_lengths’, as produced

by the function get_predictions().

biomarker_values
(dataframe) A dataframe with two columns, *Tumor_Sample_Barcode’ and a
column with the name of the biomarker in question containing values.

model (character) The name of the model type producing these predictions.
threshold (numeric) Unusued in this function: present for calls to get_stats().
Value

A dataframe with 5 columns:

 panel_length: the length of each panel.

* model: the model that produced the predictions.

* biomarker: the name of the biomarker in question.
* stat: the R squared values for each panel.

* metric: a constant character "R" for R squared.

get_stats 25

Examples
example_r <- get_r_squared(predictions = get_predictions(example_refit_panel, new_data =
example_tables$val), biomarker_values = example_tmb_tables$val, model = "Refitted T")
get_stats Metrics for Predictive Performance
Description

A function to return a variety metrics for predictions vs actual values. Works well when piped to
straight from get_predictions().

Usage

get_stats(
predictions,
biomarker_values,
model = "",
threshold = 300,

metrics = c("R", "AUPRC")

Arguments

predictions (list) A list with two elements, "predictions’ and ’panel_lengths’, as produced
by the function get_predictions().

biomarker_values
(dataframe) A dataframe with two columns, *Tumor_Sample_Barcode’ and a
column with the name of the biomarker in question containing values.

model (character) The name of the model type producing these predictions.
threshold (numeric) The threshold for biomarker high/low categorisation.
metrics (character) A vector of the names of metrics to calculate.

Value

dataframe with 5 columns:

* panel_length: the length of each panel.

* model: the model that produced the predictions.

* biomarker: the name of the biomarker in question.
* stat: the metric values for each panel.

* metric: the name of the metric.

Examples

example_stat <- get_stats(predictions = get_predictions(example_refit_panel,
new_data = example_tables$val), biomarker_values = example_tmb_tables$val,
model = "Refitted T", threshold = 10)

26 get_table_from_maf

get_table_from_maf Produce a Mutation Matrix from a MAF

Description

A function to, given a mutation annotation dataset with columns for sample barcode, gene name and
mutation type, to reformulate this as a mutation matrix, with rows denoting samples, columns de-
noting gene/mutation type combinations, and the individual entries giving the number of mutations
observed. This will likely be very sparse, so we save it as a sparse matrix for efficiency.

Usage

get_table_from_maf(
maf,
sample_list = NULL,
gene_list = NULL,
acceptable_genes = NULL,
for_biomarker = "TIB",
include_synonymous = TRUE,
dictionary = NULL

)
Arguments
maf (dataframe) A table of annotated mutations containing the columns *Tumor_Sample_Barcode’,
"Hugo_Symbol’, and *Variant_Classification’.
sample_list (character) Optional parameter specifying the set of samples to include in the
mutation matrix.
gene_list (character) Optional parameter specifying the set of genes to include in the mu-

tation matrix.

acceptable_genes
(character) Optional parameter specifying a set of acceptable genes, for example
those which are in an ensembl databse.

for_biomarker (character) Used for defining a dictionary of mutations. See the function get_mutation_dictionary()
for details.
include_synonymous

(logical) Optional parameter specifying whether to include synonymous muta-
tions in the mutation matrix.

dictionary (character) Optional parameter directly specifying the mutation dictionary to
use. See the function get_mutation_dictionary() for details.
Value
A list with the following entries:

* matrix: A mutation matrix, a sparse matrix showing the number of mutations present in each
sample, gene and mutation type.

ICBioMark 27

» sample_list: A vector of characters specifying the samples included in the matrix: the rows of
the mutation matrix correspond to each of these.

» gene_list: A vector of characters specifying the the genes included in the matrix.

* mut_types_list: A vector of characters specifying the mutation types (as grouped into an ap-
propriate dictionary) to be included in the matrix.

* col_names: A vector of characters identifying the columns of the mutation matrix. Each entry
will be comprised of two parts separated by the character ’_’, the first identifying the gene in
question and the second identifying the mutation type. E.g. ’"GENE1_NS" where 'GENE1’ is
an element of gene_list, and NS’ is an element of the dictionary vector.

Examples

We use the preloaded maf file example_maf_data
Now we make a mutation matrix
table <- get_table_from_maf (example_maf_data$maf, sample_list = paste@("SAMPLE_", 1:100))

print(names(table))
print(table$matrix[1:10,1:10])
print(table$col_names[1:10])

ICBioMark ICBioMark: A package for cost-effective design of gene panels to pre-
dict exome-wide biomarkers.

Description

This package implements the methodology proposed in *Data-driven design of targeted gene panels
for estimating immunotherapy biomarkers’, (Bradley and Cannings, 2021, preprint). It allows the
user to fit generative models of mutation from an annotated mutation dataset, and then further to
produce tunable linear estimators of exome-wide biomarkers. It also contains functions to simulate
mutation annotated format (MAF) data, as well as to analyse the output and performance of models.

nsclc_maf Non-Small Cell Lung Cancer MAF Data

Description

A pre-loaded mutation dataset from Campbell et. al (2016), downloaded from The Cancer Genome
Atlas.

Usage

nsclc_maf

28 nsclc_survival

Format
An annotated mutation dataframe with 6 columns and 299855 rows:

Tumor_Sample_Barcode A sample id for each mutation.
Hugo_Symbol The name of the gene location for each mutation.
Variant_Classification The mutation type for each mutation.
Chromosome Chromosome on which the mutation occurred.
Start_Position Start nucleotide location for mutation.

End_Position End nucleotide location for mutation.

Source

https://www.cbioportal.org/study/summary?id=nsclc_tcga_broad_2016

nsclc_survival Non-Small Cell Lung Cancer Survival and Clinical Data

Description

A pre-loaded clinical dataset containing survival and clinical data from Campbell et. al (2016),
downloaded from The Cancer Genome Atlas.

Usage

nsclc_survival

Format

An annotated mutation dataframe with 23 columns and 1144 rows. Each row corresponds to a
sample, and details clinical and survival information about the patient from whom the sample was
derived. Its columns are as follows:

CASE_ID

AGE

AGE_AT_SURGERY

CANCER_TYPE

CANCER_TYPE_DETAILED

DAYS_TO_DEATH

DAYS_TO_LAST _FOLLOWUP

FRACTION_GENOME_ALTERED

HISTORY_NEOADJUVANT_TRTYN

HISTORY_OTHER_MALIGNANCY

MUTATION_COUNT

https://www.cbioportal.org/study/summary?id=nsclc_tcga_broad_2016

pred_first_fit 29

M_STAGE

N_STAGE
ONCOTREE_CODE
OS_MONTHS
OS_STATUS
SAMPLE_COUNT
SEX
SMOKING_HISTORY
SMOKING_PACK_YEARS
SOMATIC_STATUS
STAGE

T_STAGE

Source

https://www.cbhioportal.org/study/clinicalData?id=nsclc_tcga_broad_2016

pred_first_fit First-Fit Predicitve Model with Group Lasso

Description

This function implements the first-fit procedure described in Bradley and Cannings, 2021. It re-
quires at least a generative model and a dataframe containing gene lengths as input.

Usage

pred_first_fit(
gen_model,
lambda = exp(seq(-16, -24, length.out = 100)),
biomarker = "TMB",
marker_mut_types = c(”"NS", "I"),
training_matrix,
gene_lengths,
marker_training_values = NULL,
K_method = max,
free_genes = c()

https://www.cbioportal.org/study/clinicalData?id=nsclc_tcga_broad_2016

30 pred_first_fit

Arguments
gen_model (list) A generative mutation model, fitted by fit_gen_model().
lambda (numeric) A vector of penalisation weights for input to the group lasso optimiser
gglasso.
biomarker (character) The biomarker in question. If "TMB" or "TIB", then automatically

defines the subsequent variable marker_mut_types.

marker_mut_types
(character) The set of mutation type groupings constituting the biomarker being
estimated. Should be a vector comprising of elements of the mut_types_list
vector in the *names’ attribute of gen_model.

training_matrix
(sparse matrix) A sparse matrix of mutations in the training dataset, produced
by get_mutation_tables().

gene_lengths (dataframe) A table with two columns: Hugo_Symbol and max_cds, providing
the lengths of the genes to be modelled.

marker_training_values
(dataframe) A dataframe containing two columns: ’Tumor_Sample_Barcode’,
containing the sample IDs for the training dataset, and a second column con-
taining training values for the biomarker in question.

K_method (function) How to select a representative biomarker value from the training
dataset. Defaults to max().

free_genes (character) Which genes should escape penalisation (for example when aug-
menting a pre-existing panel).

Value

A list of six elements:

* fit: Output of call to gglasso.

* panel_genes: A matrix where each row corresponds to a gene, each column to an iteration of
the group lasso with a different penalty factor, and the elements booleans specifying whether
that gene was selected to be included in that iteration.

* panel_lengths: A vector giving total panel length for each gglasso iteration.
 p: The vector of weights used in the optimisation procedure.
* K: The bias penalty factor used in the optimisation procedure.

* names: Gene and mutation type information as used when fitting the generative model.

Examples

example_first_fit <- pred_first_fit(example_gen_model, lambda = exp(seq(-9, -14, length.out = 100)),
training_matrix = example_tables$train$matrix,
gene_lengths = example_maf_data$gene_lengths)

pred_intervals 31

pred_intervals Produce Error Bounds for Predictions

Description

A function to produce a confidence region for a linear predictor. In upcoming versions will (hope-
fully) be greatly simplified.

Usage

pred_intervals(
predictions,
pred_model,
gen_model,
training_matrix,
gene_lengths,
biomarker_values,
alpha = 0.1,
range_factor = 1.1,
s = NULL,
max_panel_length = NULL,
biomarker = "TMB",
marker_mut_types = c(”"NS", "I"),
model = "Refitted T”

)
Arguments
predictions (list) A predictions object, as produced by get_predictions().
pred_model (list) A predictive model, as produced by pred_first_fit(), pred_refit_panel() or
pred_refit_range().
gen_model (list) A generative model, as produce by fit_gen_model

training_matrix
(sparse matrix) A training matrix, as produced by get_tables()$matrix or get_table_from_maf()$matrix.
gene_lengths (data frame) A data frame with columns "Hugo_Symbol’ and 'max_cds’. See
example_maf_data$gene_lengths, or ensembl_gene_lengths for examples.
biomarker_values
(data frame) A data frame containing the true values of the biomarker in ques-
tion.
alpha (numeric) Confidence level for error bounds.

range_factor (numeric) Value specifying how far beyond the range of max(biomarker) to plot
confidence region.

s (numeric) If input predictions are for a range of panels, s chooses which panel
(column in a pred_fit object) to produce predictions for.

32 pred_refit_panel

max_panel_length
(numeric) Select panel by maximum length.

biomarker (character) Which biomarker is being predicted.

marker_mut_types
(character) If biomarker is not one of "TMB" or "TIB", then this is required to
specify which mutation type groups constitute the biomarker.

model (character) The model (must be based on a linear estimator) for which prediction
intervals are being generated.

Value

A list with two entries:

* prediction_intervals:

* confidence_region:

Examples

example_intervals <- pred_intervals(predictions = get_predictions(example_refit_range,
new_data = example_tables$val),
pred_model = example_refit_range, biomarker_values = example_tmb_tables$val,
gen_model = example_gen_model, training_matrix = example_tables$train$matrix,
max_panel_length = 15000, gene_lengths = example_maf_data$gene_lengths)

example_confidence_plot <- ggplot2::ggplot() +
ggplot2::geom_point(data = example_intervals$prediction_intervals,
ggplot2::aes(x = true_value, y = estimated_value)) +
ggplot2::geom_ribbon(data = example_intervals$confidence_region,
ggplot2::aes(x = x, ymin = y_lower, ymax = y_upper),
fill = "red”, alpha = 0.2) +
ggplot2::geom_line(data = example_intervals$confidence_region,
ggplot2::aes(x = x, y = y), linetype = 2) +
ggplot2::scale_x_loglo() + ggplot2::scale_y_logl@()

plot(example_confidence_plot)

pred_refit_panel Refitted Predictive Model for a Given Panel

Description

A function taking the output of a call to pred_first_fit(), as well as gene length information, and a
specified panel (list of genes), and producing a refitted predictive model on that given panel.

pred_refit_panel 33

Usage

pred_refit_panel(
pred_first = NULL,
gene_lengths = NULL,
model = "T",
genes,
biomarker = "TMB",
marker_mut_types = c(”"NS", "I"),
training_data = NULL,
training_values = NULL,
mutation_vector = NULL,

t_s = NULL
)
Arguments
pred_first (list) A first-fit predictive model as produced by pred_first_fit().

gene_lengths (dataframe) A dataframe of gene lengths (see example_maf_data$gene_lengths
for format).

model (character) A choice of "T", "OLM" or "Count" specifying how predictions
should be made.

genes (character) A vector of gene names detailing the panel being used.

biomarker (character) If "TMB" or "TIB", automatically defines marker_mut_types, other-

wise this will need to be specified separately.

marker_mut_types
(character) A vector specifying which mutation types groups determine the biomarker
in question.

training_data (list) Training data, as produced by get_mutation_tables() (select train, val or
test).

training_values

(dataframe) Training true values, as produced by get_biomarker_tables() (select
train, val or test).

mutation_vector
(numeric) Optional vector specifying the values of the training matrix (train-
ing_data$matrix) in vector rather than matrix form.

t_s (numeric) Optional vector specifying the frequencies of different mutation types.

Value
A list with three elements:
* fit, a list including a sparse matrix ’beta’ giving prediction weights.

* panel_genes, a sparse (logical) matrix giving the genes included in prediction.

* panel_lengths, a singleton vector giving the length of the panel used.

34 pred_refit_range

Examples

example_refit_panel <- pred_refit_panel(pred_first = example_first_pred_tmb,
gene_lengths = example_maf_data$gene_lengths, genes = paste@("GENE_", 1:10))

pred_refit_range Get Refitted Predictive Models for a First-Fit Range of Panels

Description

A function producing a refitted predictive model for each panel produced by usage of the function
pred_first_fit(), by repeatedly applying the function pred_refit_panel().

Usage

pred_refit_range(
pred_first = NULL,
gene_lengths = NULL,
model = "T",
biomarker = "TMB",
marker_mut_types = c(”"NS", "I"),
training_data = NULL,
training_values = NULL,
mutation_vector = NULL,

t_s = NULL,
max_panel_length = NULL
)
Arguments
pred_first (list) A first-fit predictive model as produced by pred_first_fit().

gene_lengths (dataframe) A dataframe of gene lengths (see example_maf_data$gene_lengths
for format).

model (character) A choice of "T", "OLM" or "Count" specifying how predictions
should be made.

biomarker (character) If "TMB" or "TIB", automatically defines marker_mut_types, other-
wise this will need to be specified separately.

marker_mut_types
(character) A vector specifying which mutation types groups determine the biomarker
in question.

training_data (sparse matrix) Training matrix, as produced by get_mutation_tables() (select
train, val or test).

training_values
(dataframe) Training true values, as produced by get_biomarker_tables() (select
train, val or test).

vis_model_fit 35

mutation_vector
(numeric) Optional vector specifying the values of the training matrix (train-
ing_data$matrix) in vector rather than matrix form.

t_s (numeric) Optional vector specifying the frequencies of different mutation types.
max_panel_length

(numeric) Upper bound for panels to fit refitted models to. Most useful for
"OLM" and "Count" model types.

Value

A list with three elements:
* fit, a list including a sparse matrix ’beta’ giving prediction weights for each first-fit panel (one
panel per column).

* panel_genes, a sparse (logical) matrix giving the genes included in prediction for each first-fit
panel.

* panel_lengths, a vector giving the length of each first-fit panel.

Examples

example_refit_range <- pred_refit_range(pred_first = example_first_pred_tmb,
gene_lengths = example_maf_data$gene_lengths)

vis_model_fit Visualise Generative Model Fit

Description

A function to visualise how well a general model has fitted to a mutation dataset across cross-
validation folds. Designed to produce a similar output to glmnet’s function plot.cv.glmnet.

Usage

vis_model_fit(
gen_model,
x_sparsity = FALSE,
y_sparsity = FALSE,
mut_type = NULL

)

Arguments
gen_model (list) A generative model fitted by fit_gen_model()
x_sparsity Show model sparsity on x axis rather than lambda.
y_sparsity Show model sparsity on y axis rather than deviance.

mut_type Produce separate plots for each mutation type.

36 vis_model_fit

Value

Summary plot of the generative model fit across folds.

Examples

p <- vis_model_fit(example_gen_model)

Index

+ datasets
ensembl_gene_lengths, 2
example_first_pred_tmb, 3
example_gen_model, 4
example_maf_data, 4
example_predictions, 5
example_refit_panel, 5
example_refit_range, 6
example_tables, 6
example_tib_tables, 7
example_tmb_tables, 7
nsclc_maf, 27
nsclc_survival, 28

ensembl_gene_lengths, 2
example_first_pred_tmb, 3
example_gen_model, 4
example_maf_data, 4
example_predictions, 5
example_refit_panel, 5
example_refit_range, 6
example_tables, 6
example_tib_tables, 7
example_tmb_tables, 7

fit_gen_model, 8
fit_gen_model_uninteract, 9
fit_gen_model_unisamp, 11

generate_maf_data, 12
get_auprc, 14
get_biomarker_from_maf, 15
get_biomarker_tables, 16
get_gen_estimates, 17
get_K, 18
get_mutation_dictionary, 19
get_mutation_tables, 20
get_p, 21
get_panels_from_fit, 22
get_predictions, 23

37

get_r_squared, 24
get_stats, 25
get_table_from_maf, 26

ICBioMark, 27

nsclc_maf, 27
nsclc_survival, 28

pred_first_fit, 29
pred_intervals, 31
pred_refit_panel, 32
pred_refit_range, 34

vis_model_fit, 35

	ensembl_gene_lengths
	example_first_pred_tmb
	example_gen_model
	example_maf_data
	example_predictions
	example_refit_panel
	example_refit_range
	example_tables
	example_tib_tables
	example_tmb_tables
	fit_gen_model
	fit_gen_model_uninteract
	fit_gen_model_unisamp
	generate_maf_data
	get_auprc
	get_biomarker_from_maf
	get_biomarker_tables
	get_gen_estimates
	get_K
	get_mutation_dictionary
	get_mutation_tables
	get_p
	get_panels_from_fit
	get_predictions
	get_r_squared
	get_stats
	get_table_from_maf
	ICBioMark
	nsclc_maf
	nsclc_survival
	pred_first_fit
	pred_intervals
	pred_refit_panel
	pred_refit_range
	vis_model_fit
	Index

