
Package ‘GenAlgo’
April 7, 2025

Version 2.2.1

Date 2025-04-07

Title Classes and Methods to Use Genetic Algorithms for Feature
Selection

Depends R (>= 4.4)

Imports methods, stats, MASS, oompaBase (>= 3.0.1), ClassDiscovery

Suggests Biobase, xtable

Description Defines classes and methods that can be used
to implement genetic algorithms for feature selection. The idea is
that we want to select a fixed number of features to combine into a
linear classifier that can predict a binary outcome, and can use a
genetic algorithm heuristically to select an optimal set of features.

License Apache License (== 2.0)

LazyLoad yes

biocViews Microarray, Clustering

URL http://oompa.r-forge.r-project.org/

NeedsCompilation no

Author Kevin R. Coombes [aut, cre]

Maintainer Kevin R. Coombes <krc@silicovore.com>

Repository CRAN

Date/Publication 2025-04-07 21:00:02 UTC

Contents
gaTourResults . 2
GenAlg . 2
GenAlg-class . 4
GenAlg-tools . 6
maha . 7
tourData09 . 9

Index 10

1

http://oompa.r-forge.r-project.org/

2 GenAlg

gaTourResults Results of a Genetic Algorithm

Description

We ran a genetic algorithm to find the optimal ’fantasy’ team for the competition run by the Versus
broadcasting network for the 2009 Tour de France. In order to make the vignette run in a timely
fashion, we saved the results in this data object.

Usage

data(gaTourResults)

Format

There are four objects in the data file. The first is recurse, which is an object of the GenAlg-class
representing the final generation. The other three objects are all numeric vector of length 1100:
diversity contains the average population diversity at each generation, fitter contains the max-
imum fitness, and meanfit contains the mean fitness.

Source

Kevin R. Coombes

GenAlg A generic Genetic Algorithm for feature selection

Description

These functions allow you to initialize (GenAlg) and iterate (newGeneration) a genetic algorithm to
perform feature selection for binary class prediction in the context of gene expression microarrays
or other high-throughput technologies.

Usage

GenAlg(data, fitfun, mutfun, context, pm=0.001, pc=0.5, gen=1)
newGeneration(ga)
popDiversity(ga)

GenAlg 3

Arguments

data The initial population of potential solutions, in the form of a data matrix with
one individual per row.

fitfun A function to compute the fitness of an individual solution. Must take two input
arguments: a vector of indices into rows of the population matrix, and a context
list within which any other items required by the function can be resolved. Must
return a real number; higher values indicate better fitness, with the maximum
fitness occurring at the optimal solution to the underlying numerical problem.

mutfun A function to mutate individual alleles in the population. Must take two argu-
ments: the starting allele and a context list as in the fitness function.

context A list of additional data required to perform mutation or to compute fitness. This
list is passed along as the second argument when fitfun and mutfun are called.

pm A real value between 0 and 1, representing the probability that an individual
allele will be mutated.

pc A real value between 0 and 1, representing the probability that crossover will
occur during reproduction.

gen An integer identifying the current generation.

ga An object of class GenAlg

Value

Both the GenAlg generator and the newGeneration functions return a GenAlg-class object. The
popDiversity function returns a real number representing the average diversity of the population.
Here diversity is defined by the number of alleles (selected features) that differ in two individuals.

Author(s)

Kevin R. Coombes <krc@silicovore.com>, P. Roebuck <proebuck@mdanderson.org>

See Also

GenAlg-class, GenAlg-tools, maha.

Examples

generate some fake data
nFeatures <- 1000
nSamples <- 50
fakeData <- matrix(rnorm(nFeatures*nSamples), nrow=nFeatures, ncol=nSamples)
fakeGroups <- sample(c(0,1), nSamples, replace=TRUE)
myContext <- list(dataset=fakeData, gps=fakeGroups)

initialize population
n.individuals <- 200
n.features <- 9
y <- matrix(0, n.individuals, n.features)
for (i in 1:n.individuals) {

y[i,] <- sample(1:nrow(fakeData), n.features)

4 GenAlg-class

}

set up the genetic algorithm
my.ga <- GenAlg(y, selectionFitness, selectionMutate, myContext, 0.001, 0.75)

advance one generation
my.ga <- newGeneration(my.ga)

GenAlg-class Class "GenAlg"

Description

Objects of the GenAlg class represent one step (population) in the evolution of a genetic algorithm.
This algorithm has been customized to perform feature selection for the class prediction problem.

Usage

S4 method for signature 'GenAlg'
as.data.frame(x, row.names=NULL, optional=FALSE, ...)
S4 method for signature 'GenAlg'
as.matrix(x, ...)
S4 method for signature 'GenAlg'
summary(object, ...)

Arguments

object object of class GenAlg

x object of class GenAlg

row.names character vector giving the row names for the data frame, or NULL

optional logical scalar. If TRUE, setting row names and converting column names to syn-
tactic names is optional.

... extra arguments for generic routines

Objects from the Class

Objects should be created by calls to the GenAlg generator; they will also be created automatically
as a result of applying the function newGeneration to an existing GenAlg object.

Slots

data: The initial population of potential solutions, in the form of a data matrix with one individual
per row.

GenAlg-class 5

fitfun: A function to compute the fitness of an individual solution. Must take two input argu-
ments: a vector of indices into the rows of the population matrix, and a context list within
which any other items required by the function can be resolved. Must return a real num-
ber; higher values indicate better fitness, with the maximum fitness occurring at the optimal
solution to the underlying numerical problem.

mutfun: A function to mutate individual alleles in the population. Must take two arguments: the
starting allele and a context list as in the fitness function.

p.mutation: numeric scalar between 0 and 1, representing the probability that an individual allele
will be mutated.

p.crossover: numeric scalar between 0 and 1, representing the probability that crossover will
occur during reproduction.

generation: integer scalar identifying the current generation.

fitness: numeric vector containing the fitness of all individuals in the population.

best.fit: A numeric value; the maximum fitness.

best.individual: A matrix (often with one row) containing the individual(s) achieving the max-
imum fitness.

context: A list of additional data required to perform mutation or to compute fitness. This list is
passed along as the second argument when fitfun and mutfun are called.

Methods

as.data.frame signature(x = "GenAlg"): Converts the GenAlg object into a data frame. The
first column contains the fitness ; remaining columns contain three selected features, given as
integer indices into the rows of the original data matrix.

as.matrix signature(x = "GenAlg"): Converts the GenAlg object into a matrix, following the
conventions of as.data.frame.

summary signature(object = "GenAlg"): Print a summary of the GenAlg object.

Author(s)

Kevin R. Coombes <krc@silicovore.com>, P. Roebuck <proebuck@mdanderson.org>

References

David Goldberg.
"Genetic Algorithms in Search, Optimization and Machine Learning."
Addison-Wesley, 1989.

See Also

GenAlg, GenAlg-tools, maha.

Examples

showClass("GenAlg")

6 GenAlg-tools

GenAlg-tools Utility functions for selection and mutation in genetic algorithms

Description

These functions implement specific forms of mutation and fitness that can be used in genetic algo-
rithms for feature selection.

Usage

simpleMutate(allele, context)
selectionMutate(allele, context)
selectionFitness(arow, context)

Arguments

allele In the simpleMutate function, allele is a binary vector filled with 0’s and
1’s. In the selectionMutate function, allele is an integer (which is silently
ignored; see Details).

arow A vector of integer indices identifying the rows (features) to be selected from
the context$dataset matrix.

context A list or data frame containing auxiliary information that is needed to resolve
references from the mutation or fitness code. In both selectionMutate and
selectionFitness, context must contain a dataset component that is either
a matrix or a data frame. In selectionFitness, the context must also include
a grouping factor (with two levels) called gps.

Details

These functions represent ’callbacks’. They can be used in the function GenAlg, which creates
objects. They will then be called repeatedly (for each individual in the population) each time the
genetic algorithm is updated to the next generation.

The simpleMutate function assumes that chromosomes are binary vectors, so alleles simply take
on the value 0 or 1. A mutation of an allele, therefore, flips its state between those two possibilities.

The selectionMutate and selectionFitness functions, by contrast, are specialized to perform
feature selection assuming a fixed number K of features, with a goal of learning how to distinguish
between two different groups of samples. We assume that the underlying data consists of a data
frame (or matrix), with the rows representing features (such as genes) and the columns representing
samples. In addition, there must be a grouping vector (or factor) that assigns all of the sample
columns to one of two possible groups. These data are collected into a list, context, containing
a dataset matrix and a gps factor. An individual member of the population of potential solutions
is encoded as a length K vector of indices into the rows of the dataset. An individual allele,
therefore, is a single index identifying a row of the dataset. When mutating it, we assume that it
can be changed into any other possible allele; i.e., any other row number. To compute the fitness,
we use the Mahalanobis distance between the centers of the two groups defined by the gps factor.

maha 7

Value

Both selectionMutate and simpleMutate return an integer value; in the simpler case, the value
is guaranteed to be a 0 or 1. The selectionFitness function returns a real number.

Author(s)

Kevin R. Coombes <krc@silicovore.com>, P. Roebuck <proebuck@mdanderson.org>

See Also

GenAlg, GenAlg-class, maha.

Examples

generate some fake data
nFeatures <- 1000
nSamples <- 50
fakeData <- matrix(rnorm(nFeatures*nSamples), nrow=nFeatures, ncol=nSamples)
fakeGroups <- sample(c(0,1), nSamples, replace=TRUE)
myContext <- list(dataset=fakeData, gps=fakeGroups)

initialize population
n.individuals <- 200
n.features <- 9
y <- matrix(0, n.individuals, n.features)
for (i in 1:n.individuals) {

y[i,] <- sample(1:nrow(fakeData), n.features)
}

set up the genetic algorithm
my.ga <- GenAlg(y, selectionFitness, selectionMutate, myContext, 0.001, 0.75)

advance one generation
my.ga <- newGeneration(my.ga)

maha Compute the (squared) Mahalanobis distance between two groups of
vectors

Description

The Mahalanobis distance between two groups of vectors

Usage

maha(data, groups, method = "mve")

8 maha

Arguments

data A matrix with columns representing features (or variables) and rows represent-
ing independent samples

groups A factor or logical vector with length equal to the number of rows (samples) in
the data matrix

method A character string determining the method that should be used to estimate the
covariance matrix. The default value of "mve" uses the cov.mve function from
the MASS package. The other valid option is "var", which uses the var function
from the standard stats package.

Details

The Mahalanobis distance between two groups of vectors is the distance between their centers,
computed in the equivalent of a principal component space that accounts for different variances.

Value

Returns a numeric vector of length 1.

Author(s)

Kevin R. Coombes <krc@silicovore.com>, P. Roebuck <proebuck@mdanderson.org>

References

Mardia, K. V. and Kent, J. T. and Bibby, J. M.
Multivariate Analysis.
Academic Press, Reading, MA 1979, pp. 213–254.

See Also

cov.mve, var

Examples

nFeatures <- 40
nSamples <- 2*10
dataset <- matrix(rnorm(nSamples*nFeatures), ncol=nSamples)
groups <- factor(rep(c("A", "B"), each=10))
maha(dataset, groups)

tourData09 9

tourData09 Tour de France 2009

Description

Each row represents the performance of a rider in the 2009 Tour de France; the name and team of
the rider are used as the row names. The four columns are the Cost (to include on a team in the
Versus fantasy challenge), Scores (based on daily finishing position), JerseyBonus (for any days
spent in one of the three main leader jerseys), and Total (the sum of Scores and JerseyBonus).

Usage

data(tourData09)

Format

A data frame with 102 rows and 4 columns.

Source

The data were collected in 2009 from the web site http://www.versus.com/tdfgames, which
appears to no longer exist.

Index

∗ classes
GenAlg-class, 4

∗ classif
GenAlg-class, 4

∗ datasets
gaTourResults, 2
tourData09, 9

∗ multivariate
maha, 7

∗ optimize
GenAlg, 2
GenAlg-class, 4
GenAlg-tools, 6

as.data.frame,GenAlg-method
(GenAlg-class), 4

as.matrix,GenAlg-method (GenAlg-class),
4

cov.mve, 8

diversity (gaTourResults), 2

fitter (gaTourResults), 2

gaTourResults, 2
GenAlg, 2, 4–7
GenAlg-class, 4
GenAlg-tools, 6

maha, 3, 5, 7, 7
meanfit (gaTourResults), 2

newGeneration, 4
newGeneration (GenAlg), 2

popDiversity (GenAlg), 2

recurse (gaTourResults), 2

selectionFitness (GenAlg-tools), 6

selectionMutate (GenAlg-tools), 6
simpleMutate (GenAlg-tools), 6
summary,GenAlg-method (GenAlg-class), 4

tourData09, 9

var, 8

10

	gaTourResults
	GenAlg
	GenAlg-class
	GenAlg-tools
	maha
	tourData09
	Index

