Package 'GHRexplore'

November 5, 2025

Title Exploratory Analysis of Temporal and Spatio-Temporal Health Data **Version** 0.2.1

Description A collection of commonly used visualizations of temporal and spatio-temporal health data including case counts, incidence rates, and covariates. The available plot types include time series, heatmaps, seasonality plots, maps and more. The package supports standard data transformations such as temporal and spatial aggregations, while offering extensive customization options for the resulting figures.

```
License GPL (>= 2)
URL https://gitlab.earth.bsc.es/ghr/ghrexplore,
      https://bsc-es.github.io/GHRtools/docs/GHRexplore/GHRexplore
BugReports https://gitlab.earth.bsc.es/ghr/ghrexplore/-/issues
Depends R (>= 4.1.0)
Imports colorspace, cowplot, dplyr, ggplot2 (>= 3.5.0), grDevices,
      ISOweek, RColorBrewer, rlang, stats, tidyr
Suggests knitr, rmarkdown, sf, testthat (>= 3.0.0)
VignetteBuilder knitr
Config/testthat/edition 3
Encoding UTF-8
LazyData true
RoxygenNote 7.3.3
NeedsCompilation no
Author Carles Milà [aut, cre] (ORCID: <a href="https://orcid.org/0000-0003-0470-0760">https://orcid.org/0000-0003-0470-0760</a>),
      Giovenale Moirano [aut] (ORCID:
       <https://orcid.org/0000-0001-8748-3321>),
      Anna B. Kawiecki [aut] (ORCID: <a href="https://orcid.org/0000-0002-0499-2612">https://orcid.org/0000-0002-0499-2612</a>),
      Rachel Lowe [aut, cph] (ORCID: <a href="https://orcid.org/0000-0003-3939-7343">https://orcid.org/0000-0003-3939-7343</a>)
Maintainer Carles Milà <carles.milagarcia@bsc.es>
Repository CRAN
Date/Publication 2025-11-05 15:50:07 UTC
```

2 aggregate_cases

Contents

	aggregate_cases
	aggregate_cov
	dengue_MS
	dengue_SP
	GHR_palette
	map_MS
	plot_bivariate
	plot_combine
	plot_compare
	plot_correlation
	plot_heatmap
	olot_map
	plot_multiple
	plot_seasonality
	plot_timeseries
	plot_timeseries2
Index	31
aggre	ate_cases Aggregate cases

Description

Aggregates a data frame containing disease cases in space and/or time.

Usage

```
aggregate_cases(
  data = NULL,
  cases = NULL,
  pop = NULL,
  time = NULL,
  area = NULL,
  pt = 1e+05,
  aggregate_space = NULL,
  aggregate_time = NULL
)
```

Arguments

data	Data frame containing equally spaced (daily, weekly, monthly) incident cases for one or multiple areas.
cases	Name of the variable that identifies the cases.
pop	Name of the variable that identifies the population.

aggregate_cov 3

Name of the variable that identifies the temporal dimension. The values must be in date format ("yyyy-mm-dd") representing the day of observation for daily data, the first day of the week for weekly, or the first day of the month for monthly observations.

area

Name of variable that identifies the different locations (e.g., areal units) for which a time series is available.

pt

Scale of the person-time (default 100,000) for incidence rates.

aggregate_space

Name of variable used to define spatial aggregation groups.

aggregate_time

Temporal scale used to perform temporal aggregation. Options are: "week"

(ISO 8601), "month", "year".

Value

A data frame with the aggregated cases.

aggregate_cov

Aggregate covariates

Description

Aggregates a data frame containing a covariate of interest in space and/or time.

Usage

```
aggregate_cov(
  data = NULL,
  var = NULL,
  time = NULL,
  area = NULL,
  aggregate_space = NULL,
  aggregate_time = NULL,
  aggregate_space_fun = "mean",
  aggregate_time_fun = "mean")
```

Arguments

data Data frame containing equally spaced (daily, weekly, monthly) incident cases

for one or multiple areas.

var Name of the variable that identifies the covariate.

time Name of the variable that identifies the temporal dimension. The values must

be in date format ("yyyy-mm-dd") representing the date of observation for daily data, the first day of the week for weekly, or the first day of the month for

monthly observations.

4 dengue_MS

area Name of variable that identifies the different locations (i.e., areal units) for which a time series is available.

aggregate_space

Name of variable used to define spatial aggregation groups.

 ${\tt aggregate_time} \ \ {\tt Temporal} \ \ {\tt scale} \ \ {\tt used} \ \ {\tt to} \ \ {\tt perform} \ \ {\tt temporal} \ \ {\tt aggregation}. \ \ {\tt Options} \ \ {\tt are:} \ \ "{\tt week}"$

(ISO 8601), "month", "year".

aggregate_space_fun

Character indicating the function to be used in the aggregation over space, default is "mean"

aggregate_time_fun

Character indicating the function to be used in the aggregation over time, default is "mean".

Value

A data frame with the aggregated covariate.

dengue_MS

Dengue cases in Mato Grosso do Sul

Description

Monthly number of notified dengue cases by municipality in the *Mato Grosso do Sul* state of Brazil and a set of spatial and spatio-temporal covariates.

Usage

data(dengue_MS)

Format

A data frame with 2,640 rows and 27 columns:

micro_code Unique ID number for each micro region (11 units).

micro_name Name of each micro region.

micro_name_ibge Name of each micro region in IBGE format.

meso_code Unique ID number for each meso region (4 units).

meso_name Name of each meso region.

state_code Unique ID number for each state (1 unit).

state_name Name of each state.

region_code Unique ID number given to each Brazilian Region. All observations come from the "Southeast Region".

region_name Name of each Brazilian Region. All observations come from the "Southeast Region".

dengue_MS 5

biome_code Biome code.

biome_name Biome name.

ecozone_code Ecozone code.

ecozone_name Ecozone name.

main_climate Most prevalent climate regime in the microregion. Based on Koppen Geiger climate regimes.

month Calendar month index, 1 = January, 12 = December.

year Year 2000 - 2019.

time Time index starting at 1 for January 2000.

dengue_cases Number of notified dengue cases registered in the notifiable diseases system in Brazil (SINAN) in the microregion of reference, at the month of first symptoms.

population Estimated population based on projections calculated using the 2000 and 2010 censuses, as well as population counts from 2007 and 2017.

pop_density Population density (number of people per km2).

tmax Monthly average daily maximum temperature; gridded values (at a 0.5 deg resolution) averaged across each microregion.

tmin Monthly average daily minimum temperature; gridded values (at a 0.5 deg resolution) averaged across each microregion.

pdsi Self-calibrated Palmer Drought Severity Index for each microregion. It measures how wet or dry a region is relative to usual conditions. Negative values represent periods of drought, positive values represent wetter periods. Calculated by taking the mean value within each microregion.

urban Percentage of population living in urban areas (2010 census).

water_network Percentage of population with access to the piped water network according to the 2010 census.

water_shortage Frequency of reported water shortages per microregion between 2000 and 2016.

date First day of the month in date format ("%d-%m-%Y").

Details

In addition to the dengue counts, the dataset contains a set of environmental, socio-economic and meteo-climatic factors. This dataset is a subset of the original containing observations over the entire Brazil.

Source

https://github.com/drrachellowe/hydromet_dengue

6 GHR_palette

dengue_SP

Dengue cases in Sao Paulo

Description

Data frame containing the weekly number of notified dengue cases in the municipality of *Sao Paulo*, as well as a set of climatic covariates.

Usage

```
data(dengue_SP)
```

Format

A data frame with 678 rows and 8 columns:

date First day of the week in date format.

geocode Unique ID code for Sao Paulo microregion.

cases Number of notified dengue cases.

year Year (2010 - 2022).

temp_med Weekly average daily mean temperature.

precip_tot Weekly cumulative precipitation.

enso El Niño-Southern Oscillation index.

pop Number of inhabitants.

Source

https://info.dengue.mat.br/services/api

GHR_palette

Generate GHR color palettes

Description

Generates color palettes including custom, ColorBrewer and colorspace palettes.

Creates a visualization of all custom GHR palettes.

Usage

```
GHR_palette(palette, ncols = 30)
GHR_palettes()
```

map_MS 7

Arguments

palette Name of the GHR, RcolorBrewer or colorspace palette. Use "-" before the

palette name (e.g., "-Reds") to reverse it. A vector of custom colors is also

possible.

ncols Number of colors to sample.

Details

See all available options by running GHR_palettes(), RColorBrewer::display.brewer.all() and colorspace::hcl_palettes(plot=TRUE).

Value

GHR_palette() returns the function that generates the color palette and the attribute 'na_color'. GHR_palettes() returns a plot with the custom GHR palettes.

Examples

```
GHR_palette("IDE1", 5)(5)
GHR_palettes()
```

map_MS

Municipality boundaries of Mato Grosso do Sul

Description

Administrative boundaries (polygon geometries) of the 11 municipalities in *Mato Grosso do Sul* (Brazil) to be used with the dengue_MS data set.

Usage

```
data(map_MS)
```

Format

A simple feature (sf) object including 11 rows and 2 columns:

code Unique ID number to each micro region (11 units).

geometry Geometries of the sf multipolygon.

8 plot_bivariate

plot_bivariate

Bivariate plot

Description

Plots a bivariate graph to visually assess associations. It will be a scatterplot if both variables are numeric and grouped boxplots if one of them is categorical.

Usage

```
plot_bivariate(
  data,
  var,
  area = NULL,
  facet = FALSE,
  free_x_scale = FALSE,
  free_y_scale = FALSE,
  title = NULL,
  var_label = NULL,
  legend = NULL,
 palette = NULL,
)
```

Arguments

data	Data frame containing equally spaced (daily, weekly, monthly) covariate or dis-
	ease case observations for one or multiple locations

ease case observations for one or multiple locations.

Character vector of covariate names with length 2 (x, y). One of them can be a var

factor.

Character, the name of the variable that identifies the different areal units or area

any other grouping of interest. If specified, results are grouped by this variable.

1 / 1 -1

Defaults to NULL (no grouping).

facet If TRUE, plot each grouping in a different facet.

free_x_scale If TRUE and facet=TRUE, the x-axis scale is free in each facet. free_y_scale If TRUE and facet=TRUE, the y-axis scale is free in each facet.

title Optional title of the plot.

var_label A 2 character vector with a custom name for the variables. legend A character vector with a custom name for the legend.

GHR, RColorBrewer or colorspace palette (e.g. "Purp"). Single R colors in palette

> colors() or hex codes can be used when there is no grouping or facets are used. Use "-" before the palette name (e.g., "-Reds") to reverse it. Defaults to a dark green when area is NULL or when facet is TRUE, otherwise defaults to

the "IDE2" palette.

Additional arguments to be passed to geom_point or geom_boxplot, e.g. al-

pha=0.5 and size=2.

plot_combine 9

Value

A ggplot2 scatterplot or boxplot graph.

Examples

```
# Load data
data("dengue_MS")
# Scatter (two numeric variables) - No grouping
plot_bivariate(dengue_MS,
               var = c("pop_density", "tmin"),
               palette = "#d04a2d")
# Scatter (two numeric variables) - Grouping in the same graph
plot_bivariate(dengue_MS,
               var = c("pop_density", "tmin"),
               var_label = c("Pop. density", "Min temp."),
               area = "micro_code")
# Scatter (two numeric variables) - Grouping in facets
plot_bivariate(dengue_MS,
               var = c("pop_density", "tmin"),
               var_label = c("Pop. density", "Min temp."),
               area = "micro_code", facet = TRUE,
               free_x_scale = TRUE)
# Boxplots (one numeric, one categorical) - No grouping
plot_bivariate(dengue_MS,
               var = c("pop_density", "biome_name"),
               var_label = c("Pop. density", "Min temp."),
               palette = "royalblue")
# Boxplots (one numeric, one categorical) - Grouping
plot_bivariate(dengue_MS,
               var = c("biome_name", "tmin"),
               area = "meso_code",
               palette = "Accent")
```

plot_combine

Combine plots

Description

Combines plots, each representing one variable, into a single plot.

Usage

```
plot_combine(
   plot_list,
```

plot_combine

```
combine_legend = FALSE,
combine_xaxis = FALSE,
ncol = 1,
align = "v",
...,
ncol_l = 2,
nrow_l = NULL,
rel_widths_l = c(3, 1),
rel_heights_l = c(1, 1),
ncol_legend = 1
)
```

Arguments

plot_list	A list of plots to be combined.
combine_legend	Logical. If TRUE, assumes the legend of all plots is the same as the legend of the first plot in plot_list and final plot shows only one instance of the common legend. Default is FALSE.
combine_xaxis	Logical. If TRUE, removes \boldsymbol{x} axis labels from all but the last plot. Default is FALSE.
ncol	(from cowplot) Number of colums in the plot grid. Default is 1.
align	(from cowplot) Specifies how plots should be aligned Options are "none", "hv" (align in both directions), "h", and "v" (default).
	Additional arguments passed to cowplot::plot_grid.
ncol_l	When combine_legend = TRUE, number of colums in which to align plots and the common legend. Default is 2.
nrow_1	When combine_legend = TRUE, number of rows in which to align plots and the common legend. Default is NULL.
rel_widths_l	When combine_legend = TRUE, vector of widths in which to align plots and the common legend. Default is $c(3, 1)$.
rel_heights_l	When combine_legend = TRUE, vector of heights in which to align plots and the common legend. Default is $c(1, 1)$.
ncol_legend	When combine_legend = TRUE, number of columns the legend should be distributed in. Default is one column.

Details

This function takes any input from the cowplot::plot_grid function to customize the organization of the plots.

Value

A single (cow)plot including the provided multiple plots.

See Also

```
plot_compare, plot_multiple
```

plot_compare 11

Examples

```
# Load data
data("dengue_MS")
# Multiple time series plot
plots <- plot_multiple(</pre>
  plot_function = plot_timeseries,
  data = dengue_MS,
  var = c("tmax", "tmin", "pdsi"),
type = c("cov", "cov", "cov"),
  aggregate_space = "meso_code",
  pop = "population",
  var_label = c("Max Temp", "Min Temp", "PDSI"),
  time = "date",
  area = "micro_code")
# Combine them with a shared legend
plot_combine(plot_list = plots,
              ncol = 1,
              align = v^*,
              combine_legend = TRUE,
              combine_xaxis = TRUE,
              rel_widths_l = c(7,1)
```

plot_compare

Compare plots

Description

Combines multiple plots of several variables in a single graph.

Usage

```
plot_compare(plot_function, data, var, type, ...)
```

Arguments

plot_function	Indicates which of the plot types to use. Options are: 'plot_timeseries', 'plot_heatmap', 'plot_seasonality', 'plot_map'.
data	Data frame containing equally spaced (daily, weekly, monthly) covariate or disease case observations for one or multiple locations.
var	Character vector with the name of the variables to be plotted.
type	Character vector with the same length of var that specifies the types of variable for each element in var. Possible values include 'cov' (covariate, default), 'counts' (case counts), and 'inc' (case incidence). If type='inc', pop is required.
	Additional arguments for plot_multiple, plot_combine, and the selected plot_function.

plot_compare

Details

This function takes any input arguments from plot_combine() and plot_multiple() to customize the plots and their organization in a grid.

Value

A single (cow)plot containing plots of several variables.

See Also

```
plot_multiple, plot_combine
```

```
# Load data
library("sf")
data("dengue_MS")
data("map_MS")
plot_compare(
  plot_function = plot_timeseries,
  data = dengue_MS,
  var = c("dengue_cases", "pdsi"),
  type = c("inc", "cov"),
  pop = "population",
  time = "date",
  area = "micro_code",
  var_label = c("Dengue inc", "PDSI"),
  combine_legend = TRUE,
  ncol_legend = 1,
  ncol = 1,
  align = "h")
# Comparing seasonality plots
plot_compare(
  plot_function = plot_seasonality,
  data = dengue_MS,
  var = c("dengue_cases", "dengue_cases", "pdsi"),
  type = c("counts", "inc", "cov"),
  pop = "population",
  time = "date",
  area = "micro_code",
  aggregate_space = "region_code",
  pt = 100,
  var_label = c("Dengue Cases", "Dengue inc", "Min Temp"),
  ncol_legend = 1,
  combine_legend = TRUE)
# Comparing heatmaps plots
plot_compare(
  plot_function = plot_heatmap,
  data = dengue_MS,
```

plot_correlation 13

```
var = c("dengue_cases", "pdsi"),
 type = c("inc", "cov"),
 pop = "population",
 time = "date",
 area = "micro_code",
 var_label = c("Dengue Cases", "Min Temp"),
 palette = c("Reds", "Blues"),
 ncol_legend = 1,
 combine_xaxis = TRUE)
# Comparing map plots
plot_compare(
 plot_function = plot_map,
 data = dengue_MS,
 var = c("dengue_cases", "tmax"),
 type = c("inc", "cov"),
 pop = "population",
 time = "date",
 area = "micro_code",
 var_label= c("Dengue Incidence", "Max Temperature"),
 palette = c("Reds", "Blues"),
 map = map_MS,
 map_area = "code",
 aggregate_time = "all",
 ncol_legend = 1,
 combine_xaxis =TRUE)
```

plot_correlation

Correlation plot

Description

Plots a correlation matrix of a series of variables.

Usage

```
plot_correlation(
  data,
  var,
  var_label = NULL,
  method = "pearson",
  plot_type = c("circle", "number"),
  scale = 1,
  title = NULL,
  palette = "IDE1",
  print = FALSE
)
```

plot_correlation

Arguments

data	Data frame containing equally spaced (daily, weekly, monthly) covariate or disease case observations for one or multiple locations.
var	Character vector containing variables in data to include in the correlation matrix.
var_label	Optional character vector of the same length as var containing custom names for the variables.
method	Correlation computation method. Options include "pearson" (default), "spearman" or "kendall".
plot_type	Character vector of length 2 indicating the type of plot to use in the lower triangular and diagonal (1st element) and the upper triangular (2nd element). Options include "circle", "number" and "raster".
scale	Circle and number size multiplier, e.g. 1.1 increases the size a 10% while 0.9 decreases it a 10% .
title	Optional title of the plot.
palette	GHR, RColorBrewer or colorspace palette. Use "-" before the palette name (e.g., "-Reds") to reverse it.
print	Logical. If TRUE, print the correlation matrix.

Value

A plot of the correlation matrix.

```
# Load data
data("dengue_MS")
# Pearson correlation plot
plot_correlation(dengue_MS,
                 method = "pearson",
                 var = c("dengue_cases","pop_density",
                        "tmax", "tmin", "pdsi", "urban",
"water_network", "water_shortage"),
                 var_label = c("dengue cases", "pop. density",
                               "max temp", "min temp", "drought index", "urbanization",
                               "water network", "water shortage"),
                 title = "Correlation matrix")
# Print spearman correlation plot of type 'raster' and 'number'
# with another palette
plot_correlation(dengue_MS,
                method = "spearman",
                var_label = c("dengue cases","pop. density",
                               "max temp", "min temp", "drought index", "urbanization",
```

plot_heatmap 15

```
"water network", "water shortage"),
plot_type = c("raster", "number"),
palette = "-Blue-Red 3")
```

plot_heatmap

Heatmap plot

Description

Plots temporal heatmaps of covariates, case counts, or incidence rates.

Usage

```
plot_heatmap(
  data,
  var,
  time,
  type = "cov",
  pop = NULL,
 pt = 1e+05,
  area = NULL,
  aggregate_space = NULL,
  aggregate_time = "month",
  aggregate_space_fun = "mean",
  aggregate_time_fun = "mean",
  transform = "identity",
  title = NULL,
  var_label = NULL,
 ylab = NULL,
 xlab = NULL,
 palette = NULL,
  centering = NULL
)
```

Arguments

data	Data frame containing equally spaced (daily, weekly, monthly) covariate or disease case observations for one or multiple locations.
var	Name of the column identifying the variable to be plotted.
time	Name of the variable that identifies the temporal dimension of the data frame. Its values must be in date format ("yyyy-mm-dd") representing the day of observation for daily data, the first day of the week for weekly, or the first day of the month for monthly observations.
type	Character that specifies the type of variable in var. Possible values include 'cov' (covariate, default), 'counts' (case counts), and 'inc' (case incidence). If type='inc', pop is required.

16 plot_heatmap

pop Character identifying the variable name for population. Only needed if type='inc'.

pt Numerical only used for type='inc'. It represents the scale of the person-time

(default 100,000) for incidence rates.

area Name of variable that identifies the different locations (i.e., areal units) for which

a time series is available.

aggregate_space

Name of variable used to define spatial aggregation groups.

aggregate_time Temporal scale used to perform temporal aggregation. Options are: "week"

(ISO 8601), "month", "year".

aggregate_space_fun

Character indicating the function to be used in the aggregation over space for type="cov". Options are "mean" (default), "median", "sum". For case counts

and incidence, "sum" is always applied.

aggregate_time_fun

Character indicating the function to be used in the aggregation over time for type="cov". Options are "mean" (default), "median", "sum". For case counts

and incidence, "sum" is always applied.

transform Character, defaults to "identity" (i.e., no transformation). Transforms the color

ramp for better visualization. Useful options include "log10p1" log10(x+1) useful for case counts and incidence with 0s, or any of the in-built ggplot2 options such as "log10" log10(x), "log1p" log(x+1), and "sqrt" sqrt(x) (check

all possible options using ?scale_y_continuous).

title Optional title of the plot.

var_label Character with a custom name for the case or covariate variable.

ylab Label for the y-axis. xlab Label for the x-axis.

palette GHR, RColorBrewer or colorspace palette. Use "-" before the palette name

(e.g., "-Reds") to reverse it.

centering Numerical or "median", defaults to NULL. If set, it centers the palette on that

value.

Value

A ggplot2 heatmap plot.

plot_map 17

```
area = "micro_code",
             aggregate_space = "meso_code",
             palette = "Blue-Red")
# Case count heatmap with log scale
plot_heatmap(dengue_MS,
             var = "dengue_cases",
             time = "date",
             type = "counts",
             area = "micro_code",
             palette = "Reds",
             title = "Dengue counts",
             var_label = "Dengue \ncounts",
             transform = "log10p1")
# Case incidence (for 1,000 persons) heatmap with space aggregation
plot_heatmap(dengue_MS,
             var = "dengue_cases",
             time = "date",
             type = "inc",
             pop = "population",
             pt = 1000,
             area = "micro_code",
             aggregate_space = "meso_code",
             palette = "Purp")
```

plot_map

Choropleth map

Description

Plots a choropleth map of covariates, case counts, or incidence rates.

Usage

```
plot_map(
   data,
   var,
   time,
   type = "cov",
   pop = NULL,
   pt = 1e+05,
   area = NULL,
   map = NULL,
   map_area = NULL,
   by_year = NULL,
   aggregate_time = "year",
   aggregate_time_fun = "mean",
   transform = "identity",
```

18 plot_map

```
title = NULL,
var_label = NULL,
palette = NULL,
centering = NULL,
bins = NULL,
bins_method = "quantile",
bins_label = NULL,
...
)
```

Arguments

data Data frame containing equally spaced (daily, weekly, monthly) covariate or case

observations for one or multiple locations.

var Name of the column identifying the variable to be plotted.

time Name of the variable that identifies the temporal dimension of the data frame.

Its values must be in date format ("yyyy-mm-dd") representing the day of observation for daily data, the first day of the week for weekly, or the first day of

the month for monthly observations.

type Character that specifies the type of variable in var. Possible values include

'cov' (covariate, default), 'counts' (case counts), and 'inc' (case incidence). If

type='inc', pop is required.

pop Character identifying the variable name for population. Only needed if type='inc'.

pt Scale of the person-time (default 100,000) for incidence rates.

Name of variable that identifies the different locations (e.g., areal units) for

which a time series is available.

map Name of the sf object corresponding to the spatial unit specified in 'area'.

map_area Name of the variable that identifies the different locations (e.g., areal units) in

the map object. If not specified, it assumes the same name as in area.

by_year Deprecated. Use 'aggregate_time' instead.

aggregate_time Temporal scale for visualization and aggregation. Options include "all" (across

all time points) and "year" (default).

aggregate_time_fun

Character indicating the function to be used in the aggregation over time for type="cov". Options are "mean" (default), "median", "sum". For case counts

and incidence, "sum" is always applied.

transform Character, defaults to "identity" (i.e., no transformation). Transforms the color

ramp for better visualization. Useful options include "log10p1" log10(x+1) for case counts and incidence with 0s, or any of the in-built ggplot2 options such as "log10" log10(x), "log1p" log(x+1), and "sqrt" sqrt(x) (check all possible

options using ?scale_y_continuous).

title Optional title of the plot.

var_label Character with a custom name for the case or covariate variable.

palette GHR, RColorBrewer or colorspace palette. Use "-" before the palette name

(e.g., "-Reds") to reverse it.

plot_map 19

Numerical or "median", defaults to NULL. If set, it centers the palette on that value.

Number of bins for categorization of numerical variables. Defaults to NULL (no binning).

Method to compute the bins, only used when bins is not NULL. Possible values are "quantile" (default) and "equal".

Defining labels for the bins. They must have the same length as the number of bins. Defaults to NULL (default interval labels).

Additional arguments to be passed to geom_sf. Possible values include colour (e.g., colour="black"), linewidth (e.g., linewidth=0.1), linetype (e.g., linetype=2), and alpha (e.g., alpha=0.8).

Value

A ggplot2 choropleth map.

```
# Load data
library("sf")
data("dengue_MS")
data("map_MS")
# Temporal average of a covariate
plot_map(data = dengue_MS,
        var = "tmin",
         time = "date",
         type = "cov",
         area = "micro_code",
        map = map_MS,
         map_area = "code",
         aggregate_time = "all",
         aggregate_time_fun = "mean",
         palette ="Reds",
         var_label= "Min Temp.")
# Categorical covariate
plot_map(data = dengue_MS,
         var = "biome_name",
         time = "date",
        area = "micro_code",
        aggregate_time = "all",
        map = map_MS,
        map_area = "code";
         palette ="Viridis"
         var_label= "Biome")
# Case counts by year (log)
dengue_MS |>
 plot_map(var = "dengue_cases",
```

20 plot_multiple

```
time = "date",
           type = "counts",
           area = "micro_code",
           pop = "population",
           map = map_MS,
           map_area = "code",
           palette = "Reds",
           transform = "log10p1")
# Case incidence by year, binned
plot_map(dengue_MS,
         var = "dengue_cases",
         type = "inc",
         time = "date",
         area = "micro_code",
         pop = "population",
         pt = 1000,
         map = map_MS,
         map_area = "code",
         bins = 5,
         palette = "Viridis")
```

plot_multiple

Multiple plot

Description

Produces a list of multiple plots of the same type, each representing one variable.

Usage

```
plot_multiple(plot_function, ...)
```

Arguments

```
plot_function Indicates which of the plot types to use. Options are: 'plot_timeseries', 'plot_heatmap', 'plot_seasonality', and 'plot_map'.
```

. . . Additional arguments to pass to the plotting function.

Details

Variable names, types, labels and palette can be customized for each plot, the rest of parameters will be the same for all variables (options depend on the chosen plot type).

Value

A list of the different generated plots.

plot_multiple 21

See Also

```
plot_compare, plot_combine
```

```
# Load data
library("sf")
data("dengue_MS")
data("map_MS")
plots <- plot_multiple(</pre>
 plot_function = plot_timeseries,
 data = dengue_MS,
 var = c("dengue_cases", "dengue_cases", "tmax"),
 type = c("counts", "inc", "cov"),
 pop = "population",
 var_label = c("Dengue Cases", "Dengue inc", "Max Temp"),
 palette = c("blue", "red", "darkgreen"),
 time = "date",
 area = "micro_code",
 facet = TRUE)
# Acess individual plots
print(plots[[1]])
# Multiple heatmap plots
plots <- plot_multiple(</pre>
 plot_function = plot_heatmap,
 data = dengue_MS,
 var = c("dengue_cases", "dengue_cases", "tmax"),
 type = c("counts", "inc", "cov"),
 pop = "population",
 var_label = c("Dengue Cases", "Dengue inc", "Max Temp"),
 palette = c("Blues", "Reds", "BrBG"),
 time = "date",
 area = "micro_code")
# Multiple seasonality plots
plots <- plot_multiple(</pre>
 plot_function = plot_seasonality,
 data = dengue_MS,
 var = c("dengue_cases", "dengue_cases", "tmax"),
 type = c("counts", "inc", "cov"),
 pop = "population",
 var_label = c("Dengue Cases", "Dengue inc", "Max Temp"),
 palette = c("Blues", "Reds", "BrBG"),
 time = "date",
 area = "micro_code")
# Multiple map plots
plots <- plot_multiple(</pre>
 plot_function = plot_map,
```

22 plot_seasonality

```
data = dengue_MS,
var = c("dengue_cases", "dengue_cases", "tmax"),
type = c("counts", "inc", "cov"),
pop = "population",
var_label = c("Dengue Cases", "Dengue inc", "Max Temp"),
palette = c("Reds", "Blues", "Viridis"),
map = map_MS,
map_area = "code",
time = "date",
area = "micro_code")
```

plot_seasonality

Seasonality plot

Description

Plots yearly time series of covariates, case counts, or incidence rates to explore seasonality patterns.

Usage

```
plot_seasonality(
  data,
  var,
  time,
  type = "cov",
  pop = NULL,
  pt = 1e+05,
  area = NULL,
  aggregate_space = NULL,
  aggregate_time = "month",
  aggregate_space_fun = "mean",
  aggregate_time_fun = "mean",
  transform = "identity",
  title = NULL,
  var_label = NULL,
 ylab = NULL,
 xlab = NULL,
  free_y_scale = FALSE,
  palette = "IDE1"
)
```

Arguments

data

Data frame containing equally spaced (daily, weekly, monthly) covariate or disease case observations for one or multiple locations.

var

Name of the column identifying the variable to be plotted.

plot_seasonality 23

time Name of the variable that identifies the temporal dimension of the data frame.

Its values must be in date format ("yyyy-mm-dd") representing the day of observation for daily data, the first day of the week for weekly, or the first day of

the month for monthly observations.

type Character that specifies the type of variable in var. Possible values include

'cov' (covariate, default), 'counts' (case counts), and 'inc' (case incidence). If

type='inc', pop is required.

pop Character identifying the variable name for population. Only needed if type='inc'.

pt Scale of the person-time (default 100,000) for incidence rates.

area Name of variable that identifies the different locations (e.g., areal units) for

which a time series is available.

aggregate_space

Name of variable used to define spatial aggregation groups.

aggregate_time Temporal scale used to perform temporal aggregation. Options are: "week"

(ISO 8601), "month", "year".

aggregate_space_fun

Character indicating the function to be used in the aggregation over space for type="cov". Options are "mean" (default), "median", "sum". For case counts

and incidence, "sum" is always applied.

aggregate_time_fun

Character indicating the function to be used in the aggregation over time for type="cov". Options are "mean" (default), "median", "sum". For case counts

and incidence, "sum" is always applied.

transform Character, defaults to "identity" (i.e., no transformation). Transforms the y-axis

for better visualization. Useful options include "log10p1" log10(x+1) for case counts and incidence with 0s, or any of the in-built ggplot2 options such as "log10" log10(x), "log1p" log(x+1), and "sqrt" sqrt(x) (check all possible

options using ?scale_y_continuous).

title Optional title of the plot.

var_label Character with a custom name for the case or covariate variable.

ylab Label for the y-axis. xlab Label for the x-axis.

free_y_scale If TRUE, the y-axis scale is free in each facet.

palette GHR, RColorBrewer or colorspace palette. Use "-" before the palette name

(e.g., "-Reds") to reverse it.

Value

A ggplot2 seasonality plot.

```
# Load data
data("dengue_MS")
```

```
# Seasonality plot of a covariate with space aggregation
plot_seasonality(dengue_MS,
                 var = "tmax",
                 time = "date",
                 var_label = "Max temp.",
                 type = "cov",
                 area = "micro_code",
                 aggregate_space = "region_code")
# Plot case counts (log scale) with space aggregation
plot_seasonality(dengue_MS,
                  var = "dengue_cases",
                  time = "date",
                  type = "counts",
                  area = "micro_code",
                  aggregate_space = "meso_code",
                  transform = "log10p1",
                  var_label = "Monthly Dengue Cases",
                  xlab = "Month",
                  ylab = "Number of cases",
                  free_y_scale = TRUE)
# Seasonality plot of incidence
plot_seasonality(dengue_MS,
                 var = "dengue_cases",
                 time = "date",
                 type = "inc",
                 pop = "population",
                 area = "micro_code",
                 pt = 1000,
                 title = "Monthly Dengue Incidence",
                 palette = "Reds")
```

plot_timeseries

Time series plot

Description

Plots time series of covariates, case counts, or incidence rates.

Usage

```
plot_timeseries(
  data,
  var,
  time,
  type = "cov",
  pop = NULL,
  pt = 1e+05,
```

```
area = NULL,
aggregate_space = NULL,
aggregate_time = NULL,
aggregate_space_fun = "mean",
aggregate_time_fun = "mean",
facet = FALSE,
highlight = NULL,
transform = "identity",
title = NULL,
var_label = NULL,
legend = NULL,
ylab = NULL,
xlab = NULL,
free_y_scale = FALSE,
palette = NULL
```

Arguments

data	Data frame containing equally spaced (daily, weekly, monthly) covariate or dis-
	ease case observations for one or multiple locations.

var Name of the column identifying the variable to be plotted.

time Name of the variable that identifies the temporal dimension of the data frame.

Its values must be in date format ("yyyy-mm-dd") representing the day of observation for daily data, the first day of the week for weekly, or the first day of

the month for monthly observations.

type Character that specifies the type of variable in var. Possible values include

'cov' (covariate, default), 'counts' (case counts), and 'inc' (case incidence). If

type='inc', pop is required.

pop Character identifying the variable name for population. Only needed if type='inc'.

pt Numerical only used for type='inc'. It represents the scale of the person-time

(default 100,000) for incidence rates.

area Name of variable that identifies the different locations (e.g., areal units) for

which a time series is available.

aggregate_space

Name of variable used to define spatial aggregation groups.

aggregate_time Temporal scale used to perform temporal aggregation. Options are: "week"

(ISO 8601), "month", "year".

 ${\tt aggregate_space_fun}$

Character indicating the function to be used in the aggregation over space for type="cov". Options are "mean" (default), "median", "sum". For case counts and incidence, "sum" is always applied.

aggregate_time_fun

Character indicating the function to be used in the aggregation over time for type="cov". Options are "mean" (default), "median", "sum". For case counts and incidence, "sum" is always applied.

facet If TRUE a separate time series for each space unit is plotted in different facets.

highlight ID of the area to be highlighted. Using this option will only color the selected

spatial unit and set all the rest to grey.

transform Character, defaults to "identity" (i.e., no transformation). Transforms the y-axis

for better visualization. Useful options include "log10p1" log10(x+1) useful for case counts and incidence with 0s, or any of the in-built ggplot2 options such as "log10" log10(x), "log1p" log(x+1), and "sqrt" sqrt(x) (check all

possible options using ?scale_y_continuous).

title Optional title of the plot.

var_label Character with a custom name for the case or covariate variable.

legend Character with a custom name for the legend.

ylab Label for the y-axis. xlab Label for the x-axis.

free_y_scale Logical, default FALSE. Allows different scales in the y_axis when facets are

used.

palette GHR, RColorBrewer or colorspace palette (e.g. "Purp"). Single R colors in

colors() or hex codes can be used for single time series or facets. Use "-" before the palette name (e.g., "-Reds") to reverse it. Defaults to a dark green when area is NULL, when facet is TRUE or when highlight is used (i.e.

single time series), otherwise defaults to the "IDE2" palette.

Value

A ggplot2 time series plot.

See Also

plot_timeseries2 for dual-axis time series plots.

```
aggregate_space = "meso_code",
                aggregate_space_fun = "mean",
                facet = TRUE,
                var_label= "Minimum Temperature",
                palette = "violetred")
# Plotting counts, highlight a single area
plot_timeseries(dengue_MS,
                var = "dengue_cases",
                time = "date",
                type = "counts",
                pop = "population"
                area = "micro_code"
                title= "Dengue cases",
                highlight = "50001")
# Plot disease counts (log scale) with temporal and spatial aggregation
plot_timeseries(dengue_MS,
                var = "dengue_cases",
                time = "date",
                type = "counts",
                area = "micro_code",
                aggregate_space = "meso_code",
                aggregate_time = "year",
                title = "Yearly Cases",
                transform = "log10")
# Plot incidence for 1,000 people with a Brewer palette and log y axis
plot_timeseries(dengue_MS,
                var = "dengue_cases",
                time = "date",
                type = "inc",
                pop = "population",
                area = "micro_code",
                pt = 1000,
                transform = "log10p1")
```

plot_timeseries2

Time series plot of two variables in two different axes

Description

Plots dual-axis time series of two covariates, case counts, or incidence rates.

Usage

```
plot_timeseries2(
  data,
  var,
  time,
```

```
type = c("cov", "cov"),
  pop = NULL,
 pt = 1e+05,
 area = NULL,
  aggregate_space = NULL,
  aggregate_time = NULL,
  aggregate_space_fun = "mean",
  aggregate_time_fun = "mean",
  align = "min",
  title = NULL,
 var_label = NULL,
 legend = "Variable",
 ylab = NULL,
 xlab = NULL,
  free_y_scale = FALSE,
 palette = c("#168c81", "#B98AFB"),
 alpha = 0.9
)
```

Arguments

data	Data frame containing equally spaced (daily, weekly, monthly) covariate or disease case observations for one or multiple locations.	
var	A character vector of length 2 (left axis, right axis) identifying the variables to be plotted.	
time	Name of the variable that identifies the temporal dimension of the data frame. Its values must be in date format ("yyyy-mm-dd") representing the day of observation for daily data, the first day of the week for weekly, or the first day of the month for monthly observations.	
type	A character vector of length 2 (left axis, right axis) that specifies the types of variable in var. Possible values include 'cov' (covariate, default), 'counts' (case counts), and 'inc' (case incidence). If type='inc', pop is required.	
pop	$Character\ identifying\ the\ variable\ name\ for\ population.\ Only\ needed\ if\ {\tt type='inc'}.$	
pt	Numerical only used for type='inc'. It represents the scale of the person-time (default 100,000) for incidence rates.	
area	Name of variable that identifies the different locations (e.g., areal units) for which a time series is available.	
aggregate_space		
	Name of variable used to define spatial aggregation groups.	
aggregate_time	Temporal scale used to perform temporal aggregation. Options are: "week" (ISO 8601), "month", "year".	
aggregate_space_fun		
	Character indicating the function to be used in the aggregation over space for	

and incidence, "sum" is always applied.

type="cov". Options are "mean" (default), "median", "sum". For case counts

aggregate_time_fun Character indicating the function to be used in the aggregation over time for type="cov". Options are "mean" (default), "median", "sum". For case counts and incidence, "sum" is always applied. align Options to align the two plots. Defaults to "min", which forces the minimum of the two variables to be aligned. Other options include "mean" and "median". title Optional title of the plot. var_label A character vector of length 2 (left axis, right axis) with custom names for the case or covariate variable. Character with a custom name for the legend. legend A character vector of length 2 (left, right) for the y-axes. ylab Label for the x-axis. xlab free_y_scale Logical, default FALSE. Allows different scales in the y_axis when facets are A character vector of length 2 (left axis, right axis) indicating the colours (R or palette hex codes) to use for each of the two variables).

Numerical between 0 and 1 determining the transparency of the lines.

Value

alpha

A dual-axis ggplot2 time series plot.

See Also

plot_timeseries for single-axis time series plots.

```
# Load data
data("dengue_MS")
data("dengue_SP")
# Plotting two covariates with temporal aggregation, align using the mean
plot_timeseries2(dengue_SP,
                 var = c("temp_med", "precip_tot"),
                 time = "date",
                 align = "mean",
                 aggregate_time = "month")
# Plotting case incidence and a covariate with temporal aggregation
# and customized colours and labels
plot_timeseries2(dengue_SP,
                 var = c("cases", "precip_tot"),
                 type = c("inc", "cov"),
                 var_label = c("Incidence", "Precipitation"),
                 title = "Precipitation and dengue incidence in Sao Paulo",
                 time = "date",
                 pop = "pop",
```

```
aggregate_time = "month",
    palette = c("darkgreen", "royalblue"),
    alpha = 0.8)

# Plotting case incidence and a covariate with spatial aggregation
plot_timeseries2(dengue_MS,
    var = c("dengue_cases", "pdsi"),
    type = c("inc", "cov"),
    pop = "population",
    time = "date",
    area = "micro_code",
    aggregate_space = "meso_code")
```

Index

```
* datasets
    dengue_MS, 4
    dengue_SP, 6
    map\_MS, 7
aggregate_cases, 2
aggregate_cov, 3
dengue_MS, 4
dengue_SP, 6
\mathsf{GHR\_palette}, \textcolor{red}{6}
GHR_palettes (GHR_palette), 6
map_MS, 7
plot_bivariate, 8
plot_combine, 9, 12, 21
plot_compare, 10, 11, 21
plot_correlation, 13
plot_heatmap, 15
plot_map, 17
plot_multiple, 10, 12, 20
plot_seasonality, 22
plot\_timeseries, 24, 29
plot_timeseries2, 26, 27
```