Package 'FlowRegEnvCost'

January 20, 2025

Type Package Title The Environmental Costs of Flow Regulation Version 0.1.1 Author Silvestre Garcia de Jalon; Javier Martinez-Lopez; Marta Gonzalez del Tanago; Carlos Alonso; Diego Garcia de Jalon Maintainer Javier Martinez-Lopez <javi.martinez.lopez@gmail.com> **Description** An application to calculate the daily environmental costs of river flow regulation by dams based on García de Jalon et al. 2017 <doi:10.1007/s11269-017-1663-0>. **Depends** R (>= 2.10) URL https://github.com/garciadejalon/FlowRegEnvCost BugReports https://github.com/garciadejalon/FlowRegEnvCost/issues License MIT + file LICENSE **Encoding** UTF-8 LazyData true RoxygenNote 6.0.1 Imports zoo

NeedsCompilation no

Repository CRAN

Date/Publication 2017-10-18 12:49:29 UTC

Contents

udm_range	2
dm_range_plot	2
laily_cost	3
laily_cost_plot	4
lowdata	5
mpact_reg	5
mpact_reg_multi_plot	6
mpact_reg_plot	7
summary_flow	7

Index

adm_range

Description

Calculates the admissible range of flow variability

Usage

```
adm_range(First_year, Last_year, Year_impact)
```

Arguments

First_year	First year to consider in the analysis starting on October 1st (e.g.: First_year = 1964)
Last_year	First year to consider in the analysis finishing on September 30th (e.g.: Last_year = 2011)
Year_impact	Year when the human impact started (the construction of a dam) (e.g.: Year_impact = 1988)

Value

Calculates the admissible range of flow variability based on the flow data during the pre-impact period.

Examples

```
data(flowdata)
adm_range(First_year=1964, Last_year=2011, Year_impact=1988)
```

adm_range_plot Plots the adm	missible range of flow variability
------------------------------	------------------------------------

Description

Plots the admissible range of flow variability

Usage

```
adm_range_plot(River_name, First_year, Last_year, Year_impact)
```

9

daily_cost

Arguments

River_name	Name of the river as character (e.g.: River_name = "Esla")
First_year	First year to consider in the analysis starting on October 1st (e.g.: First_year = 1964)
Last_year	First year to consider in the analysis finishing on September 30th (e.g.: Last_year = 2011)
Year_impact	Year when the human impact started (the construction of a dam) (e.g.: Year_impact = 1988)

Value

Plots the admissible range of flow variability based on the flow data during the pre-impact period.

Examples

```
data(flowdata)
adm_range_plot(River_name = "Esla", First_year=1964, Last_year=2011, Year_impact=1988)
```

dai	1., ,	- net
ua1.	ту_с	cost

Calculates the daily environmental costs of flow regulation

Description

Calculates the daily environmental costs of flow regulation

Usage

Arguments

First_year	First year to consider in the analysis starting on October 1st (e.g.: First_year = 1964)
Last_year	First year to consider in the analysis finishing on September 30th (e.g.: Last_year = 2011)
Year_evaluated	Year when the environmental impact is evaluated (e.g.: Year_evaluated = 2010)
Year_impact	Year when the human impact started (the construction of a dam) (e.g.: Year_impact = 1988)
a_low	Coefficient a of Low-flow impact of function ku (e.g.: a_low = 0.05)
a_high	Coefficient a of High-flow impact of function ku (e.g.: a_high = 0.01)
b_low	Coefficient b of Low-flow impact of function ku (e.g.: b_low = 2)
b_high	Coefficient b of High-flow impact of function ku (e.g.: b_high = 2)

Value

Calculates the daily environmental costs of flow regulation for a specific year evaluated.

Examples

```
data(flowdata)
daily_cost(First_year=1964, Last_year=2011,Year_evaluated=2010,
Year_impact=1988, a_low = 0.05, a_high = 0.01, b_low = 2, b_high = 2)
```

daily_cost_plot Plots the daily environmental costs of flow regulation

Description

Plots the daily environmental costs of flow regulation

Usage

```
daily_cost_plot(River_name, First_year, Last_year, Year_evaluated, Year_impact,
    a_low, a_high, b_low, b_high)
```

Arguments

River_name	Name of the river written as character (e.g.: River_name = "Esla")
First_year	First year to consider in the analysis starting on October 1st (e.g.: First_year = 1964)
Last_year	First year to consider in the analysis finishing on September 30th (e.g.: Last_year = 2011)
Year_evaluated	Year when the environmental impact is evaluated (e.g.: Year_evaluated = 2010)
Year_impact	Year when the human impact started (the construction of a dam) (e.g.: Year_impact = 1988)
a_low	Coefficient a of Low-flow impact of function ku (e.g.: a_low = 0.05)
a_high	Coefficient a of High-flow impact of function ku (e.g.: a_high = 0.01)
b_low	Coefficient b of Low-flow impact of function ku (e.g.: b_low = 2)
b_high	Coefficient b of High-flow impact of function ku (e.g.: b_high = 2)

Value

Plots the daily environmental costs of flow regulation for a specific year evaluated.

Examples

```
data(flowdata)
daily_cost_plot(River_name = "Esla", First_year=1964, Last_year=2011,
Year_evaluated=2010, Year_impact=1988, a_low = 0.05, a_high = 0.01,
b_low = 2, b_high = 2)
```

flowdata

Description

A dataset containing daily river water flow data for the Esla river at the Riaño dam (Northern Spain) from 01/10/1964 to 30/09/2011. The library adds missing days within the whole period automatically with NA flow values when you enter your own time series data.

Usage

flowdata

Format

An example data frame with 17166 rows and 2 variables:

Date Date (dd/mm/yyyy)

Flow Water flow, in m³/s

Source

Source: https://doi.org/10.1007/s11269-017-1663-0

<pre>impact_reg</pre>	Calculates the daily environmental impact of flow regulation (high-
	and low-flow impact)

Description

Calculates the daily environmental impact of flow regulation (high- and low-flow impact)

Usage

```
impact_reg(First_year, Last_year, Year_evaluated, Year_impact)
```

Arguments

First_year	First year to consider in the analysis starting on October 1st (e.g.: First_year = 1964)
Last_year	First year to consider in the analysis finishing on September 30th (e.g.: Last_year = 2011)
Year_evaluated	Year when the environmental impact is evaluated (e.g.: Year_evaluated = 2010)
Year_impact	Year when the human impact started (the construction of a dam) (e.g.: Year_impact = 1988)

Value

Calculates the daily environmental impact of flow regulation (high- and low-flow impact).

Examples

```
data(flowdata)
impact_reg(First_year=1964, Last_year=2011,Year_evaluated=2010,Year_impact=1988)
```

Description

Plots the daily environmental impact of flow regulation for multiple years

Usage

```
impact_reg_multi_plot(Row, Column, sp_years, River_name, First_year, Last_year,
Year_impact)
```

Arguments

Row	Number of rows in the figure to compare multiple years in separated graphs (e.g.: Row = 2)
Column	Number of columns in the figure to compare multiple years in separated graphs (e.g.: Column = 5)
sp_years	A vector specifying the years to be plotted (e.g.: $sp_years = c(1965, 1966, 1967, 1968, 1969, 2006, 2007, 2008)$
River_name	Name of the river written as character (e.g.: River_name = "Esla")
First_year	First year to consider in the analysis starting on October 1st (e.g.: First_year = 1964)
Last_year	First year to consider in the analysis finishing on September 30th (e.g.: Last_year = 2011)
Year_impact	Year when the human impact started (the construction of a dam) (e.g.: Year_impact = 1988)

Value

Plots the daily environmental impact of flow regulation for multiple years.

Examples

```
data(flowdata)
impact_reg_multi_plot(Row = 1,Column = 2,
sp_years = c(1965,2010),
River_name = "Esla", First_year=1964, Last_year=2011,
Year_impact=1988)
```

6

 $impact_reg_plot$

Description

Plots the daily environmental impact of flow regulation (high- and low-flow impact)

Usage

impact_reg_plot(River_name, First_year, Last_year, Year_evaluated, Year_impact)

Arguments

River_name	Name of the river written as character (e.g.: River_name = "Esla")
First_year	First year to consider in the analysis starting on October 1st (e.g.: First_year = 1964)
Last_year	First year to consider in the analysis finishing on September 30th (e.g.: Last_year = 2011)
Year_evaluated	Year when the environmental impact is evaluated (e.g.: Year_evaluated = 2010)
Year_impact	Year when the human impact started (the construction of a dam) (e.g.: Year_impact = 1988)

Value

Plots the daily environmental impact of flow regulation (high- and low-flow impact).

Examples

```
data(flowdata)
impact_reg_plot(River_name = "Esla", First_year=1964,
Last_year=2011, Year_evaluated=2010, Year_impact=1988)
```

summary_flow	Provides a summary of flow data during the pre-impact period	эd
--------------	--	----

Description

Provides a summary of flow data during the pre-impact period

Usage

```
summary_flow(First_year, Last_year, Year_impact)
```

Arguments

First_year	First year to consider in the analysis starting on October 1st (e.g.: First_year = 1964)
Last_year	First year to consider in the analysis finishing on September 30th (e.g.: Last_year = 2011)
Year_impact	Year when the human impact started (the construction of a dam) (e.g.: Year_impact = 1988)

Value

Provides a dataframe on a daily basis of mean, min, p10, p25, median, p75, p90 and max values during the pre-impact period.

Examples

```
data(flowdata)
summary_flow(First_year=1964, Last_year=2011, Year_impact=1988)
```

Index

* datasets flowdata, 5

adm_range, 2
adm_range_plot, 2

daily_cost, 3
daily_cost_plot, 4

flowdata, 5

impact_reg, 5
impact_reg_multi_plot, 6
impact_reg_plot, 7

summary_flow, 7