Package 'FactorAssumptions'

January 20, 2025

Type Package

Title Set of Assumptions for Factor and Principal Component Analysis

Version 2.0.1

Maintainer Jose Storopoli <jstoropoli@protonmail.com>

Description Tests for Kaiser-Meyer-Olkin (KMO) and communalities in a dataset. It provides a final sample by removing variables in a iterable manner while keeping account of the variables that were removed in each step. It follows the best practices and assumptions according to Hair, Black, Babin & Anderson (2018, ISBN:9781473756540).

License GPL-3

URL https://github.com/storopoli/FactorAssumptions

BugReports https://github.com/storopoli/FactorAssumptions/issues

Depends R (>= 3.6.0), MASS, psych Suggests knitr, rmarkdown, testthat (>= 2.1.0) VignetteBuilder knitr Encoding UTF-8 RoxygenNote 7.0.2 NeedsCompilation no Author Jose Storopoli [aut, cre] (<https://orcid.org/0000-0002-0559-5176>) Repository CRAN Date/Publication 2022-03-08 13:20:08 UTC

Contents

communalities_optimal_solution	2
kmo	3
kmo_optimal_solution	4

6

Index

```
communalities_optimal_solution
```

Calculates the Optimal Solution for Communalities in a Dataframe

Description

communalities_optimal_solution() call upon either the principal or fa functions from psych package to iterate over the variables of a dataframe.

Usage

```
communalities_optimal_solution(
   df,
   nfactors,
   type,
   rotate = "varimax",
   fm = "minres",
   squared = TRUE
)
```

Arguments

df	a dataframe with only int or num type of variables
nfactors	number of factors to extract in principal components or factor analysis
type	either principal for Principal Components Analysis or fa for Factor Analysis
rotate	rotation to be employed (default is <i>varimax</i>). "none", "varimax", "quartimax", "bentlerT", "equamax", "varimin", "geominT" and "bifactor" are orthogonal ro- tations. "Promax", "promax", "oblimin", "simplimax", "bentlerQ, "geominQ" and "biquartimin" and "cluster" are possible oblique transformations of the so- lution. The default is to do a oblimin transformation, although versions prior to 2009 defaulted to varimax. SPSS seems to do a Kaiser normalization be- fore doing Promax, this is done here by the call to "promax" which does the normalization before calling Promax in GPArotation.
fm	Factoring method fm="minres" (default) will do a minimum residual as will fm="uls". Both of these use a first derivative. fm="ols" differs very slightly from "minres" in that it minimizes the entire residual matrix using an OLS procedure but uses the empirical first derivative. This will be slower. fm="wls" will do a weighted least squares (WLS) solution, fm="gls" does a generalized weighted least squares (GLS), fm="pa" will do the principal factor solution, fm="ml" will do a maximum likelihood factor analysis. fm="minchi" will minimize the sample size weighted chi square when treating pairwise correlations with different number of subjects per pair. fm="minrank" will do a minimum rank factor analysis. "old.min" will do minimal residual the way it was done prior to April, 2017 (see discussion below). fm="alpha" will do alpha factor analysis as described in Kaiser and Coffey (1965)
squared	TRUE if matrix is squared (such as adjacency matrices), FALSE otherwise

kmo

Details

If finds any individual communality below the optimal value of 0.5 then removes the lowest communality value variable until no more variable has not-optimal communality values.

Value

A list with

- 1. df A dataframe that has reached its optimal solution in terms of KMO values
- 2. removed A list of removed variables ordered by the first to last removed during the procedure
- 3. loadings A table with the communalities loadings from the variables final iteration
- 4. results Results of the final iteration of either the principal or fa functions from psych package

See Also

principal the PCA function from psych and fa the Factor Analysis function from psych

Examples

```
set.seed(123)
df <- as.data.frame(matrix(rnorm(100*10, 1, .5), ncol=10))
communalities_optimal_solution(df, nfactors = 2,type = "principal", squared = FALSE)</pre>
```

kmo

Calculates the Kayser-Meyer-Olkin (KMO)

Description

kmo() handles both positive definite and not-positive definite matrix by employing the *Moore-Penrose* inverse (pseudoinverse)

Usage

kmo(x, squared = TRUE)

Arguments

x	a matrix or dataframe
squared	TRUE if matrix is squared (such as adjacency matrices), FALSE otherwise

Value

A list with

- 1. overall Overall KMO value
- 2. individual Individual KMO's dataframe
- 3. AIS Anti-image Covariance Matrix
- 4. AIR Anti-image Correlation Matrix

Examples

```
set.seed(123)
df <- as.data.frame(matrix(rnorm(100*10, 1, .5), ncol=10))
kmo(df, squared = FALSE)</pre>
```

kmo_optimal_solution Calculates the Optimal Solution for Kayser-Meyer-Olkin (KMO) in a Dataframe

Description

kmo_optimal_solution() call upon the kmo function to iterate over the variables of a dataframe.

Usage

```
kmo_optimal_solution(df, squared = TRUE)
```

Arguments

df	a dataframe with only int or num type of variables
squared	TRUE if matrix is squared (such as adjacency matrices), FALSE otherwise

Details

If finds any individual KMO's below the optimal value of 0.5 then removes the lowest KMO value variable until no more variable has not-optimal KMO values.

Value

A list with

- 1. df A dataframe that has reached its optimal solution in terms of KMO values
- 2. removed A list of removed variables ordened by the first to last removed during the procedure
- 3. kmo_results Results of the final iteration of the kmo function

See Also

kmo for kmo computation function

kmo_optimal_solution

Examples

```
set.seed(123)
df <- as.data.frame(matrix(rnorm(100*10, 1, .5), ncol=10))
kmo_optimal_solution(df, squared = FALSE)</pre>
```

Index

 $\texttt{communalities_optimal_solution, 2}$

fa, <u>2</u>, <u>3</u>

kmo, 3, 4
kmo_optimal_solution, 4

principal, 2, 3