Package ‘FIT’

January 20, 2025

Title Transcriptomic Dynamics Models in Field Conditions
Version 0.0.6

Description Provides functionality for constructing
statistical models of transcriptomic dynamics in field conditions.
It further offers the function to predict expression of a gene given
the attributes of samples and meteorological data. Nagano, A. J., Sato,
Y., Mihara, M., Antonio, B. A., Motoyama, R., Itoh, H., Naganuma, Y., and
Izawa, T. (2012). <doi:10.1016/j.cell.2012.10.048>. Iwayama, K., Aisaka, Y.,
Kutsuna, N., and Nagano, A. J. (2017). <doi:10.1093/bioinformatics/btx049>.

Depends R (>=3.2.2)

Imports methods, Repp (>=0.11.2), XML, gglasso (>= 1.4), MASS
License MPL (>=2) | file LICENSE

LazyData true

LinkingTo Rcpp, ReppEigen (>=0.3.2.1.2)

SystemRequirements C++11

NeedsCompilation yes

RoxygenNote 6.0.1

Author Koji Iwayama [cre],
Yuri Aisaka [aut]

Maintainer Koji Iwayama <fieldtranscriptome@gmail.com>
Suggests knitr, rmarkdown

VignetteBuilder knitr

Repository CRAN

Date/Publication 2019-01-07 14:50:15 UTC

Contents

convertattribute L .. e e e e e e e
CONVEIL.EXPIESSION . . . v v v v v ot e e e e e e e e e e e e e e e e
convert.weather e

https://doi.org/10.1016/j.cell.2012.10.048
https://doi.org/10.1093/bioinformatics/btx049

2 convert.attribute
convert.weight e e e e e e 4
FIT . . e 4
fitmodels 7
INHE . .. e 8
load.attribute e 9
load.eXpression e e e e e e e e 10
load.weather L 10
load.weight e 11
Make.TeCiPe o i e e e e e e e e e 12
make.trivial.weights 13
OPLIM . . . v v e e e e e e e e e e e e e 14
predict e 15
PrediCtion.eIrors v . . e e e e e e e e e 16
train e e e e 17
weather.entries L. 18
Index 19
convert.attribute Converts attribute data from a dataframe into an object.
Description
Converts attribute data from a dataframe into an object.
Usage
convert.attribute(data, sample = NULL)
Arguments
data A dataframe of the attributes of microarray/RNA-seq data.
sample An optional numeric array that designates the samples, that is rows, of the
dataframe to be loaded.
Value

An object that represents the attributes of microarray/RNA-seq data. Internally, the object holds a
dataframe whose number of entries (rows) equals that of the samples.

convert.expression 3

convert.expression converts expression data from a dataframe into an object.

Description

converts expression data from a dataframe into an object.

Usage

convert.expression(data, entries = NULL)

Arguments

data A dataframe of expression data to be loaded.

entries An optional string array that designates the entries of the dataframe to be loaded.
Value

An object that represents the expression data of microarray/RNA-seq. Internally, the object holds a
matrix of size nsamples * ngenes.

convert.weather Converts weather data from a dataframe into an object.

Description

Converts weather data from a dataframe into an object.

Usage

convert.weather(data, entries = IO$weather.entries)

Arguments

data A dataframe of weather data to be converted.

entries An optional string array that designates the entries of the dataframe to be loaded.
Value

An object that reprents the timeseries data of weather factors. Internally, the object holds a dataframe
of size ntimepoints * nfactors.

4 FIT

convert.weight Converts regression weight data from a dataframe into an object.

Description

Converts regression weight data from a dataframe into an object.

Usage

convert.weight(data, entries = NULL)

Arguments

data A dataframe that contains weight data to be loaded.

entries An optional string array that designates the entries of the dataframe to be loaded.
Value

An object that represents the weights Internally, the object holds a matrix of size nsamples *

ngenes.
FIT FIT: a statistical modeling tool for transcriptome dynamics under fluc-
tuating field conditions
Description

Provides functionality for constructing statistical models of transcriptomic dynamics in field condi-
tions. It further offers the function to predict expression of a gene given the attributes of samples
and meteorological data. Nagano, A. J., Sato, Y., Mihara, M., Antonio, B. A., Motoyama, R., Itoh,
H., Naganuma, Y., and Izawa, T. (2012). <doi:10.1016/j.cell.2012.10.048>. Iwayama, K., Aisaka,
Y., Kutsuna, N., and Nagano, A. J. (2017). <doi:10.1093/bioinformatics/btx049>.

Overview

The FIT package is an R implementation of a class of transcriptomic models that relates gene
expressions of plants and weather conditions to which the plants are exposed. (The reader is referred
to [Nagano et al.] for the detail of the class of models concerned.)

By providing (a) gene expression profiles of plants brought up in a field condition, and (b) the
relevant weather history (temperature etc.) of the said field, the user of the package is able to (1)
construct optimized models (one for each gene) for their expressions, and (2) use them to predict
the expressions for another weather history (possibly in a different field).

Below, we briefly explain the construction of the optimized models (“training phase”) and the way
to use them to make predictions (“prediction phase”).

FIT

Model training phase:

The model of [Nagano et al.] belongs to the class of statistical models called “linear models”
and are specified by a set of “parameters” and “(linear regression) coefficients”. The former are
used to convert weather conditions to the “input variables” for a regression, and the latter are then
multiplied to the input variables to form the expectation values for the gene expressions. The
reader is referred to the original article [Nagano et al.] for the formulas for the input variables.
(See also [Iwayama] for a review.)

The training phase consists of three stages:

1. Init: fixes the initial model parameters
2. Optim: optimizes the model parameters
3. Fit: fixes the linear regression coefficients

The user can configure the training phase through a custom data structure (“recipe”), which can
be constructed by using the utility function FIT: :make.recipe().

The role of the first stage Init is to fix the initial values for the model parameters from which the
parameter optimization is performed. At the moment two methods, 'manual’ and 'gridsearch’,
are implemented. With the 'manual’' method the user can simply specify the set of initial values
that he thinks is promising. For the 'gridsearch' method the user discretizes the parameter
space to a grid by providing a finite number of candidate values for each parameter. FIT then
performs a search over the grid for the “best” combinations of the initial parameters.

The second stage Optim is the main step of the model training, and FIT tries to gradually improve
the model parameters using the Nelder-Mead method.

This stage could be run one or more times where each can be run using the method 'none’, '1m’
or 'lasso’. The 'none' method passes the given parameter as-is to the next method in the Optim
pipeline or to the next stage Fit. (Basically, the method is there so that the user can skip the entire
Optim stage, but the method could be used for slightly warming-up the CPU as well.)

The 'Im' method uses the a simple (weighted) linear regression to guide the parameter optimiza-
tion. That is, FIT first computes the “input variables” from the current parameters and associated
weather data, and then finds the set of linear coefficients that best explains the “output variables”
(gene expressions). Finally, the quadratic residual is used as the measure for the error and is fed
back to the Nelder-Mead method.

The 'lasso' method is similar to the 'lm' method but uses the (weighted) Lasso regression
(“linear” regression with an L1-regularization for the regression coefficients) instead of the simple
linear regression. FIT uses the glmnet package to perform the Lasso regression and the strength of
the L1-regularization is fixed via a cross validation. (See cv.glmnet() from the glmnet package.
The Lasso regression is said to suppress irrelevant input variables automatically and tends to create
models with better prediction ability. On the other hand, 'lasso' runs considerably slower than
"Im'.

For example, passing a vector c('1lm', 'lasso') to the argument optim (of make.recipe())
creates a recipe that instructs the Optim stage to (1) first optimize using the '1m' method, (2) and
then fine tunes the parameters using the 'lasso' method.

After fixing the model parameters in the Optim stage, the Fit stage can be used to fix the linear
coefficients of the models. Here, either 'fit.1lm' or 'fit.lasso' can be used to find the “best”
coefficients, the main difference being that the coefficients are penalized by an L1-norm for the
latter. Note that it is perfectly okay to use 'fit.lasso' for the parameters optimized using '1m’.
In order to prepare for the possibly huge variations of expression data as measured by RNA-seq,
FIT provides a way to weight regression penalties from each sample with different weights as in
sum_{s in samples?} (weight_s) (error_s)"2.

6 FIT

Prediction phase: For each gene, the trained model of the previous subsection can be thought of

as a black box that maps the field conditions (weather data), to which a plant containing the gene

is exposed, to its expected expression. FIT provides a simple function FIT: :predict() that does

just this.

FIT::predict() takes as its argument a list of pretrained models as well as actual/hypothetical

plant sample attributes and weather data, and returns the predicted values of gene expressions.

When there is a set of actually measured expressions, an associated function FIT: :prediction.errors())
can be used to check the validity of the predictions made by the models.

Namespece contamination

The FIT package exports fairly ubiquitous names auch as optim, predict etc.\ as its API. Users,
therefore, are advised to load FIT via requireNamespace('FIT') and use its API function with a
namaspace qualifier (e.g.~FIT: :optim()) rather than loading and attaching it via library ('FIT").

Basic usage

See vignettes for examples of actual scripts that use FIT.

References

[Nagano et al.] A.J.~Nagano, et al. “Deciphering and prediction of transcriptome dynamics under
fluctuating field conditions,” Cell~151, 6, 1358—-69 (2012)

[Iwayama] K.~Iwayama, et al. “FIT: statistical modeling tool for transcriptome dynamics under
fluctuating field conditions,” Bioinformatics, btx049 (2017)

Examples

Not run:

The following snippet shows the structure of a typical

driver script of the FIT package.

See vignettes for examples of actual scripts that use FIT.

SR
training
HHHHHHEEEE
discretized parameter space (for 'gridsearch')
grid.coords <- list(
clock.phase = seq(@, 23%60, 1x60),

:
gate.radiation.amplitude = c(-5, 5)
)
create a training recipe
recipe <- FIT::make.recipe(c('temperature', 'radiation'),
init = 'gridsearch',

init.data = grid.coords,
optim = c('1Im"),

fit = 'fit.lasso',
time.step = 10,

opts =

fit. models

list(1lm = list(maxit = 900),
lasso = list(maxit = 1000))
)

names of genes to construct models
genes <- c('0s12g0189300"', '0s02g0724000"')

End(Not run)

Not run:

load training data

training.attribute <- FIT::load.attribute('attribute.2008.txt')
training.weather <- FIT::load.weather('weather.2008.dat', 'weather')
training.expression <- FIT::load.expression('expression.2008.dat', 'ex', genes)

models will be a list of trained models (length: ngenes)
models <- FIT::train(training.expression,
training.attribute,
training.weather,
recipe)

End(Not run)

A
prediction
HHHHEHREHREAR

Not run:

load validation data

prediction.attribute <- FIT::load.attribute('attribute.2009.txt');
prediction.weather <- FIT::load.weather('weather.2009.dat', 'weather')
prediction.expression <- FIT::load.expression('expression.2009.dat', 'ex', genes)

predict

prediction.result <- FIT::predict(models[[1]],
prediction.attribute,
prediction.weather)

End(Not run)

fit.models A raw API for fixing linear regression coefficients.

Description

Note: use train() unless the user is willing to accept breaking API changes in the future.

Usage

init

fit.models(expression, weight, attribute, weather, recipe, models)

Arguments

expression

weight

attribute

weather

recipe

models

Value

An object that represents gene expression data. The object can be created from a
dumped/saved dataframe of size nsamples x ngenes using FIT: : load.expression().
(At the moment it is an instance of a hidden class IO$Attribute, but this may be
subject to change.)

A matrix of size nsamples * ngenes that during regression penalizes errors
from each sample using the formula sum_{s in samples} (weight_s) (error_s)*2.

Note that, unlike for FIT::train(), this argument is NOT optional.

An object that represents the attributes of microarray/RNA-seq data. The object
can be created from a dumped/saved dataframe of size nsamples * nattributes
using FIT::load.attribute(). (At the moment it is an instance of a hidden
class IO$Attribute, but this may be subject to change.)

An object that represents actual or hypothetical weather data with which the
training of models are done. The object can be created from a dumped/saved
dataframe of size ntimepoints * nfactors using FIT::1load.weather(). (At
the moment it is an instance of a hidden class IO$Weather, but this may be
subject to change.)

An object that represents the training protocol of models. A recipe can be cre-
ated using FIT: :make.recipe().

A collection of models being trained as is returnd by FIT: :optim().

A collection of models whose parameters and regression coeffients are optimized.

init

A raw API for initializing model parameters.

Description

Note: use train() unless the user is willing to accept breaking API changes in the future.

Usage

init(expression, weight, attribute, weather, recipe)

load.attribute

Arguments

expression

weight

attribute

weather

recipe

Value

An object that represents gene expression data. The object can be created from a
dumped/saved dataframe of size nsamples * ngenes using FIT: :1load.expression().
(At the moment it is an instance of a hidden class IO$Attribute, but this may be
subject to change.)

A matrix of size nsamples * ngenes that during regression penalizes errors
from each sample using the formula sum_{'s in samples} (weight_s) (error_s)*2.

Note that, unlike for FIT: :train(), this argument is NOT optional.

An object that represents the attributes of a microarray/RNA-seq data. The ob-
ject can be created from a dumped/saved dataframe of size nsamples * nattributes
using FIT::load.attribute(). (At the moment it is an instance of a hidden
class IO$Attribute, but this may be subject to change.)

An object that represents actual or hypothetical weather data with which the
training of models are done. The object can be created from a dumped/saved
dataframe of size ntimepoints * nfactors using FIT::load.weather(). (At
the moment it is an instance of a hidden class IO$Weather, but this may be
subject to change.)

An object that represents the training protocol of models. A recipe can be cre-
ated using FIT: :make.recipe().

A collection of models whose parameters are set by using the 'init' method in the argument

recipe.

load.attribute

Loads attribute data.

Description

Loads attribute data.

Usage

load.attribute(path, variable = NULL, sample = NULL)

Arguments

path

variable

sample

A path of a file that contains attribute data to be loaded. When the file is a load-
able .Rdata, name of the dataframe object in the .Rdata (that actually contains
the relevant data) has to be specified as well.

An optional string that designates the name of a dataframe object that has been
saved in an .Rdata. (See the description of path.)

An optional numeric array that designates the samples, that is rows, of the
dataframe to be loaded.

10 load.weather

Value

An object that represents the attributes of microarray/RNA-seq data. Internally, the object holds a
dataframe whose number of entries (rows) equals that of the samples.

load.expression Loads expression data.

Description

Loads expression data.

Usage

load.expression(path, variable = NULL, entries = NULL)

Arguments
path A path of a file that contains attribute data to be loaded. When the file is a load-
able .Rdata, name of the dataframe object in the .Rdata (that actually contains
the relevant data) has to be specified as well.
variable An optional string that designates the name of a dataframe object that has been
saved in an .Rdata. (See the description of path.)
entries An optional string array that designates the entries of the dataframe to be loaded.
Value

An object that represents the expression data of microarray/RNA-seq. Internally, the object holds a
matrix of size nsamples * ngenes.

load.weather Loads weather data.

Description

Loads weather data.

Usage

load.weather(path, variable = NULL, entries = IO$weather.entries)

load.weight

Arguments

path

variable

entries

Value

11

A path of a file that contains weather data to be loaded. When the file is a load-
able .Rdata, name of the dataframe object in the .Rdata (that actually contains
the relevant data) has to be specified as well.

An optional string that designates the name of a dataframe object that has been
saved in an .Rdata. (See the description of path.)

An optional string array that designates the entries of the dataframe to be loaded.

An object that reprents the timeseries data of weather factors. Internally, the object holds a dataframe
of size ntimepoints * nfactors.

load.weight

Loads regression weight data.

Description

Loads regression weight data.

Usage

load.weight(path, variable = NULL, entries = NULL)

Arguments

path

variable

entries

Value

A path of a file that contains weight data to be loaded. When the file is a loadable
.Rdata, name of the dataframe object in the .Rdata (that actually contains the
relevant data) has to be specified as well.

An optional string that designates the name of a dataframe object that has been
saved in an .Rdata. (See the description of path.)

An optional string array that designates the entries of the dataframe to be loaded.

An object that represents the weights Internally, the object holds a matrix of size nsamples

ngenes.

12 make.recipe

make.recipe Creates a recipe for training models.

Description

Creates a recipe for training models.

Usage
make.recipe(envs, init, optim, fit, init.data, time.step, gate.open.min = 0,
opts = NULL)
Arguments

envs An array of weather factors to be taken into account during the construction of
models. At the moment, the array envs can only contain a single weather factor
from weather.entries, though there is a plan to remove the restriction in a
future version.

init A string to specify the method to choose the initial parameters. (One of 'gridsearch’
or 'manual’.)

optim A string to specify the method to be used for optimizing the model parameters.
(One of 'none', 'Im' or 'lasso')

fit A string to specify the method to be used for fixing the linear regression coeffi-
cients. (One of 'fit.1m' or 'fit.lasso'.)

init.data Auxiliary data needed to perform the Init stage using the method specified by the
init argument. When init is 'gridsearch’, it should be a list representing
a discretized parameter space. When init is 'manual’, it should be a list of
parameter values that is used as the initial values for the parameters in the Optim
stage.

time.step An integer to specify the basic unit of time (in minute) for the transcriptomic

models. Must be a multiple of the time step of weather data.

gate.open.min The minimum opning length in minutes of the gate function for environmental
inputs.

opts An optional named list that specifies the arguments to be passed to methods that
constitute each stage of the model training. Each key of the list corresponds to
a name of a method.

See examples for the supported options.

Value

An object representing the procedure to construct models.

make.trivial. weights 13

Examples

Not run:

init.params <- .. # choose them wisely
Defined in Train.R:

default.opts <- list(

none = list(),

1Im = list(maxit=1500, nfolds=-1), # nfolds for 1lm is simply ignored
lasso = list(maxit=1000, nfolds=10)
#)
recipe <- FIT::make.recipe(c('wind', 'temperature'),
init = 'manual',
init.data = init.params,
optim = c('lm', 'none', 'lasso'),

fit = 'fit.lasso’',
time.step = 10,
opts =
list(1lm list(maxit = 900),
lasso = list(maxit = 1000)))

End(Not run)

make.trivial.weights Makes trivial weight data

Description

Makes trivial weight data

Usage

make.trivial.weights(samples.n, genes)

Arguments
samples.n A number of samples.
genes A list of genes.

Value

An object that represens the trivial weights. Internally, the object holds an identity matrix of size
nsamples * ngenes.

14 optim

optim A raw API for optimizing model parameters.

Description

Note: use train() unless the user is willing to accept breaking API changes in the future.

Usage

optim(expression, weight, attribute, weather, recipe, models, maxit = NULL,
nfolds = NULL)

Arguments

expression An object that represents gene expression data. The object can be created from a
dumped/saved dataframe of size nsamples * ngenes using FIT: :1load.expression().
(At the moment it is an instance of a hidden class IO$Attribute, but this may be
subject to change.)

weight A matrix of size nsamples * ngenes that during regression penalizes errors
from each sample using the formula sum_{s in samples} (weight_s) (error_s)*2.
Note that, unlike for FIT: :train(), this argument is NOT optional.

attribute An object that represents the attributes of microarray/RNA-seq data. The object
can be created from a dumped/saved dataframe of size nsamples * nattributes
using FIT::load.attribute(). (At the moment it is an instance of a hidden
class IO$ Attribute, but this may be subject to change.)

weather An object that represents actual or hypothetical weather data with which the
training of models are done. The object can be created from a dumped/saved
dataframe of size ntimepoints * nfactors using FIT::1load.weather(). (At
the moment it is an instance of a hidden class IO$Weather, but this may be
subject to change.)

recipe An object that represents the training protocol of models. A recipe can be cre-
ated using FIT: :make.recipe().

models A collection of models being trained as is returnd by FIT::init().
At this moment, it must be a list (genes) of a list (envs) of models and must
contain at least one model. (THIS MIGHT CHANGE IN A FUTURE.)

maxit An optional number that specifies the maximal number of times that the param-
eter optimization is performed.
The user can control this parameter by using the opts argument for FIT: : train().

nfolds An optional number that specifies the order of cross validation when optim
method is 'lasso'. This is simply ignored when optim method is '1m'.
Value

A collection of models whose parameters are optimized by using the 'optim’' pipeline in the argu-
ment recipe.

predict 15

predict Predicts gene expressions using pretrained models.

Description

Predicts gene expressions using pretrained models.

Usage

predict(models, attribute, weather)

Arguments

models A list of trained models for the genes of interest.

At the moment the collection of trained models returned by FIT: :train() can-
not be directly passed to FIT: :predict(): the user has to explicitly convert it
to an appropriate format by using FIT: :train.to.predict.adaptor(). (This
restriction might be removed in a future.)

attribute An object that represents the attributes of microarray/RNA-seq data. The object
can be created from a dumped/saved dataframe of size nsamples * nattributes
using FIT::load.attribute(). (At the moment it is an instance of a hidden
class IO$ Attribute, but this may be subject to change.)

weather An object that represents actual or hypothetical weather data with which predic-
tions of gene expressions are made. The object can be created from a dumped/saved
dataframe of size ntimepoints * nfactors using FIT::load.weather(). (At
the moment it is an instance of a hidden class IO$Weather, but this may be sub-
ject to change.)

Value

A list of prediction results as returned by the models.

Examples

Not run:

prepare models

NOTE: FIT::train() returns a nested list of models

so we have to flatten it using FIT::train.to.predict.adaptor()
before passing it to FIT::predict().

models <- FIT::train(..)

models.flattened <- FIT::train.to.predict.adaptor(models)

load data used for prediction
prediction.attribute <- FIT::load.attribute('attribute.2009.txt")
prediction.weather <- FIT::load.weather('weather.2009.dat', 'weather')

prediction.expression <- FIT::load.expression('expression.2009.dat', 'ex', genes)

prediction.results <- FIT::predict(models.flattened,

16 prediction.errors

prediction.attribute,
prediction.weather)

End(Not run)

prediction.errors Computes the prediction errors using the trained models.

Description

Computes the prediction errors using the trained models.

Usage

prediction.errors(models, expression, attribute, weather)

Arguments

models A list of trained models for the genes of interest.
At the moment the collection of trained models returned by FIT: :train() can-
not be directly passed to FIT: :predict(): the user has to explicitly convert it
to an appropriate format by using FIT: :train.to.predict.adaptor(). (This
restriction might be removed in a future.)

expression An object that represents the actual measured data of gene expressions. The ob-
ject can be created from a dumped/saved dataframe of size nsamples * ngenes
using FIT::load.expression(). (At the moment it is an instance of a hidden
class IO$Attribute, but this may be subject to change.)

attribute An object that represents the attributes of microarray/RNA-seq data. The object
can be created from a dumped/saved dataframe using FIT: :load.attribute().
(At the moment it is an instance of a hidden class IO$Attribute, but this may be
subject to change.)

weather An object that represents actual or hypothetical weather data with which predic-

tions of gene expressions are made. The object can be created from a dumped/saved

dataframe using FIT::load.weather(). (At the moment it is an instance of a
hidden class IO$Weather, but this may be subject to change.)

Value

A list of deviance (a measure of validity of predictions, as is defined by each model) between
the prediction results and the measured results (as is provided by the user through expression
argument).

Examples

Not run:
see the usage of FIT::predict()

End(Not run)

train 17

train Constructs models following a recipe.

Description

Constructs models following a recipe.

Usage

train(expression, attribute, weather, recipe, weight = NULL,
min.expressed.rate = 0.01)

Arguments

expression An object that represents gene expression data. The object can be created from a
dumped/saved dataframe of size nsamples * ngenes using FIT: :1load.expression().
(At the moment it is an instance of a hidden class IO$Expression, but this may
be subject to change.)

attribute An object that represents the attributes of microarray/RNA-seq data. The object
can be created from a dumped/saved dataframe of size nsamples * nattributes
using FIT::load.attribute(). (At the moment it is an instance of a hidden
class IO$Attribute, but this may be subject to change.)

weather An object that represents actual or hypothetical weather data with which the
training of models are done. The object can be created from a dumped/saved
dataframe of size ntimepoints * nfactors using FIT: :1load.weather(). (At
the moment it is an instance of a hidden class IO$Weather, but this may be
subject to change.)

recipe An object that represents the training protocol of models. A recipe can be cre-
ated using FIT: :make.recipe().

weight An optional numerical matrix of size nsamples * ngenes that during regres-
sion penalizes errors from each sample using the formula sum_{s in samples}
(weight_s) (error_s)*2.

This argument is optional for a historical reason, and when it is omitted, all
samples are equally penalized.

min.expressed.rate
A number used to A gene with var(expr) < thres.expr is regarded as unex-
pressed, and FIT sets its model as: expr = log(offset) + @xinputs.

Value

A collection of trained models.

18 weather.entries

Examples

Not run:
create recipe
recipe <- FIT::make.recipe(..)

#load training data

training.attribute <- FIT::load.attribute('attribute.2008.txt");
training.weather <- FIT::load.weather('weather.2008.dat', 'weather')
training.expression <- FIT::load.expression('expression.2008.dat', 'ex', genes)
training.weight <- FIT::load.weight('weight.2008.dat', 'weight', genes)

1

train models

models <- FIT::train(training.expression,
training.attribute,
training.weather,
recipe,
training.weight)

End(Not run)

weather.entries Supported weather factors.

Description

Supported weather factors.

Usage

weather.entries

Format

An object of class character of length 6.

Examples

length(FIT: :weather.entries)

Index

x datasets
weather.entries, 18

convert.attribute, 2
convert.expression, 3
convert.weather, 3
convert.weight, 4

FIT, 4

FIT-package (FIT), 4
fit.models, 7
init, 8

load.attribute, 9
load.expression, 10
load.weather, 10
load.weight, 11

make.recipe, 12
make.trivial.weights, 13

optim, 14

predict, 15
prediction.errors, 16

train, 17

weather.entries, 18

19

	convert.attribute
	convert.expression
	convert.weather
	convert.weight
	FIT
	fit.models
	init
	load.attribute
	load.expression
	load.weather
	load.weight
	make.recipe
	make.trivial.weights
	optim
	predict
	prediction.errors
	train
	weather.entries
	Index

