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Abstract

The epidemic-type aftershock sequence (ETAS) model is the most widely used statisti-
cal model to describe earthquake catalogs. ETAS is an R package for fitting the space-time
ETAS model to an earthquake catalog using the stochastic declustering approach intro-
duced by Zhuang, Ogata, and Vere-Jones (2002). The package provides two classes and
several functions to facilitate data preparation, model fitting and some simple diagnos-
tic checks. The present paper is a description of the package and illustrates modeling
earthquake data using the space-time ETAS model.
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1. Introduction

Since the establishment of seismograph networks for instrumental monitoring of earthquakes
in the past decades, earthquake catalogs in computer-readable formats are regularly accessible
from national and international seismological agencies or institutions (Di Giacomo, Harris,
Villasenor, Storchak, Engdahl, and Lee 2015). An earthquake catalog is a chronologically
ordered list of historic and/or instrumental earthquake records in a particular geographical
region S and during a specific time period. It often consists of time, coordinates of epicenter,
magnitude and focal depth of all recorded earthquakes with magnitudes greater than or equal
to a certain threshold mg that occurred inside or in the vicinity of S during the specified
time period. For example, Table 1 shows parts of an earthquake catalog covering the study
period from 1973-01-01 to 2016-01-01 and the rectangular geographical region 22°-42°N and
40°-65°E (Iran and surrounding areas) with the magnitude threshold mo = 4.0. This catalog
is described in more detail in Section 6 and is used for illustration purposes in this paper.

From a statistical point of view, an earthquake catalog is the available data on earthquakes
in a space-time window (Ogata 1999). Statistical analysis can then be used to find a suitable
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Event Date Time Longitude Latitude Magnitude

1 1973-01-06  15:39:31.00 46.43 38.00 4.20

2 1973-01-06  20:01:50.90 48.26 33.10 4.80

3 1973-01-10  17:02:56.00 51.28 31.19 4.40

4 1973-01-13  14:14:41.10 63.90 25.58 5.00

5 1973-01-18  22:35:18.80 48.01 32.75 4.40

6 1973-02-07  05:27:20.00 49.43 32.05 5.20

7 1973-02-10 17:07:47.50 56.12 31.89 4.50

8 1973-02-24  00:02:40.10 52.62 28.58 5.20

10 1973-03-03  02:46:25.30 51.15 29.52 4.60

11 1973-03-12  13:21:49.10 49.34 32.05 4.90

5967  2015-11-25 21:17:18.59 49.57 31.97 5.40

5968  2015-12-02 23:27:09.25 40.26 39.22 5.50

5969  2015-12-04 19:23:17.92 51.95 28.98 5.00

5970  2015-12-24  22:39:20.17 52.09 40.30 4.60

Table 1: A catalog of earthquakes for Iran and surrounding areas from the beginning of 1973
to the end of 2015.

model for the underlying earthquake process. Such a model provides a theoretical description
of the seismic activities in the study region and makes it possible to estimate the probabilities
of future events (Kagan 1991; Vere-Jones 2003). Therefore, fitting an appropriate statistical
model to a given earthquake catalog is of great importance in the probabilistic assessment of
seismic hazard.

Among different proposed models, the epidemic-type aftershock sequence (ETAS) model,
introduced by Ogata (1988) and Ogata (1998), is the most widely used statistical model to
describe earthquake catalogs (see e.g., Helmstetter and Sornette 2003; Ogata 2006a; Console,
Jackson, and Kagan 2010; Lombardi and Marzocchi 2010; Zhuang 2011; Harte 2013; Zhuang
2012). The space-time version of the ETAS model is a semi-parametric model that describes
the background and triggering seismic activities in a geographical region and can be used
for earthquake declustering (Zhuang et al. 2002). However, estimation of the ETAS model
parameters is computationally challenging (Veen and Schoenberg 2008; Schoenberg 2013;
Adelfio and Chiodi 2015a).

In this article we introduce the R (R Core Team 2018b) package ETAS (Jalilian and Zhuang
2019) which is an R implementation (through C and C++ ports) of the original Fortran imple-
mentation etas8p (Zhuang, Ogata et al. 2017). The package is available from the Compre-
hensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=ETAS and
GitHub at https://github.com/jalilian/ETAS and can be distributed under the GPL-2
license (GNU General Public License).

The material in the remainder of the paper is organized as follows. The ETAS model is de-
scribed in Section 2, and Section 3 introduces the simultaneous estimation of model param-
eters and the background seismicity rate using a stochastic declustering approach. Residual
analysis and model assessment are briefly discussed in Section 4. In Section 5, the main func-
tions in the ETAS package are discussed and Section 6 provides a worked example of fitting
the ETAS model to earthquake data based on a data set included in the package. The ETAS
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package is compared with other available software packages in Section 7. Further possible
extensions of the package are discussed in Section 8.

2. The ETAS model

2.1. Temporal marked point processes

Given an earthquake catalog consisting of N events, let ¢;, z;, y; and m;, i = 1,..., N, denote,
respectively, the time, longitude of epicenter, latitude of epicenter and magnitude of the ith
event in the catalog. Then the catalog data (as for example exemplified in Table 2) can be
regarded as a point pattern {(t;,z;,y;,m;) 1 i =1,...,N} on Ry x R? x [mg, 00) which is
generated by a temporal marked point process X that governs the occurrence of earthquakes
in time and space (Vere-Jones 1970; Ogata 1998).

The distribution of the temporal marked point process X is uniquely determined by its
conditional intensity function A(t,z,y, m|H:) (see Daley and Vere-Jones 2003, Section 7.3).
Roughly speaking, for each t > 0, (x,y) € S, m > mg and infinitesimal d¢, dz, dy and dm,
the conditional intensity function A(t,z,y, m|H;) satisfies

At, x,y, m|H)dtdedydm ~ P{Xﬂ [t,t+dt) X [z, z+dx) X [y, y+dy) X [m,m+dm) # @’Ht},

where
Hi = {(tivxiuyiymi) eX:t; < t}

is the occurrence history of the earthquakes up to time ¢ (Ogata 1998; Zhuang et al. 2002).

We assume that the time ¢ is measured in decimal days with ¢ = 0 corresponding to a
specific time origin, say 1945-01-01, 00:00:00, and a study period of length T days started
at time tgiart > 0 is of interest. Only events inside the study region S and the study period
[tstarts tstart + '] are considered as target events. Other events with t < tgiar or (z,y) € S,
if any, are assumed to be complementary events (Zhuang, Ogata, and Vere-Jones 2006).
Complementary events are included in the history H; in order to take into account their
effect on target events and to some extent resolve what is known as the boundary (edge)
effect (Ogata 1998). Note that N is the total number of target and complementary events in
the catalog.

2.2. The space-time ETAS model

The ETAS model is a multiple type branching process and a special case of the marked Hawkes
process (see Daley and Vere-Jones 2003, pp. 202-205). The conditional intensity function of

Event Time Longitude Latitude Magnitude

1 t1 T Y1 mi
2 to T2 Y2 mo
N In TN YN mpy

Table 2: Example of catalog data.
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the space-time ETAS model is given by
)\/B,G(ta‘rvyam‘Ht) = V,B(m))‘e(tv$7y|Ht)? (1)
where
Vﬁ(m)zﬁexp[_ﬁ(m_m())]a 5>0a
is the probability density function (PDF') of the magnitude of an event and (Ogata 1998)
Xo(t,z,y[He) = @z, y) + Y Kaa(mi)gep(t — ) forq(T — iy — yismi), (2)
1t <t

with the following components:

t(x,y) is the background seismicity rate and is assumed to be independent of time. The
semi-parametric form @(z,y) = pu(z,y), where p > 0 and u(z,y) is a smooth function
on S, is usually considered for the background seismicity rate.

KA,a(m;) is the expected number of triggered events (aftershocks) generated from an event
of magnitude m; and it can be expressed as

KAa(m) = Aexp [a(m — my)],
where A > 0 and « > 0 are unknown parameters.

gep(t —t;) is the PDF of the occurrence time of a triggered event generated from an event
of magnitude m; occurring at time ¢;. It is assumed that the probability distribution
of the time until the occurrence of a triggered event is a function of the time lag t — ¢;
from its direct main shock and is independent of m;. Based on the modified Omori’s
law, the following inverse power density is considered

p—1 =\
pentt—t = | B (1+ C) t=t;>0
0 t—1t <0

where ¢ > 0 and p > 1 are unknown parameters.

ID~y.q(x — i,y — yi;m;) is the PDF of the occurrence location of a triggered event generated
from an event of magnitude m; occurring at the location (x;,y;). It is assumed that the
probability distribution of the location of a triggered event depends on the magnitude
and the location of its direct main shock. The radially symmetric density function

g—1 (z—2)?+(y—w)?) "
D exp [’y(mz — mo)] <1 " D exp [’Y(mz - mO)] > 7

fD,“/,q(x — Ti, Y — Yi; mi) =

is usually considered for this distribution, where D > 0, v > 0 and ¢ > 1 are unknown
parameters.

The ETAS model assumes that each event is either a background (spontaneous) event or
triggered by a previous event (Ogata 1998). The background events are generated by a
Poisson process with intensity @(z,y), which is stationary in time. The relaxing coefficient
coefficient p in @(z,y) = pu(z,y) is introduced in order to fasten the convergence of the model
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fitting algorithm (see Algorithm 2 below). Previous events, whether they are background or
triggered events, generate further events according to a non-stationary Poisson process with
intensity function (Zhuang 2011)

Z Ka,a(Mi)gep(t = i) fDy,q(T — iy — yis ;).
ity <t

The expected number of triggered events generated from a typical event, regardless of its
magnitude, is

/Oo KAa(m)vg(m)dm = AB

mo B — a
If AB/(B — a) < 1, then the stability (existence of a stationary version) of the model is
guaranteed (Daley and Vere-Jones 2003, p. 204).

Under the stability condition, the expected number of events in an interval of length T
is proportional to T. Thus, the expected number of events tend to infinity as T — oc.
Theoretically, the total spatial intensity function is defined as

1

T

. 1 T
= pu(z,y) + Th_rgo (T mz;T KA,a(Mi) [Dyq(@ — iy — yism;) /tz Gep(t — ti)dt) -

In practice, the total spatial intensity function is approximated by

1
Az, y) = pu(z,y) + T Y Kaa(mi)foqgle — ziy — yismi)
it <T

and used to obtain the clustering (triggering) coefficient

u(z,y)
Az, y)’

which quantifies the clustering effect relative to the total spatial intensity at any location
(z,y) € S (Zhuang et al. 2006).

w(m,y) =1-

2.3. Stochastic declustering

Zhuang et al. (2002) proposed a probabilistic approach for declustering an earthquake catalog
to obtain the background seismicity rate. They suggested to use

Ao (t5,25,y5He,) ’
0, tj <t

3)

KA,a(Mi)ge,p(ti—ti) fD 5. (T =5,y —yi;ma) ti>t;
Pij =

as the probability that event j is triggered by event i. Consequently,

it <tj
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is the probability that event j is triggered by a previous event and

pu(zy, y;)
Ao(tj, g, Y5 He, )

1_pj:

is the probability that event j is a background event.

3. Parameter estimation and model fitting

The ETAS model, defined through (1) and (2), is a semi-parametric model with Euclidean
parameters 3 and 6 = (u, A, o, ¢,p, D,7,q) and an infinite dimensional parameter u(z,y),
(z,y) € S (Zhuang et al. 2006). The log-likelihood function of the model is given by (Ogata
1998)

N
1B, 0[HT) = 6ilog (Aga(ti, xi, yi, mi| He,))
i—1

S°] tstart+1"
—/ / / Ago(t, z,y, m|H;)dedydtdm,
mo Jtstart S

where §; = 1 if event i is a target event and §; = 0 otherwise. Due to separability of 5 and 6
in (1) and the fact that [° vg(m)dm = 1, the log-likelihood function can be written as

1(B,0|Hr) = (B HTr) + 2(0|Hr),

where
N N N
LW(BIHT) = 6ilog (vg(ms)) =log(B) > 6 — B i(mi — mo),
i=1 i=1 i=1
and
N tstart+T
L (81Hr) = 3 6:log (Na(ti, w4, il M) — /t / L Nolt, 2,y H)dedydt,  (5)
=1 start
where

tstart+T
/ / Ao(t, @, y[He)dadydt = T // u(z,y)dzdy
tstart S S

N tstart+T
+> %A,a(mi)/ Gep(t —t;)dt //S fDrya(® =iy — yi;mi)dedy  (6)
i=1

tstart

and

1— 1—
/tStartJrTg (t _ t')dt . { [1 + (tstart - ti)/c] P [1 1+ (tstart + T — ti)/c] P ti < Tstart
c, 7 - _
tstart P 1-— []— + (tstart + T — ti)/c} P ti > tstart
Thus, by maximizing [; (8|Hr), the maximum likelihood estimate (MLE) of f is
N/

Sy 6i(mi —mg)

B =
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Figure 1: Radial partitioning of the geographical region S for integral approximation.

where N/ = Zﬁil 0;, while to obtain the MLE of 0, an estimate of u(x,y), numerical ap-
proximations of the integral terms over S in (6) and an appropriate numerical maximization
method for l5(0|Hr) are required.

Ogata (1998) suggested a radial partitioning of the geographical region S in order to efficiently
approximate the integral term

//S D g — xiy — yismg)dedy = //sm IDyq(x,y;mg)dady,

where
S0 = {(x —zi,y—vi): (z,y) €S}, i=1,...,N.

In this method, for each event 7, S is partitioned into n, subregions SY), ey Sffv) by dividing
the boundary of S into n, knots and using radial segments to connect the origin, (0,0), and
each of these knots. Then the integral on each subregion is transformed from the Cartesian
coordinates (z,y) to the polar coordinates (r,v) and approximated using the length of the
radial segments and the angles between them (see Figure 1). As follows in (10), the integral
of u(z,y) over S is approximated similarly.

Zhuang et al. (2002) introduced an iterative approach to simultaneous estimation of the
smoothed function u(z,y), (z,y) € S, and the parameter vector § under the stochastic declus-
tering framework. Given an initial estimate for u(u, v) and using the above mentioned integral
approximation, the MLE of € is obtained by minimizing £(6) = —I2(0|Hr) using the Davidon-
Fletcher-Powell method, which is a gradient-based nonlinear optimization algorithm (Ogata
1998). Let V&(6) denote the gradient of £(#). Then Algorithm 1 summarizes the Davidon-
Fletcher-Powell (DFP) procedure. As k — oo in Algorithm 1, 6, — 6%, where 6* is a local
minimum of £(#), and the matrix Hy, converges to the inverse of the Hessian matrix of £(0)
at 0 = 0%; i.e.,

(Hy )i
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Algorithm 1 Davidon-Fletcher-Powell algorithm.

1: Inputs:
50 > initial guess for the model parameters
uo(zj,y5), j=1,...,N > initial background rate
Hy > initial guess for the inverse of the Hessian matrix
2: k<0
3: repeat
4: dy <+ —Hp % Vf(é\k) > ascent direction
5: (k< argming g(ék + (dy) > line search along dy,
6: §k+1 — gkA‘F Crdyg R > update the estimate
7 4 VE(Or1) — VE(Ok)
8: Cl < Ck/(d;— X T]k)
9: CQ%l/(’I]IIXHkX’Uk)
10: Hy < Hy +crhg % d;r —coHp X ng % n,;r x Hy, > update the inverse Hessian
11: k< k+1
12: until Héﬁ — 01| < e or |[VEWBL)| < e > convergence criteria

13: return 6, and Hy

(Fletcher and Powell 1963). Thus, when the algorithm converges, Hj, is an estimate (approx-
imation) for the inverse of the Fisher information matrix Z(6y), where

d2

Z;;(0) =E l—(widgjb(m?'l:r)] , i,j=1,...,8.

Therefore, by asymptotic properties (" — o0) of maximum likelihood estimators (Schoenberg

2005; Rathbun 1996), Z(6x) = Hj, is an estimate of the asymptotic covariance matrix of 6.

Once the estimates of u(z,y) and 6 are available, the declustering probabilities p; can be
estimated from (3) and (4) and the variable bandwidth kernel estimator

1 N
i(z,y) = 5 >_(1=py)e(x — 2,y — yji hy) (7)
j=1

provides a better estimate for u(z,y), where

1 2 4y
90(1:’ Y; h) - W exp ( 242 (8)

is the bivariate isotropic Gaussian kernel function with bandwidth h. The bandwidth h; is
considered to be

hj = maX{hminv T(j7 np)}a (9)

where hpi, is @ minimum threshold bandwidth value and r(j, n,,) denotes the distance between
the location of event j and its n,th nearest neighbor. The n,th nearest neighbor distance
r(j,np) can be very small or even zero because events may overlap at the same location. Thus,
hmin is used to prevent very small or even zero h; values (Zhuang et al. 2002). Since spatial
point patterns of locations of earthquake epicenters are clustered, using a variable bandwidth
in the kernel estimator (7) is more preferable than a fixed bandwidth. A fixed bandwidth
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Algorithm 2 Fitting the ETAS model using stochastic declustering method.

1: Inputs:
50 > initial guess for the model parameters
uo(ziyyi), t=1,...,N > initial background rate
2: Hy+ 1 > initial guess for the inverse of the Hessian matrix
3 k<« 0
4: repeat
5: use Algorithm 1 with inputs (/9\/,3, Uk (x;,y;) and Hy and get §k+1 and Hyq
6 pj <+ 1 — fpp1tn(zy, yj)//\5k+1(tj’ x5,y He;) > declustering probabilities
7: U1 (x,y) Z;V:l(l —pj)e(x — x5,y —y;;h;)/T > update the estimate of u(z,y)
8: k< k+1
9 €1 < max; |§l,k / gl,k—l — 1] > maximum relative change in parameters
10: e < max; |Ug(xj,yj)/Up—1(xj,y;) — 1] > maximum relative change in @(x;,y;)
11: es < €(0)/€Op_1) — 1] > relative change in the log-likelihood function
12: untilej <cand es < c and eg < ¢ > convergence criteria

13: return @k, Uy (z,y) and Hy,

produces under-smoothing in areas with sparse observations and over-smoothing in areas with
dense observations. The bandwidth (9) is adaptive in the sense that r(j,n,), and hence h;,
is small in areas with dense observations and large in areas with sparse observations. As
suggested by Zhuang (2011), n, = 3,...,6 seems reasonable and Ay, should be equivalent
to the order of earthquake location error (due to location inaccuracy or rounded coordinates
at a certain precision), say hmin = 0.05° equivalent to 5.56 kilometers on the earth surface.

Then,
N
J[atwpandy = 2320 -5 [ otyihydady (10)
s T ) s T

and since (8) is a radially symmetric function, integral terms in the right hand side of (10)
can be approximated by transforming to the polar coordinate system and using the radial
partitioning of the geographical regions SU) as described above. Replacing the initial estimate
of u(x, y) by the new estimate from (7), estimating 6 and u(z, y) is repeated until the estimates
converge (Zhuang et al. 2006). This iterative approach is summarized in Algorithm 2.

Finally, similar to (7), the total spatial intensity function can be estimated by

- 1
Ma,y) = 5> ¢(@ =25y = ysihy), (11)

Jj=1

which along with @(z,y) yields the estimate @(z,y) = 1 — ﬂ(:c,y)/f\(x,y) for the clustering
coeflicient.

4. Residuals analysis and diagnostics plots

The first-order spatio-temporal residuals of a fitted ETAS model with respect to h(t,z,y) > 0
are defined as (Baddeley, Turner, Mgller, and Hazelton 2005; Zhuang 2006):
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N

R(I x B;h) = 6il[t; € I, (wi, i) € B]h(ti, zi, yi) Aj(ti, i, yil He,)—
i=1

[ neergte.zyipdadyat,
1J)J)B
where 1[-] denotes the indicator function, I C [tstart, tstart + 1] and B C S. Similarly, the

first-order temporal and spatial residuals of a fitted ETAS model can be defined, respectively,
by

RE™P(T; 1) 25 t; € I)h(t) NS (t:]Hy,) /h temp (4124, )d¢

and
N
RPHB; ) = 3 60w, i) € Bl )N i) — [ ha )N (o, y)dady,
=1
where

tstart+T
S (tHy) / Aot x,y|Hi)dedy  and AP (a ,y>:/ A5ty @, y[He)dt

tstart

If the fitted model is able to adequately describe the spatial and temporal variations in the
data, then we expect to have R(I x B;h) ~ 0, R*™P(I;h) ~ 0 and R*P**(B;h) ~ 0 for any
I C [tstart,tstart + 7] and B C S. Thus, any systematic departure of residuals from zero
reflects model inadequacy.

To assess the fitted ETAS model, and for the ease of computation and visualization, we
only compute the temporal residuals R*™P(I;; h) and spatial residuals R*P*(B;; h), where
I,... Inyy, and By, ... form finite partitions of the study period [tstart, tstart + 7] and
the geographical region S respectively. For example, the temporal residuals can be computed
for I; = (tstart + (J — 1)T/Ntemps tstart + JT'/Ntemp), J = 1, .., Ntemp, for some nemp. Plotting
and investigating temporal residuals R*™P ([ ;3 h) may reveal possible temporal insufficiency
of the fitted model.

Similarly, a suitable quadrature scheme can be used to compute spatial residuals. For example,
the Berman-Turner device adds additional dummy points to the set of locations of target
events {(x;,y;) :i=1,...,N,d = 1} in order to create a quadrature scheme with quadrature
points (Z;,¥;) with corresponding quadrature cells B; and quadrature weights w; = |B;l,
i=1,...,Nspat (see Baddeley and Turner 2000). Using the Berman-Turner quadrature scheme
the spatial residuals become

nbpdt

Rspat(B h) = 5; h(q:“yl) pat (T4, Ti) / h(z,y) spat (z,y)dzdy
h(xla yl))"\ (9027:%)(5 - wz) 1=1,. - Ngpat;
where 6; = 0 if (Zi,9;) is a dummy point and 8; = 1 otherwise. The spatial residuals

RSP (B;:ih), i = 1,...,ngpat, then can be smoothed by, e.g., the Gaussian kernel (8) to
obtain an image of smoothed spatial residuals (cf. Baddeley et al. 2005).
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Three types of raw, reciprocal and Pearson temporal residuals are obtained, respectively,
with h(t) = 1, h(t) = 1//\g?mp(tmt) and h(t) = 1/ g?mp(tmt) and setting h(z,y) = 1,
h(z,y) = 1/A%pat(x, y) and h(x,y) =1/, /)\Z\pat(x, y) yields the same types of spatial residuals
(Baddeley et al. 2005; Zhuang 2006).

The so-called transformed times

t; t;
=" )\gf’mp(t\Ht)dt:/t] //9Ag(t,x7y|Ht)dxdydt
start

tstart

for target events j € J = {i : §; = 1} are closely related to raw temporal residuals
R™™P([tgiart, t];1) (Zhuang 2006). If the fitted model is close enough to the true under-
lying earthquake process, then {7; : j € J} follows a standard (unit rate) Poisson process
and, consequently, U; = 1 —exp[ — (1; — 7j-1)], 7 € J, are independent and identically
distributed uniform random variables on (0,1) (Ogata 1988; Rathbun 1996). Thus, plotting
7j against j and a Q-Q plot of U; yield simple diagnostic checks for the temporal adequacy of
the fitted model: If the model is good enough then points of the first plot approximately lie
on the line y = = and the second plot shows agreement between the empirical quantiles of U
and the theoretical quantiles of a U(0, 1) distribution. Furthermore, the Kolmogorov-Smirnov
test for goodness-of-fit can be employed to determine whether random variables Us,...,Uyn
follow a U(0,1) distribution.

5. The ETAS package

Assume that the catalog data are imported into R as a ‘data.frame’ object (see the R Data
Import/Export manual for information about importing and working with different data
formats in R; R Core Team 2018a). This ‘data.frame’ object is required to have at least 5
columns with (exact or partial match of) names date, time, lat, long and mag containing,
respectively, the date, time, latitude, longitude and magnitude of each event in the catalog.
The date and time columns should be in appropriate formats such that paste(date, time)
can be converted to date-time (calendar dates plus time to the nearest second) by the R
function as.POSIX1t. For information on calendar dates and times in R, see the help on
"DateTimeClasses" obtained with:

R> help("DateTimeClasses")

5.1. Data preparation with function catalog

As the first step, the ‘data.frame’ object that contains the earthquake data should be passed
to the user accessible catalog function in order to specify the data as an earthquake catalog.
The function catalog creates an object of class ‘catalog’ to represent an earthquake catalog.
An object of this class contains the earthquake data as well as the intended study period,
geographical region and the magnitude threshold. The magnitude threshold can be specified
by the argument mag.threshold. If not specified, the minimum magnitude value in the
catalog will be used as the magnitude threshold. The arguments time.begin, study.start,
study.end and study.length may be used to determine the study period (see Figure 2):

11
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T : length of study period

study.length

time.begin study.start study.end

Figure 2: Specifying the study period using time.begin, study.start, study.end and
study.length arguments in the catalog function.

e time.begin is the beginning of time span of the catalog. By default, it is set to the
time of the first event in the catalog.

e study.start is the start of the study period. If not specified, then time.begin will be
used instead.

e study.end is the end of the study period. By default, it is set to the time of the last
even in the catalog.

o study.length is the length of the study period (7') in decimal days.

Arguments time.begin, study.start and study.end must be character strings or objects
that can be converted to date-time by the as.POSIX1t function. Either study.end or
study.length can be specified, but not both. The occurrence times are converted to elapsed
decimal days since time.begin. If the events in the catalog are not chronologically sorted,
then the catalog function will produce a warning and sort the events in ascending order with
respect to time of occurrence.

In ETAS, a geographical region is defined as a set of point coordinates in a rectangular or ir-
regular polygonal two-dimensional study region (see Figure 3). For a rectangular geographical
region, the latitude and longitude ranges should be specified by lat.range and long.range
arguments. A polygonal study region can be specified by the region.poly argument which
contains coordinates of the vertices of the polygon. The region.poly argument must be
either a list with components lat and long of equal length or a ‘data.frame’ with columns
lat and long. The vertices must be listed in anticlockwise order and no vertex should be
repeated (i.e., the first vertex is not repeated, see Figure 3).

The function inside.owin in the R package spatstat (Baddeley and Turner 2005; Badde-
ley, Rubak, and Turner 2015) is used to indicate whether events lie inside the study re-
gion. As mentioned in Section 2.1, only events inside the study region and the study period
(study.start, study.end) are considered as target events and other events are complemen-
tary events.

By default (flatmap = TRUE) the spherical coordinates (long, lat) on the earth surface are
transformed to flat map (planar) coordinates (x, y) in order to approximate the great-circle
distance on the sphere by the corresponding Euclidean distance on the flat map. The default
case dist.unit = "degree" uses the Equirectangular projection (see Snyder 1997, pp. 5-8)

x = cos(cnt.1lat/180 X pi) X (long — cnt.long) and y = lat — cnt.lat,
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rectangular
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Figure 3: Specifying the rectangular or polygonal two-dimensional study region in the catalog
function using lat.range and long.range or region.poly arguments.

dist.unit u(x,y) 1 A o,y c p D q

shock B —1 2
degree W — shock magnitude 1 day — degre;e —
km % — shock magnitude™ day —  km

Table 3: Units of the ETAS model parameters. Dimensionless parameters are denoted by —.

to obtain the flat map coordinates (x, y) in degrees, where cnt.lat and cnt.long are,
respectively, the latitude and longitude of the centroid of the geographical region. Setting
dist.unit = "km" performs the projection

x = 111.32 X cos(lat/180 x pi) x long and y = 110.547 X lat,

where here x and y are in (approximate) kilometers. Note that changing dist.unit affects
the unit of u(x,y) and D parameters (see Table 3).

Specific print and plot methods associated with ‘catalog’ objects are designed to allow
users to see a summary of the specified earthquake catalog.

5.2. Fitting the model with function etas

The function etas fits the ETAS model to a catalog of earthquakes. The function takes
an object of class ‘catalog’ and calls the internal functions decluster and etasfit for
simultaneous estimation of the background seismicity rate u(z,y) and the parameter vector 6
using the iterative approach discussed in Section 3. An initial guess for the parameter vector
0 = (u,A,a,¢,p,D,7,q) can be provided by the param0 argument. Thus, param0 needs to
be a numeric vector of length 8. If param0O is not specified, as suggested by Ogata (1998),
the default values p = N/(47T|S]), A=0.01, c=0.01, a=1,p=13, D =0.01, ¢ =2 and
v =1 are used as components of param0. Note that this is a crude initial estimate and does
not guarantee the convergence of Algorithm 2. The algorithm is relatively sensitive to the
choice of the initial estimate of # and, if possible, providing more informative initial estimate
is highly recommended.

The bandwidth for each event in the kernel estimators (7) and (11) of the background seismic-

ity rate and total spatial intensity can be specified by the bwd argument, which needs to be
a numeric vector of length V. If bwd is not specified, the nnp and bwm arguments determine,

13
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respectively, the number of nearest neighbors n, and the minimum threshold bandwidth hmin
and (9) is used to obtain the bandwidth for each event. The values nnp = 5 and bwm = 0.05
are used as default values for nnp and bwm (see Zhuang 2011). The argument ndiv, with
default value ndiv = 1000, sets the number of knots on each side of the geographical region
S in radial partitioning of S for integral approximation as described in Section 3.

The no.itr argument specifies the maximum number of iterations in the iterative estimation
method (Algorithm 2). The estimates often converge in less than ten iterations. If no.itr
is not specified, no.itr = 11 will be used. Moreover, the relative iteration convergence tol-
erance ¢ in Algorithm 2 and the optimization convergence tolerance e¢ in Algorithm 1 are,
respectively, determined by the rel.tol and eps arguments. The progress of the computa-
tions can be traced by setting the the verbose and plot.it arguments to TRUE. For example,
the following output snippet shows the value of the target function £(0) = —I2(0|Hr) and its

gradient V&(0) for the current estimate of 6 and the value of the optimal coefficient ¢ of the
line search procedure in one iteration of Algorithm 1.

estimating:
start Davidon-Fletcher-Powell procedure ...
Function Value = 3895.6343

Gradient[1] = -120.51 thetal[1] = 0.707107
Gradient[2] = 111.44 theta[2] = 0.447214
Gradient[3] = -57.87 theta[3] = 0.223607
Gradient[4] = 25.07 theta[4] = 1.643168
Gradient[5] = 261.80 theta[5] = 1.095445
Gradient[6] = 156.03 thetal[6] = 0.141421
Gradient[7] = -31.10 theta[7] = 1.516575
Gradient[8] = 1.32 thetal[8] = 0.173205
line search along the specified direction ... zeta = 0.000085

The etas function returns an object of class ‘etas’. Specific print and plot methods associ-
ated with ‘etas’ objects are designed to allow users to see a summary of the fitted model. An
object of class ‘etas’ can be passed to the rates function to obtain and plot estimates of the
total spatial intensity, background seismicity rate and clustering coefficient from the fitted
model over a grid on S. The probs and resid.etas functions take an object of class ‘etas’
and return estimates of declustering probabilities p; and model residuals and diagnostic plots,
respectively.

Lack of completeness and time-non-stationarity of earthquake catalogs produce some problems
in the statistical analysis of the catalog data. This version of the ETAS model assumes that
the earthquake catalog is complete and the data are stationary in time (Zhuang 2011). If the
catalog is incomplete or there is non-stationarity (e.g., increasing or seasonal trend) in the
time of events, then the results of this function are not reliable.

The etas function is based on a C port of the original Fortran program by Jiancang Zhuang,
Yosihiko Ogata and their colleagues (Zhuang et al. 2017). Computations of the conditional
intensity function, the log-likelihood function, declustering probabilities and the Davidon-
Fletcher-Powell algorithm for optimization are all written in the low-level C code. As of
version 0.3, a new C++ code is implemented using the Repp package (Eddelbuettel and
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Frangois 2011; Eddelbuettel 2013) which allows multi-thread parallel computing on multi-
core processors with OpenMP (OpenMP Architecture Review Board 2013). It is known that
the computation time of the log-likelihood function (5), and consequently the whole model
fitting procedure, is approximately proportional to the square of the number of events (Zhuang
2011). Thus, parallel computing of the computations of the log-likelihood function (5) reduces
the computation time for large earthquake catalogs.

By default (cxxcode = TRUE) the C++ code is used and the argument nthreads determines
the number of threads in the parallel region of the code. If nthreads = 1 (the default case),
then a serial version of the C++ code carries out the computations. As pointed out in the
Writing R Extensions manual (R Core Team 2018c):

The performance of OpenMP varies substantially between platforms. The Win-
dows implementation has substantial overheads, so is only beneficial if quite sub-
stantial tasks are run in parallel.

Thus, in particular on Windows, the parallel computing (nthreads > 1) should only be
considered for catalogs with a large number of events (say more than 2000). Also, the number
of threads nthreads should be carefully specified. The detectCores function in the parallel
package (R Core Team 2018b) can be consulted to find out the overall number of available
threads on a given machine. For example, on a laptop with an Intel Core i7 processor we get

R> parallel: :detectCores()
(1] 8

However, resource usage and limitations should be considered when setting nthreads.

6. Data example

The following example shows how to fit the space-time ETAS model to an earthquake cat-
alog using the R package ETAS. Three sample earthquake catalog data sets iran.quakes,
italy.quakes and japan.quakes are included within the package. They are objects of class
‘data.frame’ and can be directly accessed by loading the package.

R> library("ETAS")

The iran.quakes data set contains data of an earthquake catalog of Iran and surrounding
areas (the rectangular geographical region 22°-42°N and 40°-65°E) from 1973-01-01 to 2016-
01-01 with the magnitude threshold mg = 4.0 in body-wave magnitude (mb) scale. The data
are extracted from the ANSS global comprehensive catalog (available at http://earthquake.
usgs.gov/earthquakes/search/).

There are five columns in iran.quakes that represent occurrence date, time, longitude, lati-
tude and magnitude of 5970 shallow earthquakes (depth < 100 km).

R> summary (iran.quakes)

15
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date time long lat
2014-08-18: 44 00:04:50.70: 2  Min. :40.01 Min. :22.13
2011-10-23: 42 04:46:33.00: 2 1st Qu.:48.34 1st Qu.:28.32
2013-04-09: 31 07:02:27.00: 2 Median :51.88 Median :32.13
2013-05-11: 27 00:00:19.42: 1 Mean :52.20 Mean :32.80
2011-10-24: 19 00:00:41.44: 1 3rd Qu.:56.39 3rd Qu.:37.52
1990-06-21: 18 00:00:46.52: 1 Max. :65.00 Max. :41.98
(Other) :5789 (Other) :5961
mag

Min. :4.000

1st Qu.:4.200

Median :4.400

Mean :4.468

3rd Qu.:4.700

Max. 16.200

For the purpose of illustration, we consider the study period from 1991-01-01 to 2011-01-
01 (tstart = 6574 and T = 7305 days), the magnitude threshold my = 4.5 and a polygonal
geographical region with the vertices at (26, 52), (25, 59), (29, 58), (38, 45) and (35, 43).
Thus, all events in iran.quakes with magnitude greater than or equal to 4.5 that occurred
between 1991-01-01 and 2011-01-01, and inside the specified geographical region, are target
events. Events with magnitude greater than or equal to 4.5 that occurred before 1991-01-01
or outside the specified geographical region act as complementary events. Note that the start
date 1991-01-01 of the study period is tstart = 6574 days after the beginning date 1973-01-01
of the time span of the catalog and that the length of the study period is T' = 7305 days.

R> diff(as.Date(c("1973-01-01", "1991-01-01")))
Time difference of 6574 days
R> diff(as.Date(c("1991-01-01", "2011-01-01")))
Time difference of 7305 days

To create a catalog with the specified study period, geographical region and magnitude thresh-
old, we use the following commands.

R> gregion <- list(lat = c(26, 25, 29, 38, 35),

+ long = c(52, 59, 58, 45, 43))

R> iran.cat <- catalog(iran.quakes, study.start = "1991/01/01",

+ study.end = "2011/01/01", region.poly = gregion, mag.threshold = 4.5)

The print method for the ‘catalog’ class prints a summary of the created catalog. The
catalog can be printed by simply typing its name.

R> iran.cat
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earthquake catalog:

time begin 1973-01-06 15:39:31

study period: 1991-01-01 to 2011-01-01 (T = 7305 days)
geographical region:

polygonal with vertices:
lat long

(1,] 26 52
[2,] 25 59
(3,] 29 58
[4,] 38 45
[5,] 35 43
threshold magnitude: 4.5
number of events:

total events 2500 : 695 target events, 1805 complementary events

( 438 events outside geographical region, 1367 events outside study period)

The catalog can also be plotted using the generic function plot.
R> plot(iran.cat)

It produces a plot consisting of six subplots: a plot to show the spatial distribution of events
and the selected region, three plots to see how latitude, longitude and magnitude of events
change over time and two plots to visually inspect the completeness and time stationarity of
the catalog. Let N, denote the number of events in the catalog with magnitude greater than
or equal to m. The Gutenberg-Richter law states that log,q(Np,) = a — bm for some a and
b, which is equivalent to assuming that m follows an exponential distribution (Ogata 1998).
Departure from linearity in the plot of log;q(V,,) versus m is an indication of the catalog
incompleteness. In addition, the minimum m value for which this linear relation holds can
be used as the magnitude threshold. Time stationarity of the catalog, on the other hand, can
be assessed by inspection of the plot of N; versus t, where N, is the number of events in the
catalog that occurred up to t. If the earthquake process is stationary in time, then we expect
N; = Aot for some A\g > 0.

The resulting plot is shown in Figure 4. The plot of log;,(N,,) versus m shows the linear
relation expected from the Gutenberg-Richter law. The plot of N, versus ¢ is linear during
the considered study period, but a nonlinear trend is evident over the time span 1973-01-01
to 2011-01-01 (13879 days). Nevertheless, we assume that the specified catalog is complete
and stationary in time.

To fit the ETAS model to the created catalog iran.cat, we first provide an initial guess for
the model parameters.

R> param0O1 <- ¢(0.5, 0.2, 0.05, 2.7, 1.2, 0.02, 2.3, 0.03)
Now, the model can be fitted by the following command.
R> iran.fit <- etas(iran.cat, param0 = paramO1)

It takes about 18.4 minutes on a Linux laptop (2.4 GHz Intel Core i7-4700MQ CPU) with the
default serial computing (nthreads = 1). The elapsed computation time reduces to 8.9 and
6.4 minutes by using parallel computing with nthreads = 4 and nthreads = 8, respectively.
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Figure 4: Location of epicenters (top left panel), logarithm of frequency by magnitude (bottom
left panel), cumulative frequency over time (bottom middle panel) and latitude, longitude
and magnitude against time (right panels) of 5970 earthquakes with magnitude greater than
or equal to 4.5 occurred between 1973-01-01 and 2016-01-01 in Iran and its vicinity (22°—
42°N and 40°-65°E), extracted from the ANSS global comprehensive catalog (available at
http://earthquake.usgs.gov/earthquakes/search/). The plots are created by calling
plot on an object of class ‘catalog’; an earthquake catalog created by the catalog function.

The output iran.fit is an object of class ‘etas’ The maximum likelihood estimates of the
model parameters, their estimated asymptotic standard errors, the value of the log-likelihood
function at its maximum point and the Akaike information criterion (AIC) of the model can
be seen by printing iran.fit.

R> iran.fit

ETAS model: fitted using iterative stochastic declustering method
converged after 4 iterations: elapsed execution time 18.37 minutes

ML estimates of model parameters:

beta mu A c alpha P D q gamma
Estimate 5.6094 0.5484 0.1862 0.0471 2.7071 1.1548 0.0160 2.3234 0.0238
StdErr 0.0453 0.0133 0.0519 0.1093 0.0334 0.0106 0.1016 0.0361 5.7553
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Figure 5: Estimated parameters of the fitted ETAS model to the Iranian catalog in each
iteration. The plots are created by calling plot on an object of class ‘etas’.

Declustering probabilities:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.1094 0.9032 0.6365 0.9770 1.0000

log-likelihood: -3888.709 AIC: 7793.418

The estimated asymptotic standard errors of ¢ and specially D and ¢ are much larger than
their corresponding estimates. This may be caused by insufficient data (small catalog) or
model inadequacy, as discussed in what follows.

Plot of iran.fit displays the estimated parameters in each iteration.
R> plot(iran.fit)

Figure 5 shows the plot. It can be seen that the estimates converge after four iterations.
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Figure 6: Plots of estimates of the background seismicity rate, total spatial intensity, clus-
tering (triggering) coefficient and conditional intensity at ¢t = tgiart + 7' for the fitted ETAS
model to the Iranian catalog. The plots are created by calling the rates function on an object
of class ‘etas’.

Estimates of the background seismicity rate u(z,y), total spatial intensity A(z,y), clustering
coefficient w(x,y) and conditional intensity function A\g(z,y,t|H:) at t = tgart + 1 can be
obtain by passing iran.fit to the rates function.

R> rates(iran.fit)

This function computes and plots the estimates on a rectangular grid over the geographical
region (see Figure 6). The grid span and dimension can be changed by arguments lat.range,
long.range and dimyx.

In addition, the function probs returns estimates of the declustering probabilities p;.

R> pr <- probs(iran.fit)
R> summary (pr$prob)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.02299 0.09680 0.36346 0.89058 1.00000

These probabilities may be used to indicate the most likely background and triggered target
events (see Figure 7).
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Figure 7: Most likely (probability > 0.95) background and triggered events detected by

estimated declustering probabilities p;.

R> plot(iran.cat$longlat.coord[pr$target & (1 - pr$prob > 0.95), 1:2])
R> points(iran.cat$longlat.coord[pr$target & (pr$prob > 0.95), 1:2],

+ pch = 3, col = 2)
R> map("world", add = TRUE, col = "grey")

R> legend("bottomleft", c("background", "triggered"), pch

+ col = 1:2)

c(1, 3),

The first-order residual analysis for a fitted ETAS model can be performed by using the
resid.etas function. The resid.etas function computes the temporal residuals R*™P(I;; h),
where I; = (tstart + (J — 1)T'/Ntemp, tstart + 5T /Ntemp)s J = 1, .. ., Ntemp. The argument n. temp
with default value n.temp = 1000 specifies the number of partition points ntemp. For spatial
residuals, the spatstat function quadscheme is used to create a Berman-Turner quadrature
over S and compute RP?(B;:h), as described in Section 4. The resid.etas function by
default (type = "raw") returns raw temporal residuals, raw spatial residuals, transformed

times 7; and their related quantities U;. It also produces plots of the temporal residuals,
smoothed spatial residuals, transformed times 7; against j and the Q-Q plot of Uj.

R> iran.res <- resid.etas(iran.fit)
R> summary(iran.res$tres)

Min. 1st Qu. Median

Mean 3rd Qu. Max.
-5.71186 -0.55493 -0.53452 0.01888 0.40576 11.95278
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R> summary(na.omit(iran.res$sres$z))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.0376927 -0.0000682 0.0606504 0.1067355 0.1971959 0.4459727

Figure 8 shows the resulting plots for the fitted ETAS model to the Iranian catalog. It can be
seen that points on the plots of transformed times 7; and the Q-Q plot of U; lie approximately
on the y = z line. Likewise, the Kolmogorov-Smirnov test for goodness-of-fit indicates that
U; follows a U(0, 1) distribution.

R> ks.test(iran.res$U, punif)

One-sample Kolmogorov-Smirnov test

data: iran.res$U
D = 0.031565, p-value = 0.4938
alternative hypothesis: two-sided

Therefore, the fitted model is able to adequately describe the temporal variation in the data.
However, a systematic northwest-southeast trend is evident in the raw spatial residuals. The
large (inflated) estimated asymptotic standard errors of D and q perhaps are another sign
that the fitted model is not capable of describing the complex spatial clustering of earthquakes
in this region. In fact, the geographical region considered here contains the Zagros fold-and-
thrust belt, which due to the ongoing collision between the Arabian Plate and the Eurasian
Plate, is the most seismically active intra-continental belts on Earth (Talebian and Jackson
2004). Hence, the ETAS model with fixed parameters may not be suitable to model the
occurrence of earthquakes in such an active tectonic region. Although this earthquake catalog
provides as an example for the ETAS package, finding an appropriate model for it is well
beyond the scope of this paper. It is possible that improved versions of the ETAS model with
spatially varying parameters (Ogata 2011) may be more suitable for this region.

7. Other software packages

The temporal ETAS model can be fitted to the occurrence time and magnitude of earthquakes
using the Fortran programs SASeis2006 (Ogata 2006b) and etas_solve (Kasahara, Yagi,
and Enescu 2016) and the R packages PtProcess (Harte 2010) and SAPP (The Institute of
Statistical Mathematics 2016). To fit the space-time ETAS model to the occurrence time,
location of epicenter and magnitude of earthquakes, the R package etasFLP (Chiodi and
Adelfio 2017) and the original Fortran code by Jiancang Zhuang (Zhuang et al. 2017) are
publicly available.

7.1. Comparison with the etasFLP package

The R package etasFLP is an alternative to ETAS and fits both the temporal and space-time
ETAS models. The etasFLP package uses the forward likelihood predictive (FLP) method
(Chiodi and Adelfio 2011) to estimate the bandwidth of the kernel density estimator (7) for
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Figure 8: Diagnostic plots for the fitted ETAS model to the Iranian catalog: the temporal
residuals (top left), smoothed spatial residuals (top right), transformed times 7; against i
(bottom left) and the Q-Q plot of U; (bottom right). The plots are created by calling the
resid.etas function on an object of class ‘etas’.

the background seismicity rate (Adelfio and Chiodi 2013, 2015a). Also, instead of (2), the
conditional intensity function in the etasFLP package is parameterized as

)\0(t7$7y|7-lt) = ,UU(.CL‘, y) + Z

ko exp [(a — ) (m; —mo)] (D G zi)? 4 (y — yi)2>q

(c+t—t)p exp [y(m; —mo)]

where 1
ko= —A(p— )P (g —1)DI7 L.
T

The package comes with a sample catalog of 2158 Italian earthquakes of magnitude greater
than or equal to 3.0 that occurred between 2005 and 2013, extracted from the Italian Seis-
mological Instrumental and Parametric Data Base (ISIDE) available at http://iside.rm.
ingv.it/.

R> library("etasFLP")
R> data("italycatalog", package = "etasFLP")

The space-time ETAS model can be fitted to a given catalog by function etasclass.
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R> italy.fit.flp <- etasclass(italycatalog, magn.threshold = 3,
+ magn.threshold.back = 3, mu = 1, kO = 0.005, ¢ = 0.005, p = 1.01,
+ a=1.05, gamma = 0.6, q = 1.52, d = 1.1, ndeclust = 11)

By default the package uses the transformation x = radius * long * pi/180 and y =
radius * lat * pi/180, where radius = 6371.3 is the mean earth radius, to change the
distance unit from degrees to kilometers. The magn.threshold.back argument allows to
set a different magnitude threshold for the events to be used in the kernel estimator of the
background seismicity rate. The maximum number of iterations for the Algorithm 2 can be
specified by the argument ndeclust.

R> summary(italy.fit.flp)

etasclass(cat.orig = italycatalog, magn.threshold = 3,
magn.threshold.back = 3, mu =1, kO = 0.005, ¢ = 0.005, p = 1.01,
a=1.05, gamma = 0.6, d = 1.1, q = 1.52, ndeclust = 11)

Execution started: 2016-12-23 11:10:47
Elapsed time of execution (hours)  0.2350042

Number of observations 2158

Magnitude threshold 3

declustering TRUE

Number of declustering iterations 6

Kind of declustering weighting

flp TRUE

sequence of AIC values for each iteration
49465.75 48449.99 48417.31 48415.07 48414.87 48414.86

ETAS Parameters:

Estimates std.err.
mu 0.355891 0.011295
k0 0.008375 0.002055
c 0.009405 0.001795
P 1.121677 0.016273
a 1.509596 0.064070
gamma 0.858127 0.084662
d 1.915362 0.306437
q 1.836685 0.067106

The etasclass function by default (usenlm = TRUE) calls the R function nlm without sup-
plying any analytical gradient or Hessian in order to perform numerical optimization of the
log-likelihood function of the ETAS model. The nlm function carries out an unconstrained
Newton-type algorithm and uses numerical derivatives to approximate the gradient and Hes-
sian of the target function if the user does not provide them (R Core Team 2018b).
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Figure 9: Location of epicenters (top left panel), logarithm of frequency by magnitude (bottom
left panel), cumulative frequency over time (bottom middle panel) and latitude, longitude and
magnitude against time (right panels) of 2158 earthquakes with magnitude greater than or
equal to 3.0 that occurred between 2005-04-16 and 2013-11-01 in Italy and its vicinity (35°—
48°N and 6.15°-19°E), extracted from the Italian Seismological Instrumental and Parametric
Data Base (ISIDE) available at http://iside.rm.ingv.it/. The catalog is also available in
the R package etasFLP.

The data set italy.quakes in the ETAS package contains data of the same Italian catalog.
For compatibility with the etasFLP package, we use the argument dist.unit = "km" in the
catalog function to create the earthquake catalog.

R> library("ETAS")
R> italy.cat <- catalog(italy.quakes, dist.unit = "km")
R> italy.cat

earthquake catalog:
time begin 2005-04-16 12:27:54
study period: 2005-04-16 12:27:54 to 2013-11-01 04:44:33 (T=3120.678 days)
geographical region:
polygonal with vertices:
lat long
[1,] 34.87237 6.04186

25
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[2,] 34.87237 19.11214
[3,1 48.09463 19.11214
[4,] 48.09463 6.04186
threshold magnitude: 3
number of events:
total events 2158 : 2158 target events, O complementary events
( 0 events outside geographical region, O events outside study period)

R> plot(italy.cat)

Figure 9 shows the created catalog in the ETAS package. This catalog has no complementary
events and tstart = 0 and T = 3120.7 days. We also use the same initial values for the model
parameters as those used for the etasclass function in the etasFLP package and convert kg
to A.

R> k0 <- 0.005
R> ¢ <- 0.005

R>p <- 1.01

R>D <- 1.1

R> q <- 1.52

R>A <-pi k0 / ((p-1) *c (p-1) % (q-1) *D(q - 1)
R> param0 <- c(mu = 1, A, c, alpha = 1.05, p, D, q, gamma = 0.6)

The catalog and initial parameters are passed to the etas function to fit the space-time ETAS
model.

R> italy.fit <- etas(italy.cat, param0)
R> italy.fit

ETAS model: fitted using iterative stochastic declustering method
converged after 4 iterations: elapsed execution time 30.96 minutes

ML estimates of model parameters:

beta mu A c alpha P D q gamma
Estimate 2.6333 1.0173 0.2115 0.0123 1.5596 1.1688 1.3185 1.8895 0.9123
StdErr 0.0032 0.0076 0.0202 0.0473 0.0102 0.0039 0.0412 0.0101 0.0227

declustering probabilities:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0004 0.8534 0.5350 0.9967 1.0000

log-likelihood: -23394.52 AIC: 46805.03

The elapsed execution time on a Linux laptop (2.4 GHz Intel Core i7-4700MQ CPU) was
14 minutes for the etasFLP package and 31 minutes for the ETAS package. Using parallel
computing in the ETAS package, the elapsed execution time reduces to 15 minutes with
nthreads = 4 and 10 minutes with nthreads = 8.
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Figure 10: Diagnostic plots for the fitted ETAS model to the Italian catalog in the etasFLP
package using the ETAS package: the temporal residuals (top left), smoothed spatial residuals
(top right), transformed times 7; against ¢ (bottom left) and the Q-Q plot of U; (bottom right).

Although the estimates obtained with both packages etasFLP and ETAS are to some extent
similar (particularly the estimates of «, p and g), there are some differences between them
(particularly the estimates of p and D) due to the different bandwidth selection methods
for kernel estimator of the background seismicity rate, different optimization algorithms and
different transformations of (long, lat) to (x, y) coordinates. The AIC of the fitted ETAS
model by the ETAS package is 46805.03 which is smaller than the one by etasFLP (48414.86).

Figure 10 shows the diagnostic plots for the fitted model by the ETAS package.

R> italy.res <- resid.etas(italy.fit)
R> ks.test(italy.res$U, punif)

One-sample Kolmogorov-Smirnov test
data: italy.res$U
D = 0.020461, p-value = 0.3271

alternative hypothesis: two-sided

Warning message:
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In ks.test(italy.res$U, punif)
ties should not be present for the Kolmogorov-Smirnov test

Except for a few extreme temporal residuals, the plot of the transformed times, the Q-Q
plot of the U; values and the Kolmogorov-Smirnov test for goodness-of-fit indicate a good
temporal fit. No systematic pattern is evident in the spatial residuals, but they are not
symmetric around zero and a few small clusters of extreme residuals on the image of spatial
residuals may suggest room for improvements in the fitted PDF of spatial distribution of
triggered events, fp 44, or in estimating the background seismicity rate.

The etasFLP package also computes and visualizes transformed times 7;, background and
triggered seismicity rates, total spatial intensity as well as different types of spatial residuals
(Adelfio and Chiodi 2015b). The following commands compute U; values and perform the
Kolmogorov-Smirnov test for temporal goodness-of-fit of the fitted ETAS model to the Italian
catalog using the etasFLP package.

R> italy.res.flp <- plot(italy.fit.flp)
R> tau.flp <- italy.res.flp$t.trasf

R> U.flp <- 1 - exp(-diff(tau.flp))

R> ks.test(U.flp, punif)

One-sample Kolmogorov-Smirnov test

data: U.flp
D = 0.018422, p-value = 0.4569
alternative hypothesis: two-sided

The p value indicates an adequate temporal fit to the catalog.

7.2. Comparison with the Fortran program

The original Fortran program for fitting the space-time ETAS model to earthquake data is
available at http://bemlar.ism.ac. jp/zhuang/software/sd.tar.gz (accessed on Novem-
ber 3, 2018). The main program etas8p calls several subroutines for integral approxima-
tion by radial partitioning of the geographical region (frint and polyint), computing the
likelihood function (xlamb and xint), declustering computations (bkgdcalc) and Davidon-
Fletcher-Powell optimization (linear and davidn). The program estimates the model pa-
rameters and background seismicity rate using the stochastic declustering approach as in
Algorithm 2, except that it does not check the convergence criteria in the repeat loop and
uses a fixed number of iterations (eleven times). Moreover, in each iteration, the Davidon-
Fletcher-Powell optimization described in Algorithm 1 (subroutine davidn) starts with the
identity matrix, Hy = I, as the initial guess for the inverse of Hessian matrix while in the
ETAS package, the estimate of inverse Hessian matrix in each iteration is used as initial guess
for the next iteration. These differences generally result in a faster convergence of ETAS. Af-
ter convergence, etas8p calls two subroutines (outprob and outrates) to report declustering
probabilities p; and the values of the estimated background seismicity rate on a rectangular
grid.
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The etas8p program uses parallel computing, implemented by the message passing interface
(MPI) standard (The MPI Forum 2015). The program’s tarball sd.tar.gz contains a sample
data set (alljpM45.etas file) of 13724 shallow (depth < 100 km) earthquakes that occurred
between 1926-01-08 and 2007-12-29 in Japan and its vicinity (27°-45°N and 128°-145°E)
with magnitudes greater than or equal to 4.5. As instructed on http://bemlar.ism.ac.
jp/zhuang/software.html and assuming GNU Fortran (gfortran) is your compiler, the
program can be compiled by

$ mpif77 *.f -o etas8p

to produce the executable file etas8p. The file jap.in contains all program inputs including
the name of the data file, the beginning and length of the study period, the magnitude
threshold, the coordinates of vertices of the boundary of the target geographical region, the
initial values for the model parameters, the span and the dimension of the rectangular grid
for estimation of the background seismicity rate and values of n, and hy,in for computing the
bandwidth h; for each event according to (9). The program can be run on a computer with
8 threads processor by

$ export GFORTRAN_UNBUFFERED_ALL='y' # unbuffered I0 with gfortran
$ mpiexec -n 8 ./etas8p < jap.in

The execution time takes 422.3 minutes on the same Linux laptop as before (2.4 GHz Intel
Core i7-4700MQ CPU) with GNU Compiler Collection, Version 5.4.0 (https://gcc.gnu.
org/), and MPICH, Version 3.2 (https://www.mpich.org/). Here is the final output of the
program.

- log likelihood = 0.153109518614449D+05 aic = 30637.9

0.74203D+00 0.40714D+00 0.17209D+00 0.12876D+01 0.10740D+01
0.42823D-01 0.13966D+01 0.10330D+01
**kk  gradient kkx
-0.71766D-03 0.16731D-05 0.36575D-03 -0.53808D-03 0.14690D-03
-0.11811D-02 0.16704D-03 0.13040D-03

mle = 0.55061E+00 0.16576E+00 0.29615E-01 0.16579E+01 0.11534E+01
0.18338E-02 0.19505E+01 0.10670E+01

The program, in addition, returns estimates of the background seismicity rate, the total spa-
tial rate and the conditional intensity function at ¢ = tgat + 7 on a 401 x 401 grid over
31.8°-44.3°N and 134°-145°E (rates.dat file) and the background seismicity rate, declus-
tering probability and bandwidth for each target event (file probs.dat). Figure 11 shows the
estimated background seismicity rate, imported to and plotted in R.

For comparison, the data set of the Japanese earthquakes is included in ETAS as japan.quakes.
To compare the results obtained by the etas8p program with the ETAS package, we create
an earthquake catalog using japan.quakes and set the same polygonal geographical region
and the same study period (tstart = 10000 and 7' = 13376 days) as in the jap.in file.
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Figure 11: Estimate of the background seismicity rate for the Japanese catalog using the
etas8p program.

R> jpoly <- list(long = c(134.0, 137.9, 143.1, 144.9, 147.8, 137.8, 137.4,
+ 135.1, 130.6), lat = c(31.9, 33.0, 33.2, 35.2, 41.3, 44.2, 40.2, 38.0,
+ 35.4))

R> japan.cat <- catalog(japan.quakes, study.start = "1953-05-26",

+ study.end = "1990-01-08", region.poly = jpoly, mag.threshold = 4.5)
R> japan.cat

earthquake catalog:
time begin 1926-01-08
study period: 1953-05-26 to 1990-01-08 (T = 13376 days)
geographical region:
polygonal with vertices:

lat long
[1,] 31.9 134.0
[2,] 33.0 137.9
[3,] 33.2 143.1
[4,] 35.2 144.9
[5,] 41.3 147.8
[6,] 44.2 137.8
[7,] 40.2 137.4
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Figure 12: Location of epicenters (top left panel), logarithm of frequency by magnitude
(bottom left panel), cumulative frequency over time (bottom middle panel) and latitude
longitude and magnitude against time (right panels) of 13724 earthquakes with magnitude
greater than or equal to 4.5 that occurred between 1926-01-08 and 2007-12-29 in Japan and its
vicinity (27°-45°N and 128°-145°E), accompanying the Fortran program by Jiancang Zhuang
(Zhuang et al. 2017).

[8,]1 38.0 135.1
[9,] 35.4 130.6
threshold magnitude: 4.5
number of events:
total events 10072 : 4656 target events, 5416 complementary events
(1022 events outside geographical region, 4394 events outside study period)

The created catalog is shown in Figure 12. We also use the same initial values for the model
parameters as those specified in the jap.in file and call the etas function to fit the model.

R> param0 <- c¢(0.592844590, 0.204288231, 0.022692883, 1.495169224,
+ 1.109752319, 0.001175925, 1.860044210, 1.041549634)

R> japan.fit <- etas(japan.cat, param0)

R> japan.fit

ETAS model: fitted using iterative stochastic declustering method
converged after 4 iterations: elapsed execution time 185.26 minutes
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ML estimates of model parameters:

beta mu A c alpha P D q gamma
Estimate 1.9734 0.5505 0.1658 0.0296 1.6579 1.1534 0.0018 1.9507 1.0670
StdErr 0.0004 0.0062 0.0162 0.0316 0.0060 0.0027 0.0346 0.0089 0.0139

declustering probabilities:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0126 0.7565 0.5452 0.9330 1.0000

log-likelihood: -15310.96 AIC: 30637.91

The execution time takes 185.3 minutes on the same Linux laptop and using parallel comput-
ing, it reduces to 104.2 and 68.1 minutes with nthreads = 4 and nthreads = 8, respectively.
Thus, with parallel computing and 8 threads and for the considered Japanese catalog, package
ETAS is at least 5 times faster than the Fortran program etas8p.

The maximum absolute difference between the estimates of the model parameters obtained
with the etas8p program and ETAS package is smaller than 1073, The absolute difference
between the values of the log-likelihood function and AIC are less than 1072, The estimate
of the background seismicity rate, obtained with the command (elapsed execution time 5.7
minutes)

R> rates(japan.fit, long.range = c(134, 145), lat.range = c(31.8, 44.3),
+ dimyx = c (401, 401))

and shown in the top left panel of Figure 13, is also in total agreement with Figure 11. Thus,
as expected, results obtained with the etas8p program and ETAS are practically the same.

For completeness, we perform residual analysis of the fitted ETAS model.

R> japan.res <- resid.etas(japan.fit)
R> summary(japan.res$tres)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-78.7790 -1.7704 -0.3662 0.2415 1.1445 94.7057

R> summary (na.omit (japan.res$sres$z))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.525076 -0.014207 -0.001284 0.028893 0.057943 0.593824

The resulting diagnostic plots are shown in Figure 14. Plot of transformed times 7; and the
Q-Q plot of U; as well as the Kolmogorov-Smirnov test for goodness-of-fit indicate that the
temporal variations in the data are sufficiently explained by the fitted model.

R> ks.test(japan.res$U, punif)
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Figure 13: Plots of estimates of the background seismicity rate, total spatial intensity, clus-
tering (triggering) coefficient and conditional intensity at ¢t = tsare + 7' for the fitted ETAS
model to the Japanese catalog accompanying the Fortran program etas8p using the ETAS
package.

One-sample Kolmogorov-Smirnov test

data: japan.res$U
D = 0.0093191, p-value = 0.8136
alternative hypothesis: two-sided

The raw spatial residuals do not show any obvious trend and are symmetric around zero,
which suggests an overall good fit.
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Figure 14: Diagnostic plots for the fitted ETAS model to the sample Japanese catalog accom-
panying the Fortran program etas8p using the ETAS package: the temporal residuals (top
left), smoothed spatial residuals (top right), transformed times 7; against 7 (bottom left) and
the Q-Q plot of U; (bottom right).

8. Conclusion

This paper introduces the R package ETAS that fits the epidemic type aftershock sequence
(ETAS) model to an earthquake catalog. Given data on an earthquake catalog, the package
provides two classes and several functions to facilitate data preparation and model fitting and
offers some simple residual analysis and diagnostic checks for model assessment.

The ETAS package is based on a Fortran program by Jiancang Zhuang and colleagues. The
results obtained with the ETAS package and the Fortran program are practically the same,
but the ETAS package achieves a faster execution time by using the estimated inverse Hes-
sian matrix at each iteration as an initial guess for the next iteration, and using modified
convergence criteria. The R package etasFLP is an alternative to ETAS. These packages pro-
duce different, although comparable, results because they use different bandwidth selection
methods for the kernel estimator of the background seismicity rate, different optimization
algorithms and different flat map transformations. The etasFLP package is faster than ETAS
with serial computing, but for large catalogs (more than 2000 events) the ETAS package with
parallel computing can be as fast as etasFLP.

As of version 0.3, the ETAS package uses parallel computing with OpenMP to allow for
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faster computations, particularly in case of large earthquake catalogs. The package can
be extended in several ways. For example, different modifications of the space-time ETAS
model have been recently proposed (Ogata 2011; Harte 2014; Nicolis, Chiodi, and Adelfio
2015). Moreover, the ETAS model has been generalized to introduce nonstationarity into the
ETAS model (Kumazawa and Ogata 2014). These modifications and generalizations could
be implemented and integrated into the package. Simulation of the space-time ETAS model
and more comprehensive residual analyses and model diagnostics could also be included in
the package.
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