| Type: | Package | 
| Title: | Exploratory Regression 'Shiny' App | 
| Version: | 0.1.4 | 
| Date: | 2023-8-21 | 
| Author: | Catherine B. Hurley | 
| Maintainer: | Catherine B. Hurley <catherine.hurley@mu.ie> | 
| Description: | Constructs a 'shiny' app function with interactive displays for summary and analysis of variance regression tables, and parallel coordinate plots of data and residuals. | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2.0)] | 
| Encoding: | UTF-8 | 
| Imports: | shiny, miniUI,RColorBrewer, ggplot2, car, leaps, broom, dplyr, tidyr, purrr, combinat,stats, methods, rlang | 
| RoxygenNote: | 7.2.3 | 
| Suggests: | knitr, rmarkdown, testthat | 
| VignetteBuilder: | knitr | 
| NeedsCompilation: | no | 
| Packaged: | 2023-08-21 11:49:44 UTC; catherine | 
| Repository: | CRAN | 
| Date/Publication: | 2023-08-21 12:20:02 UTC | 
ERSA: A package exploring regressions with a Shiny app
Description
The Exploratory Regression Shiny App (ERSA) package consists of a collection of functions for displaying the results of a regression calculation, which are then packaged together as a shiny app function.
Constructs a list of fits by adding predictors sequentially
Description
Constructs a list of fits by adding predictors sequentially
Usage
add1_models(model, preds, data = NULL)
Arguments
model | 
 A linear model  | 
preds | 
 Predictors to be added sequentially  | 
data | 
 The dataset (optional)  | 
Value
A list of linear fits
A function which returns a shiny server for Exploratory Regression
Description
A function which returns a shiny server for Exploratory Regression
Usage
createERServer(
  ERfit,
  ERdata = NULL,
  ERbarcols = RColorBrewer::brewer.pal(4, "Set2"),
  ERnpcpCols = 4,
  pvalOrder = F
)
Arguments
ERfit | 
 the lm fit to be explored  | 
ERdata | 
 the data used to fit the model. If NULL, attempts to extract from ERfit.  | 
ERbarcols | 
 a vector of colours, one per term in lm. Will be expanded via colorRampPalette if not the correct length.  | 
ERnpcpCols | 
 number of colours for the PCP  | 
pvalOrder | 
 if TRUE, re-arranges predictors in order of p-value  | 
Value
a function
Constructs UI for Exploratory Regression app
Description
Constructs UI for Exploratory Regression app
Usage
createERUI(tablesOnly = F, gadget = TRUE)
Arguments
tablesOnly | 
 if TRUE, shows Plots 1-3 only.  | 
gadget | 
 If TRUE, constructs a gadget, otherwise a shinyApp  | 
Value
the UI
Constructs a list of fits by dropping predictors from the supplied model
Description
Constructs a list of fits by dropping predictors from the supplied model
Usage
drop1_models(model, preds, data = NULL)
Arguments
model | 
 A linear model  | 
preds | 
 Predictors to be dropped  | 
data | 
 The dataset (optional)  | 
Value
A list of linear fits
A function to launch the Exploratory Regression Shiny App
Description
A function to launch the Exploratory Regression Shiny App
Usage
exploreReg(
  ERmfull,
  ERdata = NULL,
  ERbarcols = RColorBrewer::brewer.pal(4, "Set2"),
  npcpCols = 4,
  pvalOrder = F,
  tablesOnly = F,
  displayHeight = NULL,
  gadget = TRUE,
  viewer = "dialogViewer"
)
Arguments
ERmfull | 
 the lm fit to be explored  | 
ERdata | 
 the data used to fit the model. If NULL, attempts to extract from ERmfull.  | 
ERbarcols | 
 a vector of colours, one per term in lm. Will be expanded via colorRampPalette if not the correct length.  | 
npcpCols | 
 number of colours for the PCP  | 
pvalOrder | 
 if TRUE, re-arranges predictors in order of p-value  | 
tablesOnly | 
 if TRUE, shows Plots 1-3 only.  | 
displayHeight | 
 supply a value for the display height  | 
gadget | 
 If TRUE, constructs a gadget, otherwise a shinyApp.  | 
viewer | 
 For gadget, defaults to "dialogViewer". May be "paneViewer" or "browserViewer"  | 
Value
the result
Examples
f <- lm(mpg ~ hp+wt+disp, data=mtcars)
## Not run: exploreReg(f)
A PCP plot of the data, residuals or hat values from regression fits
Description
A PCP plot of the data, residuals or hat values from regression fits
Usage
pcpPlot(
  data,
  fit,
  type = "Variables",
  npcpCols = 4,
  resDiff = F,
  absResid = F,
  sequential = F,
  selnum = NULL
)
Arguments
data | 
 a data frame  | 
fit | 
 a lm for the data frame  | 
type | 
 one of "Variables", "Residuals", "Hatvalues"  | 
npcpCols | 
 number of colours  | 
resDiff | 
 difference residuals, TRUE or FALSE  | 
absResid | 
 absolute residuals, TRUE or FALSE  | 
sequential | 
 use sequential fits (TRUE) or drop1 fits (FALSE)  | 
selnum | 
 row numbers of cases to be highlighted  | 
Value
ggplot
Examples
f <- lm(mpg ~ wt+hp+disp, data=mtcars)
pcpPlot(mtcars, f, type="Residuals")
Plots barcharts of sequential sums of squares of lm
Description
Plots barcharts of sequential sums of squares of lm
Usage
plotSeqSS(fits, barcols = NULL, legend = F)
Arguments
fits | 
 list of lm objects  | 
barcols | 
 a vector of colours, one per term in lms  | 
legend | 
 TRUE or FALSE  | 
Value
a ggplot
Examples
plotSeqSS(list(fit1= lm(mpg ~ wt+hp+disp, data=mtcars),
fit2=lm(mpg ~ wt*hp*disp, data=mtcars)))
Plots of model summaries
Description
Plots of model summaries
Usage
plotAnovaStats(
  fit0,
  barcols = NULL,
  preds = NULL,
  alpha = 0.05,
  type = "SS",
  width = 0.3
)
plottStats(fit0, barcols = NULL, preds = NULL, alpha = 0.05, width = 0.3)
plotCIStats(
  fit0,
  barcols = NULL,
  preds = NULL,
  alpha = 0.05,
  stdunits = FALSE,
  width = 0.3
)
Arguments
fit0 | 
 is an lm object  | 
barcols | 
 a vector of colours, one per term in lm  | 
preds | 
 terms to include in plot  | 
alpha | 
 significance level  | 
type | 
 "SS" or "F", from type 3 Anova  | 
width | 
 bar width  | 
stdunits | 
 TRUE or FALSE. If TRUE, coefficients refer to standardised predictor units.  | 
Value
a ggplot
Functions
-  
plotAnovaStats(): Plots barchart of F or SS from lm -  
plottStats(): Plots barchart of t stats from lm -  
plotCIStats(): Plots confidence intervals from lm 
Examples
plotAnovaStats(lm(mpg ~ wt+hp+disp, data=mtcars))
plottStats(lm(mpg ~ wt+hp+disp, data=mtcars))
plotCIStats(lm(mpg ~ wt+hp+disp, data=mtcars))
Re-order model terms
Description
Re-order model terms
Usage
pvalOrder(m, d = NULL, refit = TRUE)
bselOrder(m, d = NULL, refit = TRUE, maxNPred = NULL)
fselOrder(m, d = NULL, refit = TRUE, maxNPred = NULL)
revPredOrder(m, d = NULL, refit = TRUE)
randomPredOrder(m, d = NULL, refit = TRUE)
regsubsetsOrder(m, d = NULL, refit = TRUE, collapse = TRUE)
Arguments
m | 
 an lm objecct  | 
d | 
 the data frame. If NULL, attempts to extract from m.  | 
refit | 
 TRUE or FALSE  | 
maxNPred | 
 maximum number of predictors to use, defaults to all.  | 
collapse | 
 TRUE or FALSE  | 
Value
a vector of terms in order last to first, or an lm if refit=TRUE. regsubsetsOrder returns a list of predictor vectors, or a list of fits
Functions
-  
pvalOrder(): Arranges model terms in order of increasing p-value -  
bselOrder(): Arranges model terms using backwards selection -  
fselOrder(): Forwards selection -  
revPredOrder(): Reverses order of terms in a fit -  
randomPredOrder(): Reorders terms in a fit randomly -  
regsubsetsOrder(): Best subsets regression. 
Examples
bselOrder(lm(mpg~wt+hp+disp, data=mtcars))
fselOrder(lm(mpg~wt+hp+disp, data=mtcars))
revPredOrder(lm(mpg~wt+hp+disp, data=mtcars))
randomPredOrder(lm(mpg~wt+hp+disp, data=mtcars))
regsubsetsOrder(lm(mpg~wt+hp+disp, data=mtcars))
Constructs colour vector for model terms
Description
Constructs colour vector for model terms
Usage
termColours(f, pal = RColorBrewer::brewer.pal(4, "Set2"))
Arguments
f | 
 a model fit with term labels  | 
pal | 
 use this palette  | 
Value
a vector of colours. Residuals are given a grey color
Examples
termColours(lm(mpg ~ wt+hp, data=mtcars))