
DPP: Reference documentation
version 0.1.2

Luis M. Avila, Mike R. May and Jeffrey Ross-Ibarra

17th November 2017

1

Contents

1 DPP: Introduction 3

2 DPP: Classes and methods 3
2.1 Class: NormalModel . 3
2.2 Class: NormalModel, visualizing parameters 4
2.3 Class: GammaModel . 5
2.4 Class: GammaModel, visualizing parameters 5
2.5 Class: dppMCMC C, initialization 6
2.6 Class: dppMCMC C, running the MCMC 7
2.7 Class: dppMCMC C, convenience methods 7
2.8 Class: dppMCMC C, the dpp mcmc object 8

3 Log files generated 8

4 Interpretation of results 9

5 Troubleshooting 9
5.1 dppMCMC C fails on object instantiation 9
5.2 I get the error message “could not find function “new”” when

running dppMCMC C with Rscript 9

2

1 DPP: Introduction

DPP infers a potentially infinite number of normal distributions from a numeric
vector. It uses an MCMC (Markov Chains Monte Carlo) algorithm with a
Dirichlet process prior to estimate posterior distributions for the parameters of
each normal distribution (µ and σ2) and for the number of normals (k) in the
mixture of normals.

The user provides a numeric vector of values for which the algorithm will
infer a categorization of the values of the vector as originated from a num-
ber of normal distributions. Other user supplied parameters are the prior dis-
tributions for the mean (defined as normally distributed with user provided
mean prior mean and mean prior sd) and standard deviation (defined as gamma
distributed with user provided sd prior shape and sd prior rate) for the normal
distributons to be inferred.

The default values provided and used in the documentation and help files
for the package have worked well inferring the number of normal distributions
in simulated data for 1 to 5 normals.

Perhaps the first parameter to start playing around with would be the
maximum number of generations that the MCMC would run for. The default
value used in the documentation is 10,000 generations which runs in a few min-
utes and makes good inferences for the number of normals and their parameters
(µ and σ2) for mixtures when the means of the normals are well separated and
a vector of fewer than 1000 values is used. For examples with more categories
with closer means and more values in the vector, more generations would be
needed to achieve convergence.

DPPmcmc is capable of stopping automatically when an Effective Sample
Size (ESS) threshold is achieved (default 500), as an indication that convergence
of the MCMC has been achieved and no more generations are necessary for
proper estimation of the posterior distributions of the parameters.

DPPmcmc can be extended to use other distributions in addition of the
normal distribution. As an example of this we have included the class Gam-
maModel to allow inferring Gamma distributions.

Three classes are made available by this package:

• NormalModel

• GammaModel

• dppMCMC C

2 DPP: Classes and methods

2.1 Class: NormalModel

Objects of the NormalModel class are initialized with prior parameters to be
used by the MCMC algorithm in dppMCMC C class.

3

normal.model <-new(NormalModel ,

mean_prior_mean =0.5,

mean_prior_sd=0.1,

sd_prior_shape=3,

sd_prior_rate=20,

estimate_concentration_parameter=TRUE ,

concentration_parameter_alpha =10,

proposal_disturbance_sd=0.1)

Listing 1: Initializing an object of class NormalModel

The means for the normal distributions to be inferred from the data will be sam-
pled from N(µ = mean prior mean, σ2 = mean prior sd2) and the variance for
those means will be sampled from a Γ(α = sd prior shape, β = sd prior rate)
provided as priors when instantiating NormalModel.

Additional parameters to be provide to the NormalModel object are:

estimate concentration parameter={TRUE,FALSE}

• if FALSE the same concentration parameter will used for all generations
of the MCMC.

• if TRUE the concentration parameter will be estimated for each genera-
tion of the MCMC.

The concentration parameter is used for the initial allocation proposal, as a
parameter of the SimulateChineseRestaurant method used for the prior allo-
cation and for the allocation proposal function in sucesive generations of the
MCMC. By allocation we refer here to the membership of each element of the
user supplied data numeric vector belonging to each of the infered normal dis-
tributions. data is provided when an object of class dppMCMC C is initialized.

concentration parameter alpha is used in the estimation of the concentra-
tion parameter.

2.2 Class: NormalModel, visualizing parameters

The getParameters method shows the values of the different parameters ini-
tialized in a NormalModel object.

normal.model$getParameters ()

$mean_prior_mean

[1] 0.5

$mean_prior_sd

[1] 0.1

$sd_prior_shape

[1] 3

$sd_prior_rate

4

[1] 20

$estimate_concentration_parameter

[1] TRUE

$concentration_parameter_alpha

[1] 10

$proposal_disturbance_sd

[1] 0.1

Listing 2: Parameters of a NormalModel object

2.3 Class: GammaModel

Objects of the GammaModel class are initialized with prior parameters to be
used by the MCMC algorithm in dppMCMC C class.

gamma.model <-new(GammaModel ,

shape_prior_mean=4,

shape_prior_sd=1,

rate_prior_mean =1.5,

rate_prior_sd=0.54,

estimate_concentration_parameter=TRUE ,

concentration_parameter_alpha =10,

proposal_disturbance_sd=0.1)

Listing 3: Initializing an object of class GammaModel

The shapes for the gamma distributions to be inferred from the data will be
sampled from N(µ = shape prior mean, σ2 = shape prior sd2) and the rate for
those gamma distributions will be sampled from aN(µ = rate prior mean, σ2 =
rate prior sd2) provided as priors when instantiating GammaModel.

Additional parameters to be provide to the GammaModel object are:

estimate concentration parameter={TRUE,FALSE}

• if FALSE the same concentration parameter will used for all generations
of the MCMC.

• if TRUE the concentration parameter will be estimated for each genera-
tion of the MCMC.

2.4 Class: GammaModel, visualizing parameters

The getParameters method shows the values of the differnet parameters ini-
tialized in a GammaModel object.

gamma.model$getParameters ()

[1] 4

5

$shape_prior_sd

[1] 1

$rate_prior_mean

[1] 1.5

$rate_prior_sd

[1] 0.54

$estimate_concentration_parameter

[1] TRUE

$concentration_parameter_alpha

[1] 10

$proposal_disturbance_sd

[1] 0.1

Listing 4: Parameters of a GammaModel object

2.5 Class: dppMCMC C, initialization

Class dppMCMC C provides the main functionality of the DPPmcmc package.

The dppMCMC C class is initialized with parameters:

data: your data, a numeric vector

output: a prefix that will be used for the ouput files

normal model: a NormalModel object with prior parameters for the normals

num auxiliary tables: the number of auxiliary tables

expected k: a prior for the of expected number of means

power: it is used for the estimation of the likelihood usually taking values 0
or 1. If 1 (default) the likelihood of the parameters given the data is
estimated at each generation, if set to 0 the likelihood estimate is set to
1.

verbose: TRUE or FALSE, when TRUE several log files will be generated
(default: TRUE). When false only the main mcmc.log file is created and
updated in each generation.

my_dpp_analysis <- dppMCMC_C(data=y,

output = "output_prefix_",

model=normal.model ,

num_auxiliary_tables=4,

expected_k=1.5,

power=1,

6

verbose=TRUE)

Listing 5: Initializing an object of class dppMCMC C

2.6 Class: dppMCMC C, running the MCMC

The run method of dppMCMC C receives the following parameters:

generations: the number of generations the MCMC will run for when auto stop
is set to false.

auto stop: when FALSE the MCMC will run for generations generations,
when TRUE the MCMC will run until the Effective Sample Size(ESS)
of the parameters reach min ess or the MCMC has run for max gen
generations. The effectiveSize function from package “coda” is used for
ESS estimation.

max gen: when auto stop is true this will be the maximum number of gen-
erations the MCMC will run even if convergence is not achiveded (the
min ess is reached)

min ess: when this min ess is reached the MCMC will stop running as con-
vergence for the estimation of the parameters will be assumed.

sample freq: specifies the frequency at which the MCMC will write to the log
files (e.g. set to 10 to write to the log files every 10 generations).

my_dpp_analysis$run(generations =1000, auto_stop=TRUE ,

max_gen = 10000 ,min_ess = 500, sample_freq =10)

Listing 6: runnning the MCMC using class dppMCMC C

2.7 Class: dppMCMC C, convenience methods

Users of this package would want to look at the logs created in order to diagnose
the parameter estimation performed by the MCMC. For quick summary reports
that are stored in memory in the dppMCMC C object, the following convenience
methods are provided:

getNumCategoryTrace and getNumCategoryProbabilities receive
a burnin cutoff parameter (with 0.25 as default value) that should range
between 0 and 1. getNumCategoryTrace returns the trace of the estimated
number of categories (k, number of normal distributions) inferred for the last
generations of the MCMC after a percentage of results specified by burnin cutoff
is removed. getNumCategoryProbabilities returns the same information as
probabilities of obtaining k=1,2,...,n.

#we get rid of the first 25% of the output (burn -in)

hist(my_dpp_analysis$getNumCategoryTrace(burnin_cutoff

=0.25))

7

my_dpp_analysis$getNumCategoryProbabilities(burnin_

cutoff =0.25)

Listing 7: displaying result posterior distribution from the dppMCMC C object

2.8 Class: dppMCMC C, the dpp mcmc object

Additional methods are available through the dpp mcmc object of dppMCMC C.
Of particular interest is the allocation vector with category/cluster/normal dis-
tribution assignments for each of the elements of the numeric vector provided
as “data” when the dppMCMC C is initialized. For example, if a total of
three normal distributions are inferred from the data (k=3), a vector containing
values 1, 2 and 3 will be returned by dpp mcmc object$getAllocationVector()
indicating

my_dpp_analysisdpp_mcmc_objectgetAllocationVector ()

Listing 8: accesing the dpp mcmc object: allocation vector

In a similar way, the parameters estimated for the last run of the MCMC are
available in dpp mcmc object$getParamVector()

my_dpp_analysisdpp_mcmc_objectgetParamVector ()

$means

[1] 1.2791923 0.1930994 0.7037923

$sds

[1] 0.09843063 0.04862315 0.04882795

Listing 9: accesing the dpp mcmc object : estimated parameters

3 Log files generated

The filename prefix specified in the creation of dppMCMC C objects with the
output parameter is used as a prefix for the naming the log files generated by
running the MCMC. The following files are created:

<filenaming prefix> mcmc.log: This trace file logs the likelihood of the al-
location of the elements of the data numeric vector as originated from or
belonging to a k number of normal distributions. The current proposed
number of normal distributions k, the current concentration parameter
and the current minimum effective sample size (min ESS) are also logged
for each generation of the MCMC. Note that the minimum effective sam-
ple size will remain 0 for all generations if auto stop is set to FALSE.
min ESS will not be estimated as the MCMC will run for a fixed numer
of generations.

<filenaming prefix> param 1.log: The proposed normal means for each
generation of the MCMC.

8

<filenaming prefix> param 2.log: The proposed normal standard devia-
tions for each generation of the MCMC.

<filenaming prefix> allocation.log: The proposed allocation for each ele-
ment of data as belonging to a finite number of normal distributions.

When verbose=FALSE on class creation only mcmc.log will be created and
updated.

4 Interpretation of results

As the MCMC relies on random sampling for proposing new parameters (num-
ber of normals k and the µ and σ2 for each normal) that maximize the likelihood
given the data, different runs can take different amounts of time to converge and
obtain different posterior distributions. It is advisable to perform multiple runs
over the same data to increase our confidence on the posterior distributions ob-
tained before we make inferences based on those posterior distributions.

5 Troubleshooting

5.1 dppMCMC C fails on object instantiation

In some systems a problem has been reported when creating the dppMCMC C
object.

This operation should take a fraction of a second but in some cases it does
not finish initializing the object. It appears to be a problem with the R object
passed as “data” parameter to the dppMCMC C underlying Rcpp classes. The
following “hack” solves the problem. An element is added to the “data” numeric
vector and then removed so that the data is not affected but in practice allows
for instantitation of dppMCMC C.

#y will be passed as "data" parameter to dppMCMC_C

y <- c(y,rnorm (1 ,0 ,0.1))

y<-y[1:(length(y) -1)]

Listing 10: A hack that helps in some systems

5.2 I get the error message “could not find function “new””
when running dppMCMC C with Rscript

The function new used to instantiate Rcpp objects in dppMCMC C is part
of the “methods” package that is loaded by default in the R shell but not by
Rscript. To fix that add library(methods) to your R script before initializing
dppMCMC C objects.

9

