Package 'DEMOVA'

January 20, 2025

Type Package

Title DEvelopment (of Multi-Linear QSPR/QSAR) MOdels VAlidated using Test Set

Version 1.0

Date 2016-03-15

Author Vinca Prana

Maintainer Vinca Prana <vinca.prana@free.fr>

Description Tool for the development of multi-linear QSPR/QSAR models (Quantitative structureproperty/activity relationship). Theses models are used in chemistry, biology and pharmacy to find a relationship between the structure of a molecule and its property (such as activity, toxicology but also physical properties). The various functions of this package allows: selection of descriptors based of variances, intercorrelation and user expertise; selection of the best multi-linear regression in terms of correlation and robustness; methods of internal validation (Leave-One-Out, Leave-Many-Out, Y-scrambling) and external using test sets.

License GPL (>= 2)

Depends leaps

Suggests testthat

NeedsCompilation no

Repository CRAN

Date/Publication 2016-03-15 19:54:06

Contents

DEMOVA-package .	 •																							2
fitting																								3
graphe_3Sets	 •			•				•				•	•	•	•	•	•	•			•	•		4
$LMO . \ . \ . \ . \ .$	 •			•			•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	5
LOO	 •			•			•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	5
prediction	 •			•			•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	6
preselection																								
scramb																								
select_MLR	 •			•				•		•		•	•	•	•	•	•	•						9
select_variables																								9

Index

DEMOVA-package

DEvelopment of (multi-linear QSPR/QSAR) MOdels VAlidated using test set.

Description

Tool for the development of multi-linear QSPR/QSAR models (Quantitative structure-property/activity relationship). Theses models are used in chemistry, biology and pharmacy to find a relationship between the structure of a molecule and its property (such as activity, toxicology but also physical properties). The various functions of this package allows: selection of descriptors based of variances, intercorrelation and user expertise; selection of the best multi-linear regression in terms of correlation and robustness; methods of internal validation (Leave-One-Out, Leave-Many-Out, Y-scrambling) and external using test sets.

Details

DEMOVA
Package
1.0
2016-03-15
GPL (>= 2)

Example of input files are available into the floder "tests".

data<-read.csv("NameOfInputFile.csv",header = TRUE , sep=" ")</pre>

mydesc<-data[,3:dim[2]]</pre>

Functions should be use in this order:

- preselection

- select_variables
- select_MLR

- fit

- LOO / LMO / Scramb (No specific order between these ones. Optional to do the rest)

- prediction

- graphe_3Sets

Author(s)

Vinca Prana Maintainer: Vinca Prana <vinca.prana@free.fr>

11

fitting

References

 Selassie, C. D. History of Quantitative Structure-Activity Relationship; Burger's Medicinal Chemistry and Drug Discovery Sixth Edition; John Wiley & Sons Inc., 2002; Vol. 1. (2)
 Willett, P. Chemoinformatics: a History. Wiley Interdisciplinary Reviews: Computational Molecular Science 2011, 1, 46-56.

fitting

Performance of selected model

Description

Perform a multi linear regression between property and previously selected descriptors (using select_MLR function).

Calculate R2 coefficient and the predicted values from the MLR. Trace the graph experimental values vs predicted values.

Usage

fitting(mydata, n, property)

Arguments

mydata	Dataframe containing names and values of response and descriptors
n	Number of selected descriptors of the regression (determined using select_MLR function)
property	Name of the studied proterty

Value

prediction_TrainSet_Y.csv File containing prediction obtained using the fitting Y_TrainingSet.tiff Image representing experimental values vs predicted values for the training set fit Im object return by the function

Examples

- # First run select_MLR to define n
- # y<-data[,2]</pre>
- # mydata<-cbind(y,MLR)</pre>
- # fit<-fitting(data,dim(MLR)[2],"Name of property")</pre>

```
graphe_3Sets
```

Description

Calulate the predicted values for the external validation set and trace the graph experimental values vs predicted values for training, test and external validation sets.

Usage

graphe_3Sets(fit, mydata, mynewdata, mynewdata2, n)

Arguments

fit	Multi linear regression between property and selected descriptors (lm object)
mydata	Dataframe containing names and values of response and descriptors
mynewdata	Dataframe containing property and selected descriptors values for the test set
mynewdata2	Dataframe containing property and selected descriptors values for the external validation set
n	Numbers of selected descriptors of the regression (determined using select_MLR)

Value

Rext, Rext2	return a list containing the value of the determination coefficient of the test set
	and of the external validation set
Graphe 3sets.t	iff

Image representing experimental values vs predicted values for the all three sets

Examples

This function have to be run last!

"Test_set.csv" should be with the following form
ID property SelectedDesc1 SelectedDesc2 ...

```
# new_nom<-'Test_set.csv'
# newdata<-read.csv(new_nom,header=TRUE , sep=" ")
# mynewdata=newdata[,2:dim[2]]</pre>
```

"External_set.csv" should be with the following form
ID property SelectedDesc1 SelectedDesc2 ...

```
# new_nom2<-'External_set.csv'
# newdata2<-read.csv(new_nom2,header=TRUE , sep=" ")
# mynewdata2=newdata2[,2:dim[2]]</pre>
```

#graphe_3Sets(fit,mynewdata,mynewdata2,dim(MLR)[2])

LMO

Description

Calculate the robustness of the equation using the leave many out method.

Usage

LMO(mydata, cv, n)

Arguments

mydata	Dataframe containing names and values of response and descriptors
CV	Numbers of fold
n	Numbers of selected descriptors of the regression (determined using Select_MLR)

Value

return Q2, the coefficient that measure the robstness

References

1. Gramatica, P. Principles of QSAR Models Validation: Internal and External. Qsar & Combinatorial Science 2007, 26, 694-701.

2. Golbraikh, A.; Tropsha, A. Beware of Q(2)! Journal of Molecular Graphics & Modelling 2002, 20, 269-276.

Examples

First run Select_MLR to define n

#LMO(mydata,5,dim(MLR)[2])
#LMO(mydata,10,dim(MLR)[2])

L00

Leave One Out

Description

Calculate the robustness of the equation using the leave one out method.

Usage

LOO(mydata, n)

prediction

Arguments

mydata	Dataframe containing names and values of response and descriptors
n	Numbers of selected descriptors of the regression (determined using Select_MLR)

Value

return Q2, the coefficient that measure the robstness

References

1. Gramatica, P. Principles of QSAR Models Validation: Internal and External. Qsar & Combinatorial Science 2007, 26, 694-701.

2. Golbraikh, A.; Tropsha, A. Beware of Q(2)! Journal of Molecular Graphics & Modelling 2002, 20, 269-276.

Examples

First run Select_MLR to define n

LOO(mydata,dim(MLR)[2])

prediction

Predictions for the test set and graph

Description

Calulate the predicted values for the test set and trace the graph experimental values vs predicted values for both training and test sets. This function also give the R2 test coefficient.

Usage

prediction(fit, mydata, mynewdata, n)

Arguments

fit	Multi linear regression between property and selected descriptors
mydata	Dataframe containing names and values of response and descriptors
mynewdata	Dataframe containing property and selected descriptors values for the test set
n	Numbers of selected descriptors of the regression (determined using Select_MLR)

Value

Exp.vs.Pred.tiff

	Image representing experimental values vs predicted values for the both sets
Rext	return the value of the determination coefficient of the test set

-

preselection

Examples

This function have to be run after choise of the model.

```
## "Test_set.csv" should be with the following form
## ID property SelectedDesc1 SelectedDesc2 ...
#new_nom<-'Test_set.csv'
#newdata<-read.csv(new_nom,header=TRUE , sep=" ")
#mynewdata=newdata[,2:dim[2]]</pre>
```

```
#prediction(fit,mynewdata,dim(MLR)[2])
```

preselection Suppression of missing or constant descriptors

Description

Remove descriptors with missing values and a variance lower than 0.001.

Usage

preselection(desc)

Arguments

desc Dataframe containing the names of desciptors and their values

Value

return a dataframe without the removed variables

Examples

```
## The input file should be with the following form
## id_molecule propriete x1 x2 x3 ... # Header line
## molecule1 1 0.02 500 ...
## molecule2 5 0.06 600 ...
# nom<-"NameOfInputFile.csv"
# data<-read.csv(nom,header = TRUE , sep=" ")
# dim<-dim(data)
# mydesc<-data[,3:dim[2]]
# id<-data[,1]
# y<-data[,2]</pre>
```

```
# d<-preselection(mydesc)</pre>
```

scramb

Description

Perform the y-scrambling method that consit to permute y values and try to develop new models. They have to be unperformants in order to validate the original one. The graph R2 vs r(y,yrandom) is created.

Usage

scramb(mydata, k, n, cercle = FALSE)

Arguments

mydata	Dataframe containing names and values of response and descriptors
k	Number of random run
n	Number of selected descriptors of the regression (determined using Select_MLR)
cercle	Value is TRUE or FALSE (by default). If it TRUE it's draw a circle around the
	point representinf the original model

Value

Return a list of	
mean	Mean of R ² new model
sd	RStandard deviation of R^2 new model
And also	
Scramb.tiff	Description of 'comp1'
Scramb.csv	Description of 'comp2'

References

Tropsha, A.; Gramatica, P.; Gombar, V. K. The Importance of Being Earnest: Validation Is the Absolute Essential for Successful Application and Interpretation of QSPR Models. Qsar & Combinatorial Science 2003, 22, 69-77.

Rucker, C.; Rucker, G.; Meringer, M. y-Randomization and Its Variants in QSPR/QSAR. J. Chem. Inf. Model. 2007, 47, 2345-2357.

Lindgren, F.; Hansen, B.; Karcher, W.; Sjostrom, M.; Eriksson, L. Model Validation by Permutation Tests: Applications to Variable Selection. Journal of Chemometrics 1996, 10, 521-532.

Examples

First run Select_MLR to define n

scramb(mydata,1000,nom,dim(MLR)[2])

select_MLR

Description

From a list of descriptors and responses values, this function choose the best compromise between correlation and robustness to select the best model.

Usage

select_MLR(y, desc, n, method = "forward")

Arguments

У	Vector with values of the property/response
desc	Dataframe containing the names of desciptors and their values
n	Maximal number (integer) of desciptors for the final equation
method	Determine the method used to build the regression. Can be: "backward", "for- ward" (by default) or "seqrep". For more info see leaps package.

Value

Return the list of selected variables for the choosen MLR.

Examples

```
# First run Select_variables to remove descriptors with missing or constant values.
# MLR<-select_MLR(y,desc,5)</pre>
```

select_variables Selection of descriptors

Description

This function allow the user to select wanted descriptors between both that are intercorrelated with a correlation coefficient higher that ThresholdInterCor. The selection can also be automatic based on the correlation with the property of each variables.

Usage

```
select_variables(id, y, d, ThresholdInterCor, auto = FALSE)
```

Arguments

id	List of the names of observations
У	List of the values of the property/response
d	Dataframe containing the names of desciptors and their values (without missing or constant values)
ThresholdInterCor	
	Threshold value (double) of the accepted intercorrelation between descriptors (should be between 0 and 1)
auto	Two possible values: TRUE or FALSE (by default). The selection of descriptors is done automatically based on the correlation between descriptor and property (auto=TRUE) or is done manually by user (auto=FALSE)

Value

return a dataframe containing only of non intercorrelated variables

Examples

- # Run after Preselection : d<-Preselection(desc)</pre>
- # desc<-select_variables(id,y,d,0.95)</pre>

Index

fitting, 3

graphe_3Sets, 4

LMO, 5 LOO, 5

prediction, 6
preselection, 7

scramb, 8
select_MLR, 9
select_variables, 9