Package ‘DDRTree’

January 20, 2025

Type Package

Title Learning Principal Graphs with DDRTree
Version 0.1.5

Date 2017-4-14

Author Xiaojie Qiu, Cole Trapnell, Qi Mao, Li Wang
Depends irlba

Imports Rcpp

LinkingTo Rcpp, ReppEigen, BH

Maintainer Xiaojie Qiu <xgqiu@uw.edu>

Description Provides an implementation of the framework of reversed graph embed-
ding (RGE) which projects data into a reduced dimensional space while constructs a princi-
pal tree which passes through the middle of the data simultaneously. DDRTree shows superior-
ity to alternatives (Wishbone, DPT) for inferring the ordering as well as the intrinsic struc-
ture of the single cell genomics data. In general, it could be used to reconstruct the temporal pro-
gression as well as bifurcation structure of any datatype.

License Artistic License 2.0

RoxygenNote 6.0.1

SystemRequirements C++11
NeedsCompilation yes

Repository CRAN

Date/Publication 2017-04-30 20:54:17 UTC

Contents
DDRTree 2
get_major_eigenvalue L. 5
pca_projection_R L e e 6
sqdist_R . . . L 6
Index 7

DDRTree

DDRTree

Perform DDRTree construction

Description

Perform DDRTree construction

This is an R and C code implementation of the DDRTree algorithm from Qi Mao, Li Wang et al.

Qi Mao, Li Wang, Steve Goodison, and Yijun Sun. Dimensionality Reduction via Graph Struc-
ture Learning. The 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining

(KDD’15), 2015

http://dl.acm.org/citation.cfm?id=2783309

to perform dimension reduction and principal graph learning simultaneously. Please cite this pack-
age and KDD’15 paper if you found DDRTree is useful for your research.

Usage

DDRTree(X, dimensions = 2, initial_method = NULL, maxIter = 20,
sigma = 0.001, lambda = NULL, ncenter = NULL, param.gamma = 10,
tol = 0.001, verbose = F, ...)

Arguments

X

dimensions

initial_method

maxIter
sigma
lambda
ncenter

param.gamma

tol

verbose

a matrix with D x N dimension which is needed to perform DDRTree construc-
tion

reduced dimension

a function to take the data transpose of X as input and then output the reduced
dimension, row number should not larger than observation and column number
should not be larger than variables (like isomap may only return matrix on valid
sample sets). Sample names of returned reduced dimension should be preserved.

maximum iterations

bandwidth parameter

regularization parameter for inverse graph embedding
number of nodes allowed in the regularization graph

regularization parameter for k-means (the prefix of ’param’ is used to avoid
name collision with gamma)

relative objective difference
emit extensive debug output

additional arguments passed to DDRTree

http://dl.acm.org/citation.cfm?id=2783309

DDRTree 3

Value

a list with W, Z, stree, Y, history W is the orthogonal set of d (dimensions) linear basis vector Z is
the reduced dimension space stree is the smooth tree graph embedded in the low dimension space
Y represents latent points as the center of Z

Introduction

The unprecedented increase in big-data causes a huge difficulty in data visualization and down-
stream analysis. Conventional dimension reduction approaches (for example, PCA, ICA, Isomap,
LLE, etc.) are limited in their ability to explictly recover the intrinisic structure from the data as
well as the discriminative feature representation, both are important for scientific discovery. The
DDRTree algorithm is a new algorithm to perform the following three tasks in one setting:

1. Reduce high dimension data into a low dimension space

2. Recover an explicit smooth graph structure with local geometry only captured by distances
of data points in the low dimension space.

3. Obtain clustering structures of data points in reduced dimension

Dimensionality reduction via graph structure learning

Reverse graph embedding is previously applied to learn the intrinisic graph structure in the original
dimension. The optimization of graph inference can be represented as:

min min Z bijl| fo(2i) = folz)|I?
fo€F {z1,....2m } (Vivyes

where f, is a function to map the instrinsic data space Z = {z1,...,z;s} back to the input data
space (reverse embedding) X = {x1,...,xx}. V; is the the vertex of the instrinsic undirected graph
G = (V,&). b;; is the edge weight associates with the edge set £. In order to learn the intrinsic
structure from a reduced dimension, we need also to consider a term which includes the error during
the learning of the instrinsic structure. This strategy is incorporated as the following:

N
A
min min = min }Z 1% — fy(z)|]* + 2 Z bi sl fo(2i) = fo(2))IP

5 EF Yoy ‘
G0 Jo &7 (ot} i (Vi,Vy)ee

where) is a non-negative parameter which controls the tradeoff between the data reconstruction
error and the reverse graph embedding.

Dimensionality reduction via learning a tree

The general framework for reducing dimension by learning an intrinsic structure in a low dimen-
sion requires a feasible set Gy of graph and a mapping function fg. The algorithm uses minimum
spanning tree as the feasible tree graph structure, which can be solved by Kruskal’ algoritm. A
linear projection model f,;(z) = Wz is used as the mapping function. Those setting results in the

4 DDRTree

following specific form for the previous framework:

N

. 2, A 2
nin ; [Ixi = Wazil|” + 5 ; bi ;|| Wz — Waz]|
where W = [wy, ..., wq] € RP*?is an orthogonal set of d linear basis vectors. We can group tree
graph B, the orthogonal set of linear basis vectors and projected points in reduced dimension W, Z
as two groups and apply alternative structure optimization to optimize the tree graph. This method
is defined as DRtree (Dimension Reduction tree) as discussed by the authors.

Discriminative dimensionality reduction via learning a tree

In order to avoid the issues where data points scattered into different branches (which leads to lose of
cluster information) and to incorporate the discriminative information,another set of points {y }1_,
as the centers of {z;}~ ; can be also introduced. By so doing, the objective functions of K-means
and the DRtree can be simulatenously minimized. The author further proposed a soft partition
method to account for the limits from K-means and proposed the following objective function:

N K N
A
- 2 7112 2
w,Q?éT‘y,RZ [Ixi =Wz ||"+ 5 > b [[Wyr—Wyj| H[ZZri,kl\zi—ykll +0Q(R)
i=1 .k’ k=11i=1
K
st.W'W =L,B€B,> rip=1rx <0,Vi,Vk
k=1

where R € RV*N Q(R) = Zf\;l ZZ:1 r;.klog 5 i, is the negative entropy regularization which
transforms the hard assignments used in K-means into soft assignments and ¢ > 0 is the reg-
ulization parameter. Alternative structure optimization is again used to solve the above problem by
separately optimize each group W, Z,Y, B, R until convergence.

The actual algorithm of DDRTree

1. Input: Data matrix X, parameters \, o,y

2. Initialize Z by PCA

3. K=NY=Z

4. repeat:

5. di e = |lyk — ywl|? Vk, VE

6. Obtain B via Kruskal’s algorithm

7.L = diag(B1) — B

8. Compute R with each element

9.7 = diag(1TR)

10.Q = {1 [I +R(ZI(AL + 1) - R7R)'R”
11. ¢ = XQx7*

12. Perform eigen-decomposition on C such that C = U A U7 and diag(A) is sorted in a descend-
ing order

13. W =U(;,1:d)

14.Z = WTXQ

15.Y = ZR(3L + 1)

16. Until Convergence

get_major_eigenvalue 5

Implementation of DDRTree algorithm

We implemented the algorithm mostly in Repp for the purpose of efficiency. It also has extensive
optimization for sparse input data. This implementation is originally based on the matlab code
provided from the author of DDRTree paper.

Examples

data('iris")

subset_iris_mat <- as.matrix(t(iris[c(1, 2, 52, 103), 1:4])) #subset the data
#run DDRTree with ncenters equal to species number

DDRTree_res <- DDRTree(subset_iris_mat, dimensions = 2, maxIter = 5, sigma = le-2,
lambda = 1, ncenter = 3, param.gamma = 10, tol = 1e-2, verbose = FALSE)

Z <- DDRTree_res$Z #obatain matrix

Y <- DDRTree_res$Y

stree <- DDRTree_res$stree

plot(z[1, 1, Z[2, 1, col = iris[c(1, 2, 52, 103), 'Species']) #reduced dimension
legend("center”, legend = unique(iris[c(1, 2, 52, 103), 'Species']), cex=0.8,
col=unique(iris[c(1, 2, 52, 103), 'Species']), pch = 1) #legend
title(main="DDRTree reduced dimension”, col.main="red"”, font.main=4)

dev.off()

plot(Y[1, 1, Y[2, 1, col = 'blue', pch = 17) #center of the Z
title(main="DDRTree smooth principal curves”, col.main="red"”, font.main=4)

#run DDRTree with ncenters equal to species number

DDRTree_res <- DDRTree(subset_iris_mat, dimensions = 2, maxIter = 5, sigma = le-3,
lambda = 1, ncenter = NULL,param.gamma = 10, tol = le-2, verbose = FALSE)

Z <- DDRTree_res$Z #obatain matrix

Y <- DDRTree_res$Y

stree <- DDRTree_res$stree

plot(z[1, 1, Z[2, 1, col = iris[c(1, 2, 52, 103), 'Species']) #reduced dimension
legend("center”, legend = unique(iris[c(1, 2, 52, 103), 'Species']), cex=0.8,
col=unique(iris[c(1, 2, 52, 103), 'Species']), pch = 1) #legend
title(main="DDRTree reduced dimension”, col.main="red"”, font.main=4)

dev.off()

plot(Y[1, 1, Y[2, 1, col = 'blue', pch = 2) #center of the Z

title(main="DDRTree smooth principal graphs”, col.main="red", font.main=4)

get_major_eigenvalue Get the top L eigenvalues

Description

Get the top L eigenvalues

Usage

get_major_eigenvalue(C, L)

6 sqdist_R

Arguments
C data matrix used for eigendecomposition
L number for the top eigenvalues
pca_projection_R Compute the PCA projection
Description

Compute the PCA projection

Usage
pca_projection_R(C, L)

Arguments
C data matrix used for PCA projection
L number for the top principal components
sqdist_R calculate the square distance between a, b
Description

calculate the square distance between a, b

Usage
sqdist_R(a, b)

Arguments
a a matrix with D x N dimension
b a matrix with D x N dimension
Value

a numeric value for the different between a and b

Index

DDRTree, 2
DDRTree-package (DDRTree), 2

get_major_eigenvalue, 5
pca_projection_R, 6

sqdist_R, 6

	DDRTree
	get_major_eigenvalue
	pca_projection_R
	sqdist_R
	Index

