
Package ‘ClustAssess’
May 28, 2025

Type Package

Title Tools for Assessing Clustering

Version 1.1.0

Description A set of tools for evaluating clustering robustness using
proportion of ambiguously clustered pairs (Senbabaoglu et al. (2014)
<doi:10.1038/srep06207>), as well as similarity across methods
and method stability using element-centric clustering comparison (Gates et
al. (2019) <doi:10.1038/s41598-019-44892-y>). Additionally, this package
enables stability-based parameter assessment for graph-based clustering
pipelines typical in single-cell data analysis.

License MIT + file LICENSE

Encoding UTF-8

Additional_repositories https://blaserlab.r-universe.dev

biocViews Software, SingleCell, RNASeq, ATACSeq, Normalization,
Preprocessing, DimensionReduction, Visualization,
QualityControl, Clustering, Classification, Annotation,
GeneExpression, DifferentialExpression

Depends R (>= 4.0.0), methods, stats

Imports dplyr, DT, fastcluster, foreach, glue, Gmedian, ggnewscale,
ggplot2, ggrastr, ggrepel, ggtext, gprofiler2, igraph,
jsonlite, leiden, Matrix (>= 1.5.0), matrixStats, progress,
stringr, paletteer, plotly, qualpalr, RANN, reshape2, rlang,
Seurat, shiny, shinyjs, shinyLP, shinyWidgets, utils, uwot,
vioplot

RoxygenNote 7.3.2

LinkingTo Rcpp, RcppEigen

Suggests BiocManager, colourpicker, ComplexHeatmap, data.table,
DelayedMatrixStats, devtools, doParallel, leidenbase, monocle3,
patchwork, ragg, reticulate, rhdf5, RhpcBLASctl, rmarkdown,
scales, SeuratObject, SharedObject, styler, testthat (>= 3.0.0)

URL https://github.com/Core-Bioinformatics/ClustAssess,

https://core-bioinformatics.github.io/ClustAssess/

1

https://doi.org/10.1038/srep06207
https://doi.org/10.1038/s41598-019-44892-y
https://blaserlab.r-universe.dev
https://github.com/Core-Bioinformatics/ClustAssess
https://core-bioinformatics.github.io/ClustAssess/

2 Contents

BugReports https://github.com/Core-Bioinformatics/ClustAssess/issues

Config/testthat/edition 3

NeedsCompilation yes

Author Andi Munteanu [aut, cre],
Arash Shahsavari [aut],
Rafael Kollyfas [ctb],
Miguel Larraz Lopez de Novales [aut],
Liviu Ciortuz [ctb],
Irina Mohorianu [aut]

Maintainer Andi Munteanu <am3019@cam.ac.uk>

Repository CRAN

Date/Publication 2025-05-27 23:00:30 UTC

Contents
add_metadata . 3
assess_clustering_stability . 4
assess_feature_stability . 6
assess_nn_stability . 8
automatic_stability_assessment . 10
calculate_markers . 13
calculate_markers_shiny . 16
choose_stable_clusters . 18
consensus_cluster . 19
create_monocle_default . 20
create_monocle_from_clustassess . 21
create_monocle_from_clustassess_app . 23
create_seurat_object_default . 24
create_seurat_object_from_clustassess_app . 25
element_agreement . 26
element_consistency . 27
element_sim . 29
element_sim_elscore . 31
element_sim_matrix . 33
getNNmatrix . 34
get_clusters_from_clustassess_object . 35
get_colour_vector_from_palette . 36
get_highest_prune_param . 36
get_highest_prune_param_embedding . 37
get_nn_conn_comps . 38
marker_overlap . 40
merge_partitions . 41
merge_resolutions . 42
pac_convergence . 43
pac_landscape . 44
plot_clustering_difference_facet . 44

https://github.com/Core-Bioinformatics/ClustAssess/issues

add_metadata 3

plot_clustering_overall_stability . 45
plot_clustering_per_value_stability . 47
plot_clust_hierarchical . 48
plot_connected_comps_evolution . 50
plot_feature_overall_stability_boxplot . 51
plot_feature_overall_stability_incremental . 52
plot_feature_per_resolution_stability_boxplot . 54
plot_feature_per_resolution_stability_incremental . 55
plot_feature_stability_ecs_facet . 57
plot_feature_stability_mb_facet . 58
plot_k_n_partitions . 59
plot_k_resolution_corresp . 61
plot_n_neigh_ecs . 62
plot_n_neigh_k_correspondence . 63
server_comparisons . 64
server_dimensionality_reduction . 65
server_graph_clustering . 65
server_graph_construction . 66
server_landing_page . 66
server_sandbox . 67
ui_comparisons . 68
ui_dimensionality_reduction . 68
ui_graph_clustering . 69
ui_graph_construction . 69
ui_landing_page . 70
ui_sandbox . 70
weighted_element_consistency . 71
write_objects . 72
write_shiny_app . 73

Index 75

add_metadata Add metadata to ClustAssess ShinyApp

Description

Adds new metadata into the ClustAssess ShinyApp without having to update the object and re-create
the app.

Usage

add_metadata(app_folder, metadata, qualpalr_colorspace = "pretty")

4 assess_clustering_stability

Arguments

app_folder The folder containing the ClustAssess ShinyApp

metadata The new metadata to be added. This parameter should be a dataframe that fol-
lows the same row ordering as the already existing metadata from the Clus-
tAssess app.

qualpalr_colorspace

The colorspace to be used for the metadata

Value

NULL - the metadata object is updated in the app folder

assess_clustering_stability

Assessment of Stability for Graph Clustering

Description

Evaluates the stability of different graph clustering methods in the clustering pipeline. The method
will iterate through different values of the resolution parameter and compare, using the EC Consis-
tency score, the partitions obtained at different seeds.

Usage

assess_clustering_stability(
graph_adjacency_matrix,
resolution,
n_repetitions = 100,
seed_sequence = NULL,
ecs_thresh = 1,
clustering_algorithm = 1:3,
clustering_arguments = list(),
verbose = TRUE

)

Arguments

graph_adjacency_matrix

A square adjacency matrix based on which an igraph object will be built. The
matrix should have rownames and colnames that correspond to the names of the
cells.

resolution A sequence of resolution values. The resolution parameter controls the coarse-
ness of the clustering. The higher the resolution, the more clusters will be ob-
tained. The resolution parameter is used in the community detection algorithms.

n_repetitions The number of repetitions of applying the pipeline with different seeds; ignored
if seed_sequence is provided by the user. Defaults to 100.

assess_clustering_stability 5

seed_sequence A custom seed sequence; if the value is NULL, the sequence will be built starting
from 1 with a step of 100.

ecs_thresh The ECS threshold used for merging similar clusterings.
clustering_algorithm

An index or a list of indexes indicating which community detection algorithm
will be used: Louvain (1), Louvain refined (2), SLM (3) or Leiden (4). More
details can be found in the Seurat’s FindClusters function. Defaults to 1:3.

clustering_arguments

A list of additional arguments that will be passed to the clustering method. More
details can be found in the Seurat’s FindClusters function.

verbose Boolean value used for displaying the progress bar.

Value

A list having two fields:

• all - a list that contains, for each clustering method and each resolution value, the EC consis-
tency between the partitions obtained by changing the seed

• filtered - similar to all, but for each configuration, we determine the number of clusters
that appears the most and use only the partitions with this size

Examples

set.seed(2024)
create an artificial PCA embedding
pca_embedding <- matrix(runif(100 * 30), nrow = 100)
rownames(pca_embedding) <- paste0("cell_", seq_len(nrow(pca_embedding)))
colnames(pca_embedding) <- paste0("PC_", 1:30)

adj_matrix <- getNNmatrix(
RANN::nn2(pca_embedding, k = 10)$nn.idx,
10,
0,
-1

)$nn
rownames(adj_matrix) <- paste0("cell_", seq_len(nrow(adj_matrix)))
colnames(adj_matrix) <- paste0("cell_", seq_len(ncol(adj_matrix)))

alternatively, the adj_matrix can be calculated
using the `Seurat::FindNeighbors` function.

clust_diff_obj <- assess_clustering_stability(
graph_adjacency_matrix = adj_matrix,
resolution = c(0.5, 1),
n_repetitions = 10,
clustering_algorithm = 1:2,
verbose = TRUE

)
plot_clustering_overall_stability(clust_diff_obj)

6 assess_feature_stability

assess_feature_stability

Assess the stability for configurations of feature types and sizes

Description

Evaluate the stability of clusterings obtained based on incremental subsets of a given feature set.

Usage

assess_feature_stability(
data_matrix,
feature_set,
steps,
feature_type,
resolution,
n_repetitions = 100,
seed_sequence = NULL,
graph_reduction_type = "PCA",
ecs_thresh = 1,
matrix_processing = function(dt_mtx, actual_npcs = 30, ...) {

actual_npcs <-
min(actual_npcs, ncol(dt_mtx)%/%2)

RhpcBLASctl::blas_set_num_threads(foreach::getDoParWorkers())
embedding <-
stats::prcomp(x = dt_mtx, rank. = actual_npcs)$x

RhpcBLASctl::blas_set_num_threads(1)
rownames(embedding) <- rownames(dt_mtx)

colnames(embedding) <- paste0("PC_", seq_len(ncol(embedding)))

return(embedding)
},
umap_arguments = list(),
prune_value = -1,
clustering_algorithm = 1,
clustering_arguments = list(),
verbose = FALSE

)

Arguments

data_matrix A data matrix having the features on the rows and the observations on the
columns.

feature_set A set of feature names that can be found on the rownames of the data matrix.

assess_feature_stability 7

steps Vector containing the sizes of the subsets; negative values will be interpreted as
using all features.

feature_type A name associated to the feature_set.
resolution A vector containing the resolution values used for clustering.
n_repetitions The number of repetitions of applying the pipeline with different seeds; ignored

if seed_sequence is provided by the user. Defaults to 100.
seed_sequence A custom seed sequence; if the value is NULL, the sequence will be built starting

from 1 with a step of 100. Defaults to NULL.
graph_reduction_type

The graph reduction type, denoting if the graph should be built on either the
PCA or the UMAP embedding. Defaults to PCA.

ecs_thresh The ECS threshold used for merging similar clusterings. We recommend using
the 1 value. Defaults to 1.

matrix_processing

A function that will be used to process the data matrix by using a dimensionality
reduction technique. The function should have one parameter, the data matrix,
and should return an embedding describing the reduced space. By default, the
function will use the precise PCA method with prcomp.

umap_arguments A list containing the arguments that will be passed to the UMAP function. Refer
to the uwot::umap function for more details.

prune_value Argument indicating whether to prune the SNN graph. If the value is 0, the
graph won’t be pruned. If the value is between 0 and 1, the edges with weight
under the pruning value will be removed. If the value is -1, the highest pruning
value will be calculated automatically and used.

clustering_algorithm

An index indicating which community detection algorithm will be used: Lou-
vain (1), Louvain refined (2), SLM (3) or Leiden (4). More details can be found
in the Seurat’s FindClusters function.

clustering_arguments

A list containing the arguments that will be passed to the community detection
algorithm, such as the number of iterations and the number of starts. Refer to
the Seurat’s FindClusters function for more details.

verbose A boolean indicating if the intermediate progress will be printed or not.

Value

A list having one field associated with a step value. Each step contains a list with three fields:

• ecc - the EC-Consistency of the partitions obtained on all repetitions
• embedding - one UMAP embedding generated on the feature subset
• most_frequent_partition - the most common partition obtained across repetitions

Note

The algorithm assumes that the feature_set is already sorted when performing the subsetting based
on the steps values. For example, if the user wants to analyze highly variable feature set, they should
provide them sorted by their variability.

8 assess_nn_stability

Examples

set.seed(2024)
create an artificial expression matrix
expr_matrix <- matrix(

c(runif(100 * 10), runif(100 * 10, min = 3, max = 4)),
nrow = 200, byrow = TRUE

)
rownames(expr_matrix) <- as.character(1:200)
colnames(expr_matrix) <- paste("feature", 1:10)

feature_stability_result <- assess_feature_stability(
data_matrix = t(expr_matrix),
feature_set = colnames(expr_matrix),
steps = 5,
feature_type = "feature_name",
resolution = c(0.1, 0.5, 1),
n_repetitions = 10,
umap_arguments = list(

the following parameters are used by the umap function
and are not mandatory
n_neighbors = 3,
approx_pow = TRUE,
n_epochs = 0,
init = "random",
min_dist = 0.3

),
clustering_algorithm = 1

)
plot_feature_overall_stability_boxplot(feature_stability_result)

assess_nn_stability Assess the stability for Graph Building Parameters

Description

Evaluates clustering stability when changing the values of different parameters involved in the graph
building step, namely the base embedding, the graph type and the number of neighbours.

Usage

assess_nn_stability(
embedding,
n_neigh_sequence,
n_repetitions = 100,
seed_sequence = NULL,
graph_reduction_type = "PCA",
ecs_thresh = 1,
graph_type = 2,
prune_value = -1,

assess_nn_stability 9

clustering_algorithm = 1,
clustering_arguments = list(),
umap_arguments = list()

)

Arguments

embedding A matrix associated with a PCA embedding. Embeddings from other dimen-
sionality reduction techniques (such as LSI) can be used.

n_neigh_sequence

A sequence of the number of nearest neighbours.

n_repetitions The number of repetitions of applying the pipeline with different seeds; ignored
if seed_sequence is provided by the user.

seed_sequence A custom seed sequence; if the value is NULL, the sequence will be built starting
from 1 with a step of 100.

graph_reduction_type

The graph reduction type, denoting if the graph should be built on either the
PCA or the UMAP embedding.

ecs_thresh The ECS threshold used for merging similar clusterings.

graph_type Argument indicating whether the graph should be unweighted (0), weighted (1)
or both (2).

prune_value Argument indicating whether to prune the SNN graph. If the value is 0, the
graph won’t be pruned. If the value is between 0 and 1, the edges with weight
under the pruning value will be removed. If the value is -1, the highest pruning
value will be calculated automatically and used.

clustering_algorithm

An index indicating which community detection algorithm will be used: Lou-
vain (1), Louvain refined (2), SLM (3) or Leiden (4). More details can be found
in the Seurat’s FindClusters function.

clustering_arguments

A list of arguments that will be passed to the clustering algorithm. See the
FindClusters function in Seurat for more details.

umap_arguments Additional arguments passed to the the uwot::umap method.

Value

A list having three fields:

• n_neigh_k_corresp - list containing the number of the clusters obtained by running the
pipeline multiple times with different seed, number of neighbours and graph type (weighted
vs unweigted)

• n_neigh_ec_consistency - list containing the EC consistency of the partitions obtained at
multiple runs when changing the number of neighbours or the graph type

• n_different_partitions - the number of different partitions obtained by each number of
neighbours

10 automatic_stability_assessment

Examples

set.seed(2024)
create an artificial PCA embedding
pca_emb <- matrix(runif(100 * 30), nrow = 100, byrow = TRUE)
rownames(pca_emb) <- as.character(1:100)
colnames(pca_emb) <- paste0("PC_", 1:30)

nn_stability_obj <- assess_nn_stability(
embedding = pca_emb,
n_neigh_sequence = c(10, 15, 20),
n_repetitions = 10,
graph_reduction_type = "PCA",
clustering_algorithm = 1

)
plot_n_neigh_ecs(nn_stability_obj)

automatic_stability_assessment

Assessment of Stability for Graph Clustering

Description

Evaluates the stability of different graph clustering methods in the clustering pipeline. The method
will iterate through different values of the resolution parameter and compare, using the EC Consis-
tency score, the partitions obtained at different seeds.

Usage

automatic_stability_assessment(
expression_matrix,
n_repetitions,
n_neigh_sequence,
resolution_sequence,
features_sets,
steps,
seed_sequence = NULL,
graph_reduction_embedding = "PCA",
include_umap_nn_assessment = FALSE,
n_top_configs = 3,
ranking_criterion = "iqr",
overall_summary = "median",
ecs_threshold = 1,
matrix_processing = function(dt_mtx, actual_npcs = 30, ...) {

actual_npcs <-
min(actual_npcs, ncol(dt_mtx)%/%2)

RhpcBLASctl::blas_set_num_threads(foreach::getDoParWorkers())
embedding <-

automatic_stability_assessment 11

stats::prcomp(x = dt_mtx, rank. = actual_npcs)$x

RhpcBLASctl::blas_set_num_threads(1)
rownames(embedding) <- rownames(dt_mtx)

colnames(embedding) <- paste0("PC_", seq_len(ncol(embedding)))

return(embedding)
},
umap_arguments = list(),
prune_value = -1,
algorithm_dim_reduction = 1,
algorithm_graph_construct = 1,
algorithms_clustering_assessment = 1:3,
clustering_arguments = list(),
verbose = TRUE,
temp_file = NULL,
save_temp = TRUE

)

Arguments

expression_matrix

An expression matrix having the features on the rows and the cells on the columns.

n_repetitions The number of repetitions of applying the pipeline with different seeds; ignored
if seed_sequence is provided by the user. Defaults to 100.

n_neigh_sequence

A sequence of the number of nearest neighbours.
resolution_sequence

A sequence of resolution values. The resolution parameter controls the coarse-
ness of the clustering. The higher the resolution, the more clusters will be ob-
tained. The resolution parameter is used in the community detection algorithms.

features_sets A list of the feature sets. A feature set is a list of genes from the expression
matrix that will be used in the dimensionality reduction.

steps A list with the same names as feature_sets. Each name has assigned a ector
containing the sizes of the subsets; negative values will be interpreted as using
all features.

seed_sequence A custom seed sequence; if the value is NULL, the sequence will be built starting
from 1 with a step of 100.

graph_reduction_embedding

The type of dimensionality reduction used for the graph construction. The op-
tions are "PCA" and "UMAP". Defaults to PCA.

include_umap_nn_assessment

A boolean value indicating if the UMAP embeddings will be used for the nearest
neighbours assessment. Defaults to FALSE.

n_top_configs The number of top configurations that will be used for the downstream analysis
in the dimensionality reduction step. Defaults to 3.

12 automatic_stability_assessment

ranking_criterion

The criterion used for ranking the configurations from the dimensionality re-
duction step. The options are "iqr", "median", "max", "top_qt", "top_qt_max",
"iqr_median", "iqr_median_coeff" and "mean". Defaults to iqr.

overall_summary

A function used to summarize the stability of the configurations from the dimen-
sionality reduction step across the different resolution values. The options are
"median", "max", "top_qt", "top_qt_max", "iqr", "iqr_median", "iqr_median_coeff"
and "mean". Defaults to median.

ecs_threshold The ECS threshold used for merging similar clusterings.
matrix_processing

A function that will be used to process the data matrix by using a dimensionality
reduction technique. The function should have one parameter, the data matrix,
and should return an embedding describing the reduced space. By default, the
function will use the precise PCA method with prcomp.

umap_arguments A list containing the arguments that will be passed to the UMAP function. Refer
to the uwot::umap function for more details.

prune_value Argument indicating whether to prune the SNN graph. If the value is 0, the
graph won’t be pruned. If the value is between 0 and 1, the edges with weight
under the pruning value will be removed. If the value is -1, the highest pruning
value will be calculated automatically and used.

algorithm_dim_reduction

An index indicating the community detection algorithm that will be used in the
Dimensionality reduction step.

algorithm_graph_construct

An index indicating the community detection algorithm that will be used in the
Graph construction step.

algorithms_clustering_assessment

An index indicating which community detection algorithm will be used for the
clustering step: Louvain (1), Louvain refined (2), SLM (3) or Leiden (4). More
details can be found in the Seurat’s FindClusters function.

clustering_arguments

A list containing the arguments that will be passed to the community detection
algorithm, such as the number of iterations and the number of starts. Refer to
the Seurat’s FindClusters function for more details.

verbose Boolean value used for displaying the progress of the assessment.

temp_file The path to the file where the object will be saved.

save_temp A boolean value indicating if the object will be saved to a file.

Value

A list having two fields:

• all - a list that contains, for each clustering method and each resolution value, the EC consis-
tency between the partitions obtained by changing the seed

• filtered - similar to all, but for each configuration, we determine the number of clusters that
appears the most and use only the partitions with this size

calculate_markers 13

Examples

Not run:
set.seed(2024)
create an already-transposed artificial expression matrix
expr_matrix <- matrix(

c(runif(20 * 10), runif(30 * 10, min = 3, max = 4)),
nrow = 10, byrow = FALSE

)
colnames(expr_matrix) <- as.character(seq_len(ncol(expr_matrix)))
rownames(expr_matrix) <- paste("feature", seq_len(nrow(expr_matrix)))

autom_object <- automatic_stability_assessment(
expression_matrix = expr_matrix,
n_repetitions = 3,
n_neigh_sequence = c(5),
resolution_sequence = c(0.1, 0.5),
features_sets = list(

"set1" = rownames(expr_matrix)
),
steps = list(

"set1" = c(5, 7)
),
umap_arguments = list(

the following parameters have been modified
from the default values to ensure that
the function will run under 5 seconds
n_neighbors = 3,
approx_pow = TRUE,
n_epochs = 0,
init = "random",
min_dist = 0.3

),
n_top_configs = 1,
algorithms_clustering_assessment = 1,
save_temp = FALSE,
verbose = FALSE

)

the object can be further used to plot the assessment results
plot_feature_overall_stability_boxplot(autom_object$feature_stability)
plot_n_neigh_ecs(autom_object$set1$"5"$nn_stability)
plot_k_n_partitions(autom_object$set1$"5"$clustering_stability)

End(Not run)

calculate_markers Calculate markers

14 calculate_markers

Description

Performs the Wilcoxon rank sum test to identify differentially expressed genes between two groups
of cells.

Usage

calculate_markers(
expression_matrix,
cells1,
cells2,
logfc_threshold = 0,
min_pct_threshold = 0.1,
avg_expr_threshold_group1 = 0,
min_diff_pct_threshold = -Inf,
rank_matrix = NULL,
feature_names = NULL,
used_slot = "data",
norm_method = "SCT",
pseudocount_use = 1,
base = 2,
adjust_pvals = TRUE,
check_cells_set_diff = TRUE

)

Arguments

expression_matrix

A matrix of gene expression values having genes in rows and cells in columns.
cells1 A vector of cell indices for the first group of cells.
cells2 A vector of cell indices for the second group of cells.
logfc_threshold

The minimum absolute log fold change to consider a gene as differentially ex-
pressed. Defaults to 0, meaning all genes are taken into considereation.

min_pct_threshold

The minimum fraction of cells expressing a gene form each cell population to
consider the gene as differentially expressed. Increasing the value will speed up
the function. Defaults to 0.1.

avg_expr_threshold_group1

The minimum average expression that a gene should have in the first group of
cells to be considered as differentially expressed. Defaults to 0.

min_diff_pct_threshold

The minimum difference in the fraction of cells expressing a gene between the
two cell populations to consider the gene as differentially expressed. Defaults to
-Inf.

rank_matrix A matrix where the cells are ranked based on their expression levels with respect
to each gene. Defaults to NULL, in which case the function will calculate the rank
matrix. We recommend calculating the rank matrix beforehand and passing it to
the function to speed up the computation.

calculate_markers 15

feature_names A vector of gene names. Defaults to NULL, in which case the function will use
the row names of the expression matrix as gene names.

used_slot Parameter that provides additional information about the expression matrix, whether
it was scaled or not. The value of this parameter impacts the calculation of the
fold change. If data, the function will calculates the fold change as the fraction
between the log value of the average of the expression raised to exponential for
the two cell groups. If scale.data, the function will calculate the fold change
as the fraction between the average of the expression values for the two cell
groups. Other options will default to calculating the fold change as the fraction
between the log value of the average of the expression values for the two cell
groups. Defaults to data.

norm_method The normalization method used to normalize the expression matrix. The value
of this parameter impacts the calculation of the average expression of the genes
when used_slot = "data". If LogNormalize, the log fold change will be calcu-
lated as described for the used_slot parameter. Otherwise, the log fold change
will be calculated as the fraction between the log value of the average of the
expression values for the two cell groups. Defaults to SCT.

pseudocount_use

The pseudocount to add to the expression values when calculating the average
expression of the genes, to avoid the 0 value for the denominator. Defaults to 1.

base The base of the logharithm. Defaults to 2.

adjust_pvals A logical value indicating whether to adjust the p-values for multiple testing
using the Bonferonni method. Defaults to TRUE.

check_cells_set_diff

A logical value indicating whether to check if thw two cell groups are disjoint
or not. Defaults to TRUE.

Value

A data frame containing the following columns:

• gene: The gene name.

• avg_log2FC: The average log fold change between the two cell groups.

• p_val: The p-value of the Wilcoxon rank sum test.

• p_val_adj: The adjusted p-value of the Wilcoxon rank sum test.

• pct.1: The fraction of cells expressing the gene in the first cell group.

• pct.2: The fraction of cells expressing the gene in the second cell group.

• avg_expr_group1: The average expression of the gene in the first cell group.

Examples

set.seed(2024)
create an artificial expression matrix
expr_matrix <- matrix(

c(runif(100 * 50), runif(100 * 50, min = 3, max = 4)),
ncol = 200, byrow = FALSE

16 calculate_markers_shiny

)
colnames(expr_matrix) <- as.character(1:200)
rownames(expr_matrix) <- paste("feature", 1:50)

calculate_markers(
expression_matrix = expr_matrix,
cells1 = 101:200,
cells2 = 1:100

)
TODO should be rewritten such that you don't create new matrix objects inside
just

calculate_markers_shiny

Calculate markers - Shiny

Description

Performs the Wilcoxon rank sum test to identify differentially expressed genes between two groups
of cells in the shiny context. The method can be also used outside the shiny context, as long as the
expression matrix is stored in a h5 file.

Usage

calculate_markers_shiny(
cells1,
cells2,
logfc_threshold = 0,
min_pct_threshold = 0.1,
average_expression_threshold = 0,
average_expression_group1_threshold = 0,
min_diff_pct_threshold = -Inf,
used_slot = "data",
norm_method = "SCT",
expression_h5_path = "expression.h5",
pseudocount_use = 1,
base = 2,
verbose = TRUE,
check_difference = TRUE

)

Arguments

cells1 A vector of cell indices for the first group of cells.

cells2 A vector of cell indices for the second group of cells.
logfc_threshold

The minimum absolute log fold change to consider a gene as differentially ex-
pressed. Defaults to 0, meaning all genes are taken into considereation.

calculate_markers_shiny 17

min_pct_threshold

The minimum fraction of cells expressing a gene form each cell population to
consider the gene as differentially expressed. Increasing the value will speed up
the function. Defaults to 0.1.

average_expression_threshold

The minimum average expression that a gene should have in order to be consid-
ered as differentially expressed.

average_expression_group1_threshold

The minimum average expression that a gene should have in the first group of
cells to be considered as differentially expressed. Defaults to 0.

min_diff_pct_threshold

The minimum difference in the fraction of cells expressing a gene between the
two cell populations to consider the gene as differentially expressed. Defaults to
-Inf.

used_slot Parameter that provides additional information about the expression matrix, whether
it was scaled or not. The value of this parameter impacts the calculation of the
fold change. If data, the function will calculates the fold change as the fraction
between the log value of the average of the expression raised to exponential for
the two cell groups. If scale.data, the function will calculate the fold change
as the fraction between the average of the expression values for the two cell
groups. Other options will default to calculating the fold change as the fraction
between the log value of the average of the expression values for the two cell
groups. Defaults to data.

norm_method The normalization method used to normalize the expression matrix. The value
of this parameter impacts the calculation of the average expression of the genes
when used_slot = "data". If LogNormalize, the log fold change will be calcu-
lated as described for the used_slot parameter. Otherwise, the log fold change
will be calculated as the fraction between the log value of the average of the
expression values for the two cell groups. Defaults to SCT.

expression_h5_path

The path to the h5 file containing the expression matrix. The h5 file should con-
tain the following fields: expression_matrix, rank_matrix, average_expression,
genes. The file path defaults to expression.h5.

pseudocount_use

The pseudocount to add to the expression values when calculating the average
expression of the genes, to avoid the 0 value for the denominator. Defaults to 1.

base The base of the logharithm. Defaults to 2.

verbose Whether to print messages about the progress of the function. Defaults to TRUE.
check_difference

Whether to perform set difference between the two cells. Defaults to TRUE.

Value

A data frame containing the following columns:

• gene: The gene name.

• avg_log2FC: The average log fold change between the two cell groups.

18 choose_stable_clusters

• p_val: The p-value of the Wilcoxon rank sum test.

• p_val_adj: The adjusted p-value of the Wilcoxon rank sum test.

• pct.1: The fraction of cells expressing the gene in the first cell group.

• pct.2: The fraction of cells expressing the gene in the second cell group.

• avg_expr_group1: The average expression of the gene in the first cell group.

• avg_expr: The average expression of the gene.

choose_stable_clusters

Choose stable clusters based on ECC and frequency

Description

Filter the list of clusters obtained by the automatic ClustAssess pipeline using the ECC and fre-
quency thresholds. The ECC threshold is meant to filter out the partitions that are highly sensitive
to the change of the random seed, while the purpose of the frequency threshold is to assure a statis-
tical significance of the inferred stability.

Usage

choose_stable_clusters(
clusters_list,
ecc_threshold = 0.9,
freq_threshold = 30,
summary_function = mean

)

Arguments

clusters_list List of clusters obtained from the get_clusters_from_clustassess_object
function.

ecc_threshold Minimum ECC value to consider a cluster as stable. Default is 0.9.

freq_threshold Minimum total frequency of the partitions to consider. Default is 30.
summary_function

Function to summarize the ECC values. Default is mean. To match the results
from the ClustAssess Shiny App, use median.

Value

A list of stable clusters that satisfy the ECC and frequency.

consensus_cluster 19

consensus_cluster Consensus Clustering and Proportion of Ambiguously Clustered Pairs

Description

Calculate consensus clustering and proportion of ambiguously clustered pairs (PAC) with hierar-
chical clustering.

Usage

consensus_cluster(
x,
k_min = 3,
k_max = 100,
n_reps = 100,
p_sample = 0.8,
p_feature = 1,
p_minkowski = 2,
dist_method = "euclidean",
linkage = "complete",
lower_lim = 0.1,
upper_lim = 0.9,
verbose = TRUE

)

Arguments

x A samples x features normalized data matrix.
k_min The minimum number of clusters calculated.
k_max The maximum number of clusters calculated.
n_reps The total number of subsamplings and reclusterings of the data; this value needs

to be high enough to ensure PAC converges; convergence can be assessed with
pac_convergence.

p_sample The proportion of samples included in each subsample.
p_feature The proportion of features included in each subsample.
p_minkowski The power of the Minkowski distance.
dist_method The distance measure for the distance matrix used in hclust; must be one of

"euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski".
linkage The linkage method used in hclust; must be one of "ward.D", "ward.D2", "sin-

gle", "complete", "average", "mcquitty", "median" or "centroid"
lower_lim The lower limit for determining whether a pair is clustered ambiguously; the

lower this value, the higher the PAC.
upper_lim The upper limit for determining whether a pair is clustered ambiguously; the

higher this value, the higher the PAC.
verbose Logical value used for choosing to display a progress bar or not.

20 create_monocle_default

Value

A data.frame with PAC values across iterations, as well as parameter values used when calling the
method.

References

Monti, S., Tamayo, P., Mesirov, J., & Golub, T. (2003). Consensus clustering: a resampling-based
method for class discovery and visualization of gene expression microarray data. Machine learning,
52(1), 91-118. https://doi.org/10.1023/A:1023949509487

Senbabaoglu, Y., Michailidis, G., & Li, J. Z. (2014). Critical limitations of consensus clustering in
class discovery. Scientific reports, 4(1), 1-13. https://doi.org/10.1038/srep06207

Examples

pac.res <- consensus_cluster(iris[, 1:4], k_max = 20)
pac_convergence(pac.res, k_plot = c(3, 5, 7, 9))

create_monocle_default

Create monocle object

Description

Use a normalized expression matrix and, potentially, an already generated PCA / UMAP embed-
ding, to create a Monocle object.

Usage

create_monocle_default(
normalized_expression_matrix,
count_matrix = NULL,
pca_embedding = NULL,
umap_embedding = NULL,
metadata_df = NULL

)

Arguments

normalized_expression_matrix

The normalized expression matrix having genes on rows and cells on columns.
count_matrix The count matrix having genes on rows and cells on columns. If NULL, the

normalized_expression_matrix will be used.
pca_embedding The PCA embedding of the expression matrix. If NULL, the pca will be created

using the monocle3 package (default parameters).
umap_embedding The UMAP embedding of the expression matrix. If NULL, the umap will be

created using the monocle3 package (default parameters).
metadata_df The metadata dataframe having the cell names as rownames. If NULL, a dataframe

with a single column named identical_ident will be created.

create_monocle_from_clustassess 21

Value

A Monocle object of the expression matrix, having the stable number of clusters identified by Clus-
tAssess.

Examples

Not run:
set.seed(2024)
create an already-transposed artificial expression matrix
expr_matrix <- matrix(

c(runif(20 * 10), runif(30 * 10, min = 3, max = 4)),
nrow = 10, byrow = FALSE

)
colnames(expr_matrix) <- as.character(seq_len(ncol(expr_matrix)))
rownames(expr_matrix) <- paste("feature", seq_len(nrow(expr_matrix)))

uncomment to create the monocle object
mon_obj <- create_monocle_default(

normalized_expression_matrix = expr_matrix,
pca_emb = NULL,
umap_emb = NULL,
metadata_df = NULL

)

End(Not run)

create_monocle_from_clustassess

Create monocle object from a ClustAssess object

Description

Use the object generated using the ClustAssess automatic_stability_assessment function to
create a Monocle object which has the stable number of clusters.

Usage

create_monocle_from_clustassess(
normalized_expression_matrix,
count_matrix = NULL,
clustassess_object,
metadata_df,
stable_feature_type,
stable_feature_set_size,
stable_clustering_method,
stable_n_clusters = NULL,
use_all_genes = FALSE

)

22 create_monocle_from_clustassess

Arguments

normalized_expression_matrix

The normalized expression matrix having genes on rows and cells on columns.

count_matrix The count matrix having genes on rows and cells on columns. If NULL, the
normalized_expression_matrix will be used.

clustassess_object

The output of the automatic_stability_assessment.

metadata_df The metadata dataframe having the cell names as rownames. If NULL, a dataframe
with a single column named identical_ident will be created.

stable_feature_type

The feature type which leads to stable clusters.
stable_feature_set_size

The feature size which leads to stable clusters.
stable_clustering_method

The clustering method which leads to stable clusters.
stable_n_clusters

The number of clusters that are stable. If NULL, all the clusters will be provided.
Defaults to NULL.

use_all_genes A boolean value indicating if the expression matrix should be truncated to the
genes used in the stability assessment. Defaults to FALSE.

Value

A Monocle object of the expression matrix, having the stable number of clusters identified by Clus-
tAssess.

Examples

Not run:
set.seed(2024)
create an already-transposed artificial expression matrix
expr_matrix <- matrix(

c(runif(20 * 10), runif(30 * 10, min = 3, max = 4)),
nrow = 10, byrow = FALSE

)
colnames(expr_matrix) <- as.character(seq_len(ncol(expr_matrix)))
rownames(expr_matrix) <- paste("feature", seq_len(nrow(expr_matrix)))

autom_object <- automatic_stability_assessment(
expression_matrix = expr_matrix,
n_repetitions = 3,
n_neigh_sequence = c(5),
resolution_sequence = c(0.1, 0.5),
features_sets = list(

"set1" = rownames(expr_matrix)
),
steps = list(

"set1" = c(5, 7)

create_monocle_from_clustassess_app 23

),
umap_arguments = list(

the following parameters have been modified
from the default values to ensure that the function
will run under 5 seconds
n_neighbors = 3,
approx_pow = TRUE,
n_epochs = 0,
init = "random",
min_dist = 0.3

),
n_top_configs = 1,
algorithms_clustering_assessment = 1,
save_temp = FALSE,
verbose = FALSE

)

uncomment to create the monocle object
mon_obj <- create_monocle_from_clustassess(
normalized_expression_matrix = expr_matrix,
clustassess_object = autom_object,
metadata = NULL,
stable_feature_type = "set1",
stable_feature_set_size = "5",
stable_clustering_method = "Louvain"
)

End(Not run)

create_monocle_from_clustassess_app

Create monocle object from a ClustAssess shiny app

Description

Use the files generated in the ClustAssess app to create a Monocle object which has the stable
number of clusters.

Usage

create_monocle_from_clustassess_app(
app_folder,
stable_feature_type,
stable_feature_set_size,
stable_clustering_method,
stable_n_clusters = NULL,
use_all_genes = FALSE

)

24 create_seurat_object_default

Arguments

app_folder Path pointing to the folder containing a ClustAssess app.
stable_feature_type

The feature type which leads to stable clusters.
stable_feature_set_size

The feature size which leads to stable clusters.
stable_clustering_method

The clustering method which leads to stable clusters.
stable_n_clusters

The number of clusters that are stable. If NULL, all the clusters will be provided.
Defaults to NULL.

use_all_genes A boolean value indicating if the expression matrix should be truncated to the
genes used in the stability assessment. Defaults to FALSE.

Value

A Monocle object of the expression matrix, having the stable number of clusters identified by Clus-
tAssess.

create_seurat_object_default

Create Seurat object

Description

Use a normalized expression matrix and, potentially, an already generated PCA / UMAP embed-
ding, to create a Seurat object.

Usage

create_seurat_object_default(
normalized_expression_matrix,
count_matrix = NULL,
pca_embedding = NULL,
umap_embedding = NULL,
metadata_df = NULL

)

Arguments

normalized_expression_matrix

The normalized expression matrix having genes on rows and cells on columns.

count_matrix The count matrix having genes on rows and cells on columns. If NULL, the
normalized_expression_matrix will be used.

pca_embedding The PCA embedding of the expression matrix. If NULL, the pca will be created
using the Seurat package (default parameters).

create_seurat_object_from_clustassess_app 25

umap_embedding The UMAP embedding of the expression matrix. If NULL, the umap will be
created using the Seurat package (default parameters).

metadata_df The metadata dataframe having the cell names as rownames. If NULL, a dataframe
with a single column named identical_ident will be created.

Value

A Seurat object of the expression matrix, having the stable number of clusters identified by Clus-
tAssess.

create_seurat_object_from_clustassess_app

Create Seurat object from a ClustAssess shiny app

Description

Use the files generated in the ClustAssess app to create a Seurat object which has the stable number
of clusters.

Usage

create_seurat_object_from_clustassess_app(
app_folder,
stable_feature_type,
stable_feature_set_size,
stable_clustering_method,
stable_n_clusters = NULL,
use_all_genes = FALSE

)

Arguments

app_folder Path pointing to the folder containing a ClustAssess app.
stable_feature_type

The feature type which leads to stable clusters.
stable_feature_set_size

The feature size which leads to stable clusters.
stable_clustering_method

The clustering method which leads to stable clusters.
stable_n_clusters

The number of clusters that are stable. If NULL, all the clusters will be provided.
Defaults to NULL.

use_all_genes A boolean value indicating if the expression matrix should be truncated to the
genes used in the stability assessment. Defaults to FALSE.

26 element_agreement

Value

A Seurat object of the expression matrix, having the stable number of clusters identified by Clus-
tAssess.

element_agreement Element-Wise Average Agreement Between a Set of Clusterings

Description

Inspect how consistently of a set of clusterings agree with a reference clustering by calculating their
element-wise average agreement.

Usage

element_agreement(
reference_clustering,
clustering_list,
alpha = 0.9,
r = 1,
rescale_path_type = "max",
ppr_implementation = "prpack",
dist_rescaled = FALSE,
row_normalize = TRUE

)

Arguments

reference_clustering

The reference clustering, that each clustering in clustering_list is compared to.
It can be either:

• A numeric/character/factor vector of cluster labels for each element.
• A samples x clusters matrix/Matrix::Matrix of nonzero membership values.
• An hclust object.

clustering_list

The list of clustering results, each of which is either:

• A numeric/character/factor vector of cluster labels for each element.
• A samples x clusters matrix/Matrix::Matrix of nonzero membership values.
• An hclust object.

alpha A numeric giving the personalized PageRank damping factor; 1 - alpha is the
restart probability for the PPR random walk.

r A numeric hierarchical scaling parameter.
rescale_path_type

A string; rescale the hierarchical height by:

• "max" : the maximum path from the root.

element_consistency 27

• "min" : the minimum path form the root.
• "linkage" : use the linkage distances in the clustering.

ppr_implementation

Choose a implementation for personalized page-rank calculation:
• "prpack": use PPR algorithms in igraph.
• "power_iteration": use power_iteration method.

dist_rescaled A logical: if TRUE, the linkage distances are linearly rescaled to be in-between
0 and 1.

row_normalize Whether to normalize all rows in clustering_result so they sum to one before
calculating ECS. It is recommended to set this to TRUE, which will lead to
slightly different ECS values compared to clusim.

Value

A vector containing the element-wise average agreement.

References

Gates, A. J., Wood, I. B., Hetrick, W. P., & Ahn, Y. Y. (2019). Element-centric clustering compar-
ison unifies overlaps and hierarchy. Scientific reports, 9(1), 1-13. https://doi.org/10.1038/s41598-
019-44892-y

Examples

perform k-means clustering across 20 random seeds
reference.clustering <- iris$Species
clustering.list <- lapply(1:20, function(x) kmeans(iris[, 1:4], centers = 3)$cluster)
element_agreement(reference.clustering, clustering.list)

element_consistency Element-Wise Consistency Between a Set of Clusterings

Description

Inspect the consistency of a set of clusterings by calculating their element-wise clustering consis-
tency (also known as element-wise frustration).

Usage

element_consistency(
clustering_list,
alpha = 0.9,
r = 1,
rescale_path_type = "max",
ppr_implementation = "prpack",
dist_rescaled = FALSE,
row_normalize = TRUE

)

28 element_consistency

Arguments

clustering_list

The list of clustering results, each of which is either:

• A numeric/character/factor vector of cluster labels for each element.
• A samples x clusters matrix/Matrix::Matrix of nonzero membership values.
• An hclust object.

alpha A numeric giving the personalized PageRank damping factor; 1 - alpha is the
restart probability for the PPR random walk.

r A numeric hierarchical scaling parameter.

rescale_path_type

A string; rescale the hierarchical height by:

• "max" : the maximum path from the root.
• "min" : the minimum path form the root.
• "linkage" : use the linkage distances in the clustering.

ppr_implementation

Choose a implementation for personalized page-rank calculation:

• "prpack": use PPR algorithms in igraph.
• "power_iteration": use power_iteration method.

dist_rescaled A logical: if TRUE, the linkage distances are linearly rescaled to be in-between
0 and 1.

row_normalize Whether to normalize all rows in clustering_result so they sum to one before
calculating ECS. It is recommended to set this to TRUE, which will lead to
slightly different ECS values compared to clusim.

Value

A vector containing the element-wise consistency. If calculate_sim_matrix is set to TRUE, the
element similarity matrix will be returned as well.

References

Gates, A. J., Wood, I. B., Hetrick, W. P., & Ahn, Y. Y. (2019). Element-centric clustering compar-
ison unifies overlaps and hierarchy. Scientific reports, 9(1), 1-13. https://doi.org/10.1038/s41598-
019-44892-y

Examples

cluster across 20 random seeds
clustering.list <- lapply(1:20, function(x) kmeans(mtcars, centers = 3)$cluster)
element_consistency(clustering.list)

element_sim 29

element_sim The Element-Centric Clustering Similarity

Description

Calculates the average element-centric similarity between two clustering results

Usage

element_sim(
clustering1,
clustering2,
alpha = 0.9,
r_cl1 = 1,
rescale_path_type_cl1 = "max",
ppr_implementation_cl1 = "prpack",
dist_rescaled_cl1 = FALSE,
row_normalize_cl1 = TRUE,
r_cl2 = 1,
rescale_path_type_cl2 = "max",
ppr_implementation_cl2 = "prpack",
dist_rescaled_cl2 = FALSE,
row_normalize_cl2 = TRUE

)

Arguments

clustering1 The first clustering result, which can be one of:

• A numeric/character/factor vector of cluster labels for each element.
• A samples x clusters matrix/Matrix::Matrix of nonzero membership values.
• An hclust object.

clustering2 The second clustering result, which can be one of:

• A numeric/character/factor vector of cluster labels for each element.
• A samples x clusters matrix/Matrix::Matrix of nonzero membership values.
• An hclust object.

alpha A numeric giving the personalized PageRank damping factor; 1 - alpha is the
restart probability for the PPR random walk.

r_cl1 A numeric hierarchical scaling parameter for the first clustering.
rescale_path_type_cl1

A string; rescale the hierarchical height of the first clustering by:

• "max" : the maximum path from the root.
• "min" : the minimum path form the root.
• "linkage" : use the linkage distances in the clustering.

30 element_sim

ppr_implementation_cl1

Choose a implementation for personalized page-rank calculation for the first
clustering:

• "prpack": use PPR algorithms in igraph.

• "power_iteration": use power_iteration method.

dist_rescaled_cl1

A logical: if TRUE, the linkage distances of the first clustering are linearly
rescaled to be in-between 0 and 1.

row_normalize_cl1

Whether to normalize all rows in the first clustering so they sum to one before
calculating ECS. It is recommended to set this to TRUE, which will lead to
slightly different ECS values compared to clusim.

r_cl2 A numeric hierarchical scaling parameter for the second clustering.

rescale_path_type_cl2

A string; rescale the hierarchical height of the second clustering by:

• "max" : the maximum path from the root.

• "min" : the minimum path form the root.

• "linkage" : use the linkage distances in the clustering.

ppr_implementation_cl2

Choose a implementation for personalized page-rank calculation for the second
clustering:

• "prpack": use PPR algorithms in igraph.

• "power_iteration": use power_iteration method.

dist_rescaled_cl2

A logical: if TRUE, the linkage distances of the second clustering are linearly
rescaled to be in-between 0 and 1.

row_normalize_cl2

Whether to normalize all rows in the second clustering so they sum to one before
calculating ECS. It is recommended to set this to TRUE, which will lead to
slightly different ECS values compared to clusim.

Value

The average element-wise similarity between the two Clusterings.

Examples

km.res <- kmeans(mtcars, centers = 3)$cluster
hc.res <- hclust(dist(mtcars))
element_sim(km.res, hc.res)

element_sim_elscore 31

element_sim_elscore The Element-Centric Clustering Similarity for each Element

Description

Calculates the element-wise element-centric similarity between two clustering results.

Usage

element_sim_elscore(
clustering1,
clustering2,
alpha = 0.9,
r_cl1 = 1,
rescale_path_type_cl1 = "max",
ppr_implementation_cl1 = "prpack",
dist_rescaled_cl1 = FALSE,
row_normalize_cl1 = TRUE,
r_cl2 = 1,
rescale_path_type_cl2 = "max",
ppr_implementation_cl2 = "prpack",
dist_rescaled_cl2 = FALSE,
row_normalize_cl2 = TRUE

)

Arguments

clustering1 The first clustering result, which can be one of:

• A numeric/character/factor vector of cluster labels for each element.
• A samples x clusters matrix/Matrix::Matrix of nonzero membership values.
• An hclust object.

clustering2 The second clustering result, which can be one of:

• A numeric/character/factor vector of cluster labels for each element.
• A samples x clusters matrix/Matrix::Matrix of nonzero membership values.
• An hclust object.

alpha A numeric giving the personalized PageRank damping factor; 1 - alpha is the
restart probability for the PPR random walk.

r_cl1 A numeric hierarchical scaling parameter for the first clustering.
rescale_path_type_cl1

A string; rescale the hierarchical height of the first clustering by:

• "max" : the maximum path from the root.
• "min" : the minimum path form the root.
• "linkage" : use the linkage distances in the clustering.

32 element_sim_elscore

ppr_implementation_cl1

Choose a implementation for personalized page-rank calculation for the first
clustering:

• "prpack": use PPR algorithms in igraph.
• "power_iteration": use power_iteration method.

dist_rescaled_cl1

A logical: if TRUE, the linkage distances of the first clustering are linearly
rescaled to be in-between 0 and 1.

row_normalize_cl1

Whether to normalize all rows in the first clustering so they sum to one before
calculating ECS. It is recommended to set this to TRUE, which will lead to
slightly different ECS values compared to clusim.

r_cl2 A numeric hierarchical scaling parameter for the second clustering.
rescale_path_type_cl2

A string; rescale the hierarchical height of the second clustering by:

• "max" : the maximum path from the root.
• "min" : the minimum path form the root.
• "linkage" : use the linkage distances in the clustering.

ppr_implementation_cl2

Choose a implementation for personalized page-rank calculation for the second
clustering:

• "prpack": use PPR algorithms in igraph.
• "power_iteration": use power_iteration method.

dist_rescaled_cl2

A logical: if TRUE, the linkage distances of the second clustering are linearly
rescaled to be in-between 0 and 1.

row_normalize_cl2

Whether to normalize all rows in the second clustering so they sum to one before
calculating ECS. It is recommended to set this to TRUE, which will lead to
slightly different ECS values compared to clusim.

Value

Vector of element-centric similarity between the two clusterings for each element.

References

Gates, A. J., Wood, I. B., Hetrick, W. P., & Ahn, Y. Y. (2019). Element-centric clustering compar-
ison unifies overlaps and hierarchy. Scientific reports, 9(1), 1-13. https://doi.org/10.1038/s41598-
019-44892-y

Examples

km.res <- kmeans(iris[, 1:4], centers = 8)$cluster
hc.res <- hclust(dist(iris[, 1:4]))
element_sim_elscore(km.res, hc.res)

element_sim_matrix 33

element_sim_matrix Pairwise Comparison of Clusterings

Description

Compare a set of clusterings by calculating their pairwise average element-centric clustering simi-
larities.

Usage

element_sim_matrix(
clustering_list,
output_type = "matrix",
alpha = 0.9,
r = 1,
rescale_path_type = "max",
ppr_implementation = "prpack",
dist_rescaled = FALSE,
row_normalize = TRUE

)

Arguments

clustering_list

The list of clustering results, each of which is either:
• A numeric/character/factor vector of cluster labels for each element.
• A samples x clusters matrix/Matrix::Matrix of nonzero membership values.
• An hclust object.

output_type A string specifying whether the output should be a matrix or a data.frame.
alpha A numeric giving the personalized PageRank damping factor; 1 - alpha is the

restart probability for the PPR random walk.
r A numeric hierarchical scaling parameter.
rescale_path_type

A string; rescale the hierarchical height by:
• "max" : the maximum path from the root.
• "min" : the minimum path form the root.
• "linkage" : use the linkage distances in the clustering.

ppr_implementation

Choose a implementation for personalized page-rank calculation:
• "prpack": use PPR algorithms in igraph.
• "power_iteration": use power_iteration method.

dist_rescaled A logical: if TRUE, the linkage distances are linearly rescaled to be in-between
0 and 1.

row_normalize Whether to normalize all rows in clustering_result so they sum to one before
calculating ECS. It is recommended to set this to TRUE, which will lead to
slightly different ECS values compared to clusim.

34 getNNmatrix

Value

A matrix or data.frame containing the pairwise ECS values.

References

Gates, A. J., Wood, I. B., Hetrick, W. P., & Ahn, Y. Y. (2019). Element-centric clustering compar-
ison unifies overlaps and hierarchy. Scientific reports, 9(1), 1-13. https://doi.org/10.1038/s41598-
019-44892-y

Examples

cluster across 20 random seeds
clustering.list <- lapply(1:20, function(x) kmeans(mtcars, centers = 3)$cluster)
element_sim_matrix(clustering.list, output_type = "matrix")

getNNmatrix Computes the NN adjacency matrix given the neighbours

Description

Computes the NN adjacency matrix given the neighbours

Usage

getNNmatrix(nnRanked, k = -1L, start = 0L, prune = 0)

Arguments

nnRanked A matrix with the lists of the nearest neighbours for each point

k The number of neighbours to consider. Defaults to -1, which means all neigh-
bours.

start The index of the first neighbour to consider. Defaults to 0.

prune The threshold to prune the SNN matrix. If -1, the function will only return the
NN matrix. Defaults to 0.

Value

A list with the NN and SNN adjacency matrices.

get_clusters_from_clustassess_object 35

get_clusters_from_clustassess_object

Extract config-specific clusters from a ClustAssess object

Description

Given the output of the automatic_stability_assessment function, extract the clusters that are
specific to a particular configuration of feature type, feature size, clustering method and, optionally,
the number of clusters.

Usage

get_clusters_from_clustassess_object(
clustassess_object,
feature_type = NULL,
feature_size = NULL,
clustering_method = NULL,
nclusters = NULL

)

Arguments

clustassess_object

Output of the automatic_stability_assessment.

feature_type Type of feature used for dimensionality reduction. If NULL, it will select the first
available feature.

feature_size Size of the feature set used for clustering. If NULL, it will select the first available
feature size.

clustering_method

Clustering method used. If NULL, it will select the first available clustering
method.

nclusters Number of clusters to extract. If NULL, all clusters are returned.

Value

A list of clusters that are specific to the given configuration. Each number of cluster will contain
the list of partitions with that specific k and the ECC value indicating the overall stability of k.

36 get_highest_prune_param

get_colour_vector_from_palette

Get the vector of colours from a palette

Description

Using the paletteer package, this function retrieves a vector of colours from a specified palette.
The function will look for both discrete and continuous palettes. If the palette is not found, a default
option will be used.

Usage

get_colour_vector_from_palette(
palette_name,
is_inverse = FALSE,
placeholder = "viridis::viridis"

)

Arguments

palette_name The name of the palette to retrieve. The naming should follow the guidelines
described in the paletteer package.

is_inverse Logical. If TRUE, the colours will be reversed.

placeholder The default palette to use if the specified palette is not found. The default is
"viridis::viridis".

Value

A vector of colours from the specified palette. If the palette is not found, a default palette will be
used. If paletter is not installed, an error will be thrown.

get_highest_prune_param

Calculate the highest pruning parameter for the SNN graph given NN
matrix

Description

Given a NN adjacency matrix, the function calculates the highest pruning parameter for the SNN
graph that preserves the connectivity of the graph.

Usage

get_highest_prune_param(nn_matrix, n_neigh)

get_highest_prune_param_embedding 37

Arguments

nn_matrix The adjacency matrix of the nearest neighbour graph.

n_neigh The number of nearest neighbours.

Value

A list with the following fields:

• prune_value: The value of the highest pruning parameter.

• adj_matrix: The adjacency matrix of the SNN graph after pruning.

Note

Given the way the SNN graph is built, the possible values for the pruning parameter are limited and
can be determined by the formula i / (2 * n_neigh - i), where i is a number of nearest neighbours
between 0 and n_neigh.

Examples

set.seed(2024)
create an artificial pca embedding
pca_embedding <- matrix(

c(runif(100 * 10), runif(100 * 10, min = 3, max = 4)),
nrow = 200, byrow = TRUE

)
rownames(pca_embedding) <- as.character(1:200)
colnames(pca_embedding) <- paste("PC", 1:10)

calculate the nn adjacency matrix
nn_matrix <- getNNmatrix(

RANN::nn2(pca_embedding, k = 5)$nn.idx,
5,
0,
-1

)$nn

get_highest_prune_param(nn_matrix, 5)$prune_value

get_highest_prune_param_embedding

Calculate the highest pruning parameter for the SNN graph given Em-
bedding

Description

Given an embedding, the function calculates the highest pruning parameter for the SNN graph that
preserves the connectivity of the graph.

38 get_nn_conn_comps

Usage

get_highest_prune_param_embedding(embedding, n_neigh)

Arguments

embedding A matrix associated with a PCA embedding. Embeddings from other dimen-
sionality reduction techniques (such as LSI) can be used.

n_neigh The number of nearest neighbours.

Value

The value of the highest pruning parameter.

Note

Given the way the SNN graph is built, the possible values for the pruning parameter are limited and
can be determined by the formula i / (2 * n_neigh - i), where i is a number of nearest neighbours
between 0 and n_neigh.

Examples

set.seed(2024)
create an artificial pca embedding
pca_embedding <- matrix(

c(runif(100 * 10), runif(100 * 10, min = 3, max = 4)),
nrow = 200, byrow = TRUE

)
rownames(pca_embedding) <- as.character(1:200)
colnames(pca_embedding) <- paste("PC", 1:10)

get_highest_prune_param_embedding(pca_embedding, 5)

get_nn_conn_comps Relationship Between Nearest Neighbours and Connected Compo-
nents

Description

One of the steps in the clustering pipeline is building a k-nearest neighbour graph on a reduced-space
embedding. This method assesses the relationship between different number of nearest neighbours
and the connectivity of the graph. In the context of graph clustering, the number of connected
components can be used as a lower bound for the number of clusters. The calculations are performed
multiple times by changing the seed at each repetition.

get_nn_conn_comps 39

Usage

get_nn_conn_comps(
embedding,
n_neigh_sequence,
n_repetitions = 100,
seed_sequence = NULL,
include_umap = FALSE,
umap_arguments = list()

)

Arguments

embedding A matrix associated with a PCA embedding. Embeddings from other dimen-
sionality reduction techniques (such as LSI) can be used.

n_neigh_sequence

A sequence of the number of nearest neighbours.

n_repetitions The number of repetitions of applying the pipeline with different seeds; ignored
if seed_sequence is provided by the user. Defaults to ‘100“.

seed_sequence A custom seed sequence; if the value is NULL, the sequence will be built starting
from 1 with a step of 100.

include_umap A boolean value indicating whether to calculate the number of connected com-
ponents for the UMAP embedding. Defaults to FALSE.

umap_arguments Additional arguments passed to the the uwot::umap method.

Value

A list having one field associated with a number of nearest neighbours. Each value contains an
array of the number of connected components obtained on the specified number of repetitions.

Examples

set.seed(2024)
create an artificial PCA embedding
pca_emb <- matrix(runif(100 * 30), nrow = 100, byrow = TRUE)
rownames(pca_emb) <- as.character(1:100)
colnames(pca_emb) <- paste0("PCA_", 1:30)

nn_conn_comps_obj <- get_nn_conn_comps(
embedding = pca_emb,
n_neigh_sequence = c(2, 5),
n_repetitions = 3,
arguments that are passed to the uwot function
umap_arguments = list(

min_dist = 0.3,
metric = "cosine"

)
)
plot_connected_comps_evolution(nn_conn_comps_obj)

40 marker_overlap

marker_overlap Cell-Wise Marker Gene Overlap

Description

Calculates the per-cell overlap of previously calculated marker genes.

Usage

marker_overlap(
markers1,
markers2,
clustering1,
clustering2,
n = 25,
overlap_type = "jsi",
rank_by = "-p_val",
use_sign = TRUE

)

Arguments

markers1 The first data frame of marker genes, must contain columns called ’gene’ and
’cluster’.

markers2 The second data frame of marker genes, must contain columns called ’gene’ and
’cluster’.

clustering1 The first vector of cluster assignments.

clustering2 The second vector of cluster assignments.

n The number of top n markers (ranked by rank_by) to use when calculating the
overlap.

overlap_type The type of overlap to calculated: must be one of ’jsi’ for Jaccard similarity
index and ’intersect’ for intersect size.

rank_by A character string giving the name of the column to rank marker genes by. Note
the sign here: to rank by lowest p-value, preface the column name with a minus
sign; to rank by highest value, where higher value indicates more discriminative
genes (for example power in the ROC test), no sign is needed.

use_sign A logical: should the sign of markers match for overlap calculations? So a
gene must be a positive or a negative marker in both clusters being compared.
If TRUE, markers1 and markers2 must have a ’avg_logFC’ or ’avg_log2FC’
column, from which the sign of the DE will be extracted.

Value

A vector of the marker gene overlap per cell.

merge_partitions 41

Examples

suppressWarnings({
set.seed(1234)
library(Seurat)
data("pbmc_small")

cluster with Louvain algorithm
pbmc_small <- FindClusters(pbmc_small, resolution = 0.8, verbose = FALSE)

cluster with k-means
pbmc.pca <- Embeddings(pbmc_small, "pca")
pbmc_small@meta.data$kmeans_clusters <- kmeans(pbmc.pca, centers = 3)$cluster

compare the markers
Idents(pbmc_small) <- pbmc_small@meta.data$seurat_clusters
louvain.markers <- FindAllMarkers(pbmc_small,

logfc.threshold = 1,
test.use = "t",
verbose = FALSE

)

Idents(pbmc_small) <- pbmc_small@meta.data$kmeans_clusters
kmeans.markers <- FindAllMarkers(pbmc_small,

logfc.threshold = 1,
test.use = "t",
verbose = FALSE

)

pbmc_small@meta.data$jsi <- marker_overlap(
louvain.markers, kmeans.markers,
pbmc_small@meta.data$seurat_clusters, pbmc_small@meta.data$kmeans_clusters

)

which cells have the same markers, regardless of clustering?
FeaturePlot(pbmc_small, "jsi")

})

merge_partitions Merge Partitions

Description

Merge flat disjoint clusterings whose pairwise ECS score is above a given threshold. The merging
is done using a complete linkage approach.

Usage

merge_partitions(
partition_list,

42 merge_resolutions

ecs_thresh = 1,
order_logic = c("freq", "avg_agreement", "none"),
return_ecs_matrix = FALSE,
check_ties = TRUE

)

Arguments

partition_list A list of flat disjoint membership vectors.

ecs_thresh A numeric: the ecs threshold.

order_logic Variable indicating the method of ordering the partitions. It can take these three
values:

• "freq": order the partitions based on their frequencies. The partition with
the highest frequency will be the first on the list (default).

• "avg_agreement": order the partitions based on their average agreement
index. The average agreement index of a partition is calculated as the mean
of the ECS scores between that partition and the other partitions from the
list. The partition with the highest agreement will be the first on the list.

• "none": do not perform any ordering (not recommended). If selected, the
average agreement scores will not be calculated.

return_ecs_matrix

A logical: if TRUE, the function will add the ECS matrix to the return list.
Defaults to FALSE.

check_ties A logical value that indicates whether to check for ties in the highest frequency
partitions or not. If TRUE, the function will put at the first position the partition
that has the highest similarity with the other partitions. Defaults to FALSE.

Value

a list of the merged partitions, together with their associated ECC score. If return_ecs_matrix is
set to TRUE, the function will also return the ECS matrix.

Examples

initial_list <- list(c(1, 1, 2), c(2, 2, 2), c("B", "B", "A"))
merge_partitions(initial_list, 1)

merge_resolutions Merge Partitions from different Resolutions

Description

Merge partitions obtained with different resolution values. The partitions will be grouped based on
the number of clusters. The identical partitions will be merged into a single partition by updating
the frequency using the merge_partitions method.

pac_convergence 43

Usage

merge_resolutions(res_obj)

Arguments

res_obj A list associated to a configuration field from the object returned by the assess_clustering_importance
method.

Value

A list having one field assigned to each number of clusters. A number of cluster will contain a list
of all merged partitions. To avoid duplicates, merged_partitions with threshold 1 is applied.

pac_convergence PAC Convergence Plot

Description

Plot PAC across iterations for a set of k to assess convergence.

Usage

pac_convergence(pac_res, k_plot)

Arguments

pac_res The data.frame output by consensus_cluster.

k_plot A vector with values of k to plot.

Value

A ggplot2 object with the convergence plot. Convergence has been reached when the lines flatten
out across k_plot values. out across

Examples

pac.res <- consensus_cluster(iris[, 1:4], k_max = 20)
pac_convergence(pac.res, k_plot = c(3, 5, 7, 9))

44 plot_clustering_difference_facet

pac_landscape PAC Landscape Plot

Description

Plot final PAC values across range of k to find optimal number of clusters.

Usage

pac_landscape(pac_res, n_shade = max(pac_res$iteration)/5)

Arguments

pac_res The data.frame output by consensus_cluster.

n_shade The PAC values across the last n_shade iterations will be shaded to illustrate the
how stable the PAC score is.

Value

A ggplot2 object with the final PAC vs k plot. A local minimum in the landscape indicates an
especially stable value of k.

Examples

pac.res <- consensus_cluster(iris[, 1:4], k_max = 20)
pac_landscape(pac.res)

plot_clustering_difference_facet

Clustering Method Stability Facet Plot

Description

Display the distribution of the EC consistency for each clustering method and each resolution value
on a given embedding The all field of the object returned by the get_clustering_difference_object
method is used.

Usage

plot_clustering_difference_facet(
clust_object,
embedding,
low_limit = 0,
high_limit = 1,
grid = TRUE

)

plot_clustering_overall_stability 45

Arguments

clust_object An object returned by the assess_clustering_stability method.

embedding An embedding (only the first two dimensions will be used for visualization).

low_limit The lowest value of ECC that will be displayed on the embedding.

high_limit The highest value of ECC that will be displayed on the embedding.

grid Boolean value indicating whether the facet should be a grid (where each row is
associated with a resolution value and each column with a clustering method) or
a wrap.

Value

A ggplot2 object. #TODO should export

Examples

FIXME fix the examples
set.seed(2021)
create an artificial PCA embedding
pca_embedding <- matrix(runif(100 * 30), nrow = 100)
rownames(pca_embedding) <- as.character(1:100)
colnames(pca_embedding) <- paste0("PCA_", 1:30)

adj_matrix <- Seurat::FindNeighbors(pca_embedding,
k.param = 10,
nn.method = "rann",
verbose = FALSE,
compute.SNN = FALSE
)$nn
clust_diff_obj <- assess_clustering_stability(
graph_adjacency_matrix = adj_matrix,
resolution = c(0.5, 1),
n_repetitions = 10,
algorithm = 1:2,
verbose = FALSE
)
plot_clustering_difference_facet(clust_diff_obj, pca_embedding)

plot_clustering_overall_stability

Clustering Method Overall Stability Boxplot

Description

Display EC consistency across clustering methods by summarising the distribution of the EC con-
sistency for each number of clusters.

46 plot_clustering_overall_stability

Usage

plot_clustering_overall_stability(
clust_object,
value_type = c("k", "resolution"),
summary_function = stats::median

)

Arguments

clust_object An object returned by the assess_clustering_stability method.

value_type A string that specifies the type of value that was used for grouping the partitions
and calculating the ECC score. It can be either k or resolution. Defaults to k.

summary_function

The function that will be used to summarize the distribution of the ECC values
obtained for each number of clusters. Defaults to median.

Value

A ggplot2 object with the EC consistency distributions grouped by the clustering methods. Higher
consistency indicates a more stable clustering.

Examples

set.seed(2024)
create an artificial PCA embedding
pca_embedding <- matrix(runif(100 * 30), nrow = 100)
rownames(pca_embedding) <- paste0("cell_", seq_len(nrow(pca_embedding)))
colnames(pca_embedding) <- paste0("PC_", 1:30)

adj_matrix <- getNNmatrix(
RANN::nn2(pca_embedding, k = 10)$nn.idx,
10,
0,
-1

)$nn
rownames(adj_matrix) <- paste0("cell_", seq_len(nrow(adj_matrix)))
colnames(adj_matrix) <- paste0("cell_", seq_len(ncol(adj_matrix)))

alternatively, the adj_matrix can be calculated
using the `Seurat::FindNeighbors` function.

clust_diff_obj <- assess_clustering_stability(
graph_adjacency_matrix = adj_matrix,
resolution = c(0.5, 1),
n_repetitions = 10,
clustering_algorithm = 1:2,
verbose = FALSE

)
plot_clustering_overall_stability(clust_diff_obj)

plot_clustering_per_value_stability 47

plot_clustering_per_value_stability

Clustering Method per value Stability Boxplot

Description

Display EC consistency across clustering methods, calculated for each value of the resolution pa-
rameter or the number of clusters.

Usage

plot_clustering_per_value_stability(
clust_object,
value_type = c("k", "resolution")

)

Arguments

clust_object An object returned by the assess_clustering_stability method.

value_type A string that specifies the type of value that was used for grouping the partitions
and calculating the ECC score. It can be either k or resolution. Defaults to k.

Value

A ggplot2 object with the EC consistency distributions grouped by the clustering methods. Higher
consistency indicates a more stable clustering. The X axis is decided by the value_type parameter.

Examples

set.seed(2024)
create an artificial PCA embedding
pca_embedding <- matrix(runif(100 * 30), nrow = 100)
rownames(pca_embedding) <- paste0("cell_", seq_len(nrow(pca_embedding)))
colnames(pca_embedding) <- paste0("PC_", 1:30)

adj_matrix <- getNNmatrix(
RANN::nn2(pca_embedding, k = 10)$nn.idx,
10,
0,
-1

)$nn
rownames(adj_matrix) <- paste0("cell_", seq_len(nrow(adj_matrix)))
colnames(adj_matrix) <- paste0("cell_", seq_len(ncol(adj_matrix)))

alternatively, the adj_matrix can be calculated
using the `Seurat::FindNeighbors` function.

clust_diff_obj <- assess_clustering_stability(

48 plot_clust_hierarchical

graph_adjacency_matrix = adj_matrix,
resolution = c(0.5, 1),
n_repetitions = 10,
clustering_algorithm = 1:2,
verbose = FALSE

)
plot_clustering_per_value_stability(clust_diff_obj)

plot_clust_hierarchical

Hierarchical relationship between partitions with different number of
clusters

Description

After assessing the stability of the clustering step, the user can visualise the relationship between the
partitions as the number of clusters changes. The aim is to understand the hierarchical relationship
between super and sub celltypes. The function will create a plot that will represent the clusters of
each partition as nodes. The colours of the nodes will indicate the stability of the cluster. The size is
proportional to the number of cells in the cluster. The edges will represent the relationship between
the clusters of two partitions. The colour of the edges will indicate the stability of the relationship
between the clusters. The thickness of the edges will indicate the number of cells that are shared
between the two clusters.

Usage

plot_clust_hierarchical(
clustering_assessment,
clustering_method = NULL,
k = NULL,
edge_threshold = 0.3,
range_point_size = c(1, 6),
range_edge_width = c(0.01, 3),
edge_palette_name = "RColorBrewer::Greys",
edge_palette_inverse = FALSE,
node_palette_name = "viridis::rocket",
node_palette_inverse = TRUE

)

Arguments

clustering_assessment

An object returned by the assess_clustering_stability method.
clustering_method

A string that specifies the clustering method. Should be one of the follow-
ing: ’Louvain’, ’Louvain.refined’, ’SLM’, ’Leiden’. If NULL, the first clustering
method will be used. Defaults to NULL.

plot_clust_hierarchical 49

k A vector of integers that specifies the number of clusters. If NULL, all available
values will be used. Defaults to NULL.

edge_threshold A numeric value that specifies the quantile threshold for the edges. The edges
with the intersection size below the quantile threshold will be removed. Defaults
to 0.3.

range_point_size

A numeric vector of length 2 that specifies the minimum and the maximum size
of the nodes. Defaults to c(1, 6).

range_edge_width

A numeric vector of length 2 that specifies the minimum and the maximum
width of the edges. Defaults to c(0.01, 3).

edge_palette_name

A string that specifies the name of the palette that will be used for the edges.
Defaults to "RColorBrewer::Greys".

edge_palette_inverse

A boolean value that specifies whether the palette should be inverted. Defaults
to FALSE.

node_palette_name

A string that specifies the name of the palette that will be used for the nodes.
Defaults to "viridis::rocket".

node_palette_inverse

A boolean value that specifies whether the palette should be inverted. Defaults
to TRUE.

Value

A ggplot object following the details from description.

Note

The names of the colour palettes should follow the format defined in the paletteer package.

Examples

set.seed(2024)
create an artificial PCA embedding
pca_embedding <- matrix(runif(100 * 30), nrow = 100)
rownames(pca_embedding) <- paste0("cell_", seq_len(nrow(pca_embedding)))
colnames(pca_embedding) <- paste0("PC_", 1:30)

adj_matrix <- getNNmatrix(
RANN::nn2(pca_embedding, k = 10)$nn.idx,
10,
0,
-1

)$nn
rownames(adj_matrix) <- paste0("cell_", seq_len(nrow(adj_matrix)))
colnames(adj_matrix) <- paste0("cell_", seq_len(ncol(adj_matrix)))

50 plot_connected_comps_evolution

alternatively, the adj_matrix can be calculated
using the `Seurat::FindNeighbors` function.

clust_diff_obj <- assess_clustering_stability(
graph_adjacency_matrix = adj_matrix,
resolution = c(0.5, 1),
n_repetitions = 10,
clustering_algorithm = 1:2,
verbose = TRUE

)
plot_clust_hierarchical(clust_diff_obj)

plot_connected_comps_evolution

Relationship Between Number of Nearest Neighbours and Graph Con-
nectivity

Description

Display the distribution of the number connected components obtained for each number of neigh-
bours across random seeds.

Usage

plot_connected_comps_evolution(nn_conn_comps_object)

Arguments

nn_conn_comps_object

An object or a concatenation of objects returned by the get_nn_conn_comps
method.

Value

A ggplot2 object with boxplots for the connected component distributions.

Note

The number of connected components is displayed on a logarithmic scale.

Examples

set.seed(2024)
create an artificial PCA embedding
pca_emb <- matrix(runif(100 * 30), nrow = 100, byrow = TRUE)
rownames(pca_emb) <- as.character(1:100)
colnames(pca_emb) <- paste0("PCA_", 1:30)

nn_conn_comps_obj <- get_nn_conn_comps(

plot_feature_overall_stability_boxplot 51

embedding = pca_emb,
n_neigh_sequence = c(2, 5),
n_repetitions = 3,
arguments that are passed to the uwot function
umap_arguments = list(

min_dist = 0.3,
metric = "cosine"

)
)
plot_connected_comps_evolution(nn_conn_comps_obj)

plot_feature_overall_stability_boxplot

Overall Feature Stability Boxplot

Description

Display EC consistency for each feature set and for each step. Above each boxplot there is a number
representing the step (or the size of the subset). The ECC values are extracted for each resolution
value and summarized using the summary_function parameter.

Usage

plot_feature_overall_stability_boxplot(
feature_object_list,
summary_function = stats::median,
text_size = 4,
boxplot_width = 0.4,
dodge_width = 0.7,
return_df = FALSE

)

Arguments

feature_object_list

An object or a concatenation of objects returned by the assess_feature_stability
method

summary_function

The function that will be used to summarize the ECC values. Defaults to median.

text_size The size of the labels above boxplots

boxplot_width Used for adjusting the width of the boxplots; the value will be passed to the
width argument of the ggplot2::geom_boxplot method.

dodge_width Used for adjusting the horizontal position of the boxplot; the value will be
passed to the width argument of the ggplot2::position_dodge method.

return_df If TRUE, the function will return the ECS values as a dataframe. Default is
FALSE.

52 plot_feature_overall_stability_incremental

Value

A ggplot2 object.

Examples

set.seed(2024)
create an artificial expression matrix
expr_matrix <- matrix(

c(runif(100 * 10), runif(100 * 10, min = 3, max = 4)),
nrow = 200, byrow = TRUE

)
rownames(expr_matrix) <- as.character(1:200)
colnames(expr_matrix) <- paste("feature", 1:10)

feature_stability_result <- assess_feature_stability(
data_matrix = t(expr_matrix),
feature_set = colnames(expr_matrix),
steps = 5,
feature_type = "feature_name",
resolution = c(0.1, 0.5, 1),
n_repetitions = 10,
umap_arguments = list(

the following parameters are used by the umap function
and are not mandatory
n_neighbors = 3,
approx_pow = TRUE,
n_epochs = 0,
init = "random",
min_dist = 0.3

),
clustering_algorithm = 1

)
plot_feature_overall_stability_boxplot(feature_stability_result)

plot_feature_overall_stability_incremental

Overall Feature Stability Incremental Boxplot

Description

Perform an incremental ECS between two consecutive feature steps. The ECS values are extracted
for every resolution value and summarized using a function (e.g. median, mean, etc.).

Usage

plot_feature_overall_stability_incremental(
feature_object_list,
summary_function = stats::median,
dodge_width = 0.7,

plot_feature_overall_stability_incremental 53

text_size = 4,
boxplot_width = 0.4,
return_df = FALSE

)

Arguments

feature_object_list

An object or a concatenation of objects returned by the assess_feature_stability
method.

summary_function

The function used to summarize the ECS values. Default is median.

dodge_width Used for adjusting the horizontal position of the boxplot; the value will be
passed to the width argument of the ggplot2::position_dodge method.

text_size The size of the labels above boxplots.

boxplot_width Used for adjusting the width of the boxplots; the value will be passed to the
width argument of the ggplot2::geom_boxplot method.

return_df If TRUE, the function will return the ECS values as a dataframe. Default is
FALSE.

Value

A ggplot2 object with ECS distribution will be displayed as a boxplot. Above each boxplot there
will be a pair of numbers representing the two steps that are compared.

Examples

set.seed(2024)
create an artificial expression matrix
expr_matrix <- matrix(

c(runif(50 * 10), runif(50 * 10, min = 3, max = 4)),
nrow = 100, byrow = TRUE

)
rownames(expr_matrix) <- as.character(1:100)
colnames(expr_matrix) <- paste("feature", 1:10)

feature_stability_result <- assess_feature_stability(
data_matrix = t(expr_matrix),
feature_set = colnames(expr_matrix),
steps = c(5, 10),
feature_type = "feature_name",
resolution = c(0.1, 0.5),
n_repetitions = 3,
umap_arguments = list(

the following parameters are used by the umap function
and are not mandatory
n_neighbors = 3,
approx_pow = TRUE,
n_epochs = 0,
init = "random",

54 plot_feature_per_resolution_stability_boxplot

min_dist = 0.3
),
clustering_algorithm = 1

)
plot_feature_overall_stability_incremental(feature_stability_result)

plot_feature_per_resolution_stability_boxplot

Per resolution Feature Stability Boxplot

Description

Display EC consistency for each feature set and for each step. Above each boxplot there is a number
representing the step (or the size of the subset). The ECC values are extracted depdening on the
resolution value provided by the user.

Usage

plot_feature_per_resolution_stability_boxplot(
feature_object_list,
resolution,
violin_plot = FALSE,
text_size = 4,
boxplot_width = 0.4,
dodge_width = 0.7,
return_df = FALSE

)

Arguments

feature_object_list

An object or a concatenation of objects returned by the assess_feature_stability
method

resolution The resolution value for which the ECC will be extracted.

violin_plot If TRUE, the function will return a violin plot instead of a boxplot. Default is
FALSE.

text_size The size of the labels above boxplots

boxplot_width Used for adjusting the width of the boxplots; the value will be passed to the
width argument of the ggplot2::geom_boxplot method.

dodge_width Used for adjusting the horizontal position of the boxplot; the value will be
passed to the width argument of the ggplot2::position_dodge method.

return_df If TRUE, the function will return the ECS values as a dataframe. Default is
FALSE.

Value

A ggplot2 object.

plot_feature_per_resolution_stability_incremental 55

Examples

set.seed(2024)
create an artificial expression matrix
expr_matrix <- matrix(

c(runif(100 * 10), runif(100 * 10, min = 3, max = 4)),
nrow = 200, byrow = TRUE

)
rownames(expr_matrix) <- as.character(1:200)
colnames(expr_matrix) <- paste("feature", 1:10)

feature_stability_result <- assess_feature_stability(
data_matrix = t(expr_matrix),
feature_set = colnames(expr_matrix),
steps = 5,
feature_type = "feature_name",
resolution = c(0.1, 0.5, 1),
n_repetitions = 10,
umap_arguments = list(

the following parameters are used by the umap function
and are not mandatory
n_neighbors = 3,
approx_pow = TRUE,
n_epochs = 0,
init = "random",
min_dist = 0.3

),
clustering_algorithm = 1

)
plot_feature_per_resolution_stability_boxplot(feature_stability_result, 0.5)

plot_feature_per_resolution_stability_incremental

Per resolution - Feature Stability Incremental Boxplot

Description

Perform an incremental ECS between two consecutive feature steps. The ECS values are extracted
only for a specified resolution value.

Usage

plot_feature_per_resolution_stability_incremental(
feature_object_list,
resolution,
dodge_width = 0.7,
text_size = 4,
boxplot_width = 0.4,
return_df = FALSE

)

56 plot_feature_per_resolution_stability_incremental

Arguments

feature_object_list

An object or a concatenation of objects returned by the assess_feature_stability
method.

resolution The resolution value for which the ECS will be extracted.

dodge_width Used for adjusting the horizontal position of the boxplot; the value will be
passed to the width argument of the ggplot2::position_dodge method.

text_size The size of the labels above boxplots.

boxplot_width Used for adjusting the width of the boxplots; the value will be passed to the
width argument of the ggplot2::geom_boxplot method.

return_df If TRUE, the function will return the ECS values as a dataframe. Default is
FALSE.

Value

A ggplot2 object with ECS distribution will be displayed as a boxplot. Above each boxplot there
will be a pair of numbers representing the two steps that are compared.

Examples

set.seed(2024)
create an artificial expression matrix
expr_matrix <- matrix(

c(runif(50 * 10), runif(50 * 10, min = 3, max = 4)),
nrow = 100, byrow = TRUE

)
rownames(expr_matrix) <- as.character(1:100)
colnames(expr_matrix) <- paste("feature", 1:10)

feature_stability_result <- assess_feature_stability(
data_matrix = t(expr_matrix),
feature_set = colnames(expr_matrix),
steps = c(5, 10),
feature_type = "feature_name",
resolution = c(0.1, 0.5),
n_repetitions = 3,
umap_arguments = list(

the following parameters are used by the umap function
and are not mandatory
n_neighbors = 3,
approx_pow = TRUE,
n_epochs = 0,
init = "random",
min_dist = 0.3

),
clustering_algorithm = 1

)
plot_feature_per_resolution_stability_incremental(feature_stability_result, 0.1)

plot_feature_stability_ecs_facet 57

plot_feature_stability_ecs_facet

Feature Stability - EC Consistency Facet Plot

Description

Display a facet of plots where each subpanel is associated with a feature set and illustrates the
distribution of the EC consistency score over the UMAP embedding.

Usage

plot_feature_stability_ecs_facet(
feature_object_list,
resolution,
n_facet_cols = 3,
point_size = 0.3

)

Arguments

feature_object_list

An object or a concatenation of objects returned by the assess_feature_stability
method

resolution The resolution value for which the ECS will be extracted.

n_facet_cols The number of facet’s columns.

point_size The size of the points displayed on the plot.

Value

A ggplot2 object

Examples

set.seed(2024)
create an artificial expression matrix
expr_matrix <- matrix(

c(runif(100 * 10), runif(50 * 10, min = 3, max = 4)),
nrow = 150, byrow = TRUE

)
rownames(expr_matrix) <- as.character(1:150)
colnames(expr_matrix) <- paste("feature", 1:10)

feature_stability_result <- assess_feature_stability(
data_matrix = t(expr_matrix),
feature_set = colnames(expr_matrix),
steps = 5,
feature_type = "feature_name",
resolution = c(0.1, 0.5, 1),

58 plot_feature_stability_mb_facet

n_repetitions = 10,
clustering_algorithm = 1

)
plot_feature_stability_ecs_facet(

feature_stability_result,
0.5,
point_size = 2

)

plot_feature_stability_mb_facet

Feature Stability - Cluster Membership Facet Plot

Description

Display a facet of plots where each subpanel is associated with a feature set and illustrates the
distribution of the most frequent partition over the UMAP embedding.

Usage

plot_feature_stability_mb_facet(
feature_object_list,
resolution,
text_size = 5,
n_facet_cols = 3,
point_size = 0.3

)

Arguments

feature_object_list

An object or a concatenation of objects returned by the assess_feature_stability
method

resolution The resolution value for which the ECS will be extracted.

text_size The size of the cluster label

n_facet_cols The number of facet’s columns.

point_size The size of the points displayed on the plot.

Value

A ggplot2 object.

plot_k_n_partitions 59

Examples

set.seed(2024)
create an artificial expression matrix
expr_matrix <- matrix(

c(runif(100 * 10), runif(50 * 10, min = 3, max = 4)),
nrow = 150, byrow = TRUE

)
rownames(expr_matrix) <- as.character(1:150)
colnames(expr_matrix) <- paste("feature", 1:10)

feature_stability_result <- assess_feature_stability(
data_matrix = t(expr_matrix),
feature_set = colnames(expr_matrix),
steps = 5,
feature_type = "feature_name",
resolution = c(0.1, 0.5, 1),
n_repetitions = 10,
clustering_algorithm = 1

)
plot_feature_stability_mb_facet(

feature_stability_result,
0.5,
point_size = 2

)

plot_k_n_partitions Relationship Between the Number of Clusters and the Number of
Unique Partitions

Description

For each configuration provided in clust_object, display how many different partitions with the
same number of clusters can be obtained by changing the seed.

Usage

plot_k_n_partitions(
clust_object,
colour_information = c("ecc", "freq_part"),
dodge_width = 0.3,
pt_size_range = c(1.5, 4),
summary_function = stats::median,
y_step = 5

)

Arguments

clust_object An object returned by the assess_clustering_stability method.

60 plot_k_n_partitions

colour_information

String that specifies the information type that will be illustrated using gradient
colour: either freq_part for the frequency of the most common partition or
ecc for the Element-Centric Consistency of the partitions obtained when the the
number of clusters is fixed. Defaults to ecc.

dodge_width Used for adjusting the distance between the boxplots representing a clustering
method. Defaults to 0.3.

pt_size_range Indicates the minimum and the maximum size a point on the plot can have.
Defaults to c(1.5, 4).

summary_function

The function that will be used to summarize the distribution of the ECC values
obtained for each number of clusters. Defaults to median.

y_step The step used for the y-axis. Defaults to 5.

Value

A ggplot2 object. The color gradient suggests the frequency of the most common partition relative
to the total number of appearances of that specific number of clusters or the Element-Centric Con-
sistency of the partitions. The size illustrates the frequency of the partitions with k clusters relative
to the total number of partitions. The shape of the points indicates the clustering method.

Examples

set.seed(2024)
create an artificial PCA embedding
pca_embedding <- matrix(runif(100 * 30), nrow = 100)
rownames(pca_embedding) <- paste0("cell_", seq_len(nrow(pca_embedding)))
colnames(pca_embedding) <- paste0("PC_", 1:30)

adj_matrix <- getNNmatrix(
RANN::nn2(pca_embedding, k = 10)$nn.idx,
10,
0,
-1

)$nn
rownames(adj_matrix) <- paste0("cell_", seq_len(nrow(adj_matrix)))
colnames(adj_matrix) <- paste0("cell_", seq_len(ncol(adj_matrix)))

alternatively, the adj_matrix can be calculated
using the `Seurat::FindNeighbors` function.

clust_diff_obj <- assess_clustering_stability(
graph_adjacency_matrix = adj_matrix,
resolution = c(0.5, 1),
n_repetitions = 10,
clustering_algorithm = 1:2,
verbose = FALSE

)
plot_k_n_partitions(clust_diff_obj)

plot_k_resolution_corresp 61

plot_k_resolution_corresp

Correspondence Between Resolution and the Number of Clusters

Description

For each configuration provided in the clust_object, display what number of clusters appear for
different values of the resolution parameters.

Usage

plot_k_resolution_corresp(
clust_object,
colour_information = c("ecc", "freq_k"),
dodge_width = 0.3,
pt_size_range = c(1.5, 4),
summary_function = stats::median

)

Arguments

clust_object An object returned by the assess_clustering_stability method.

colour_information

String that specifies the information type that will be illustrated using gradient
colour: either freq_part for the frequency of the most common partition or
ecc for the Element-Centric Consistency of the partitions obtained when the the
number of clusters is fixed. Defaults to ecc.

dodge_width Used for adjusting the distance between the boxplots representing a clustering
method. Defaults to 0.3.

pt_size_range Indicates the minimum and the maximum size a point on the plot can have.
Defaults to c(1.5, 4).

summary_function

The function that will be used to summarize the distribution of the ECC values
obtained for each number of clusters. Defaults to median.

Value

A ggplot2 object. Different shapes of points indicate different parameter configuration, while the
color illustrates the frequency of the most common partition or the Element-Centric Consistency of
the partitions. The frequency is calculated as the fraction between the number of total appearances
of partitions with a specific number of clusters and resolution value and the number of runs. The
size illustrates the frequency of the most common partition with k clusters relative to the partitions
obtained with the same resolution value and have k clusters.

62 plot_n_neigh_ecs

Examples

set.seed(2024)
create an artificial PCA embedding
pca_embedding <- matrix(runif(100 * 30), nrow = 100)
rownames(pca_embedding) <- paste0("cell_", seq_len(nrow(pca_embedding)))
colnames(pca_embedding) <- paste0("PC_", 1:30)

adj_matrix <- getNNmatrix(
RANN::nn2(pca_embedding, k = 10)$nn.idx,
10,
0,
-1

)$nn
rownames(adj_matrix) <- paste0("cell_", seq_len(nrow(adj_matrix)))
colnames(adj_matrix) <- paste0("cell_", seq_len(ncol(adj_matrix)))

alternatively, the adj_matrix can be calculated
using the `Seurat::FindNeighbors` function.

clust_diff_obj <- assess_clustering_stability(
graph_adjacency_matrix = adj_matrix,
resolution = c(0.5, 1),
n_repetitions = 10,
clustering_algorithm = 1:2,
verbose = FALSE

)
plot_k_resolution_corresp(clust_diff_obj)

plot_n_neigh_ecs Graph construction parameters - ECC facet

Description

Display, for all configurations consisting in different number of neighbours, graph types and base
embeddings, the EC Consistency of the partitions obtained over multiple runs on an UMAP embed-
ding.

Usage

plot_n_neigh_ecs(nn_ecs_object, boxplot_width = 0.5)

Arguments

nn_ecs_object An object or a concatenation of objects returned by the get_nn_importance
method.

boxplot_width Used for adjusting the width of the boxplots; the value will be passed to the
width argument of the ggplot2::geom_boxplot method.

plot_n_neigh_k_correspondence 63

Value

A ggplot2 object.

Examples

set.seed(2024)
create an artificial PCA embedding
pca_emb <- matrix(runif(100 * 30), nrow = 100, byrow = TRUE)
rownames(pca_emb) <- as.character(1:100)
colnames(pca_emb) <- paste0("PC_", 1:30)

nn_stability_obj <- assess_nn_stability(
embedding = pca_emb,
n_neigh_sequence = c(10, 15, 20),
n_repetitions = 10,
graph_reduction_type = "PCA",
clustering_algorithm = 1

)
plot_n_neigh_ecs(nn_stability_obj)

plot_n_neigh_k_correspondence

Relationship Between Number of Nearest Neighbours and Number of
Clusters

Description

Display the distribution of the number of clusters obtained for each number of neighbours across
random seeds.

Usage

plot_n_neigh_k_correspondence(nn_object_n_clusters)

Arguments

nn_object_n_clusters

An object or a concatenation of objects returned by the get_nn_importance
method.

Value

A ggplot2 object with the distributions displayed as boxplots.

Note

The number of clusters is displayed on a logarithmic scale.

64 server_comparisons

Examples

set.seed(2024)
create an artificial PCA embedding
pca_emb <- matrix(runif(100 * 30), nrow = 100, byrow = TRUE)
rownames(pca_emb) <- as.character(1:100)
colnames(pca_emb) <- paste0("PC_", 1:30)

nn_stability_obj <- assess_nn_stability(
embedding = pca_emb,
n_neigh_sequence = c(10, 15, 20),
n_repetitions = 10,
graph_reduction_type = "PCA",
clustering_algorithm = 1

)
plot_n_neigh_k_correspondence(nn_stability_obj)

server_comparisons Server - Comparison module

Description

Creates the backend interface for the comparison module inside the ClustAssess Shiny application.

Usage

server_comparisons(id, chosen_config, chosen_method)

Arguments

id The id of the module, used to acess the UI elements.

chosen_config A reactive object that contains the chosen configuration from the Dimensionality
Reduction tab.

chosen_method A reactive object that contains the chosen method from the Clustering tab.

Note

This function should not be called directly, but in the context of the app that is created using the
write_shiny_app function.

server_dimensionality_reduction 65

server_dimensionality_reduction

Server - Dimensionality reduction module

Description

Creates the backend interface for the dimensionality reduction module inside the ClustAssess Shiny
application.

Usage

server_dimensionality_reduction(id, parent_session)

Arguments

id The id of the module, used to acess the UI elements.
parent_session The session of the parent module, used to control the tabs of the application.

Note

This function should not be called directly, but in the context of the app that is created using the
write_shiny_app function.

server_graph_clustering

Server - Graph clustering module

Description

Creates the backend interface for the graph clustering module inside the ClustAssess Shiny appli-
cation.

Usage

server_graph_clustering(id, feature_choice, parent_session)

Arguments

id The id of the module, used to acess the UI elements.
feature_choice A reactive object that contains the chosen configuration from the Dimensionality

Reduction tab.
parent_session The session of the parent module, used to control the tabs of the application.

Note

This function should not be called directly, but in the context of the app that is created using the
write_shiny_app function.

66 server_landing_page

server_graph_construction

Server - Graph construction module

Description

Creates the backend interface for the graph construction module inside the ClustAssess Shiny ap-
plication.

Usage

server_graph_construction(id, chosen_config)

Arguments

id The id of the module, used to acess the UI elements.

chosen_config A reactive object that contains the chosen configuration from the Dimensionality
Reduction tab.

Note

This function should not be called directly, but in the context of the app that is created using the
write_shiny_app function.

server_landing_page Server - Landing page module

Description

Creates the backend interface for the landing page module inside the ClustAssess Shiny application.

Usage

server_landing_page(
id,
height_ratio,
dimension,
parent_session,
organism = "hsapiens"

)

server_sandbox 67

Arguments

id The id of the module, used to acess the UI elements.

height_ratio A reactive object that contains the height ratio of the plots in the application
(the height of the plot is calculated using the height ratio and the height of the
webpage).

dimension A reactive object that contains the dimensions of the webpage.

parent_session The session of the parent module, used to control the tabs of the application.

organism The organism of the dataset, which will be used in the enrichment analysis.

Note

This function should not be called directly, but in the context of the app that is created using the
write_shiny_app function.

server_sandbox Server - Sandbox module

Description

Creates the backend interface for the sandbox module inside the ClustAssess Shiny application.

Usage

server_sandbox(id)

Arguments

id The id of the module, used to acess the UI elements.

Note

This function should not be called directly, but in the context of the app that is created using the
write_shiny_app function.

68 ui_dimensionality_reduction

ui_comparisons UI - Comparison module

Description

Creates the UI interface for the comparison module inside the ClustAssess Shiny application.

Usage

ui_comparisons(id)

Arguments

id The id of the module, used to identify the UI elements.

Note

This function should not be called directly, but in the context of the app that is created using the
write_shiny_app function.

ui_dimensionality_reduction

UI - Dimensionality reduction module

Description

Creates the UI interface for the dimensionality reduction module inside the ClustAssess Shiny ap-
plication.

Usage

ui_dimensionality_reduction(id)

Arguments

id The id of the module, used to identify the UI elements.

Note

This function should not be called directly, but in the context of the app that is created using the
write_shiny_app function.

ui_graph_clustering 69

ui_graph_clustering UI - Graph clustering module

Description

Creates the UI interface for the graph clustering module inside the ClustAssess Shiny application.

Usage

ui_graph_clustering(id)

Arguments

id The id of the module, used to identify the UI elements.

Note

This function should not be called directly, but in the context of the app that is created using the
write_shiny_app function.

ui_graph_construction UI - Graph construction module

Description

Creates the UI interface for the graph construction module inside the ClustAssess Shiny application.

Usage

ui_graph_construction(id)

Arguments

id The id of the module, used to identify the UI elements.

Note

This function should not be called directly, but in the context of the app that is created using the
write_shiny_app function.

70 ui_sandbox

ui_landing_page UI - Landing page module

Description

Creates the UI interface for the landing page module inside the ClustAssess Shiny application.

Usage

ui_landing_page(id)

Arguments

id The id of the module, used to identify the UI elements.

Note

This function should not be called directly, but in the context of the app that is created using the
write_shiny_app function.

ui_sandbox UI - Sandbox module

Description

Creates the UI interface for the sandbox module inside the ClustAssess Shiny application.

Usage

ui_sandbox(id)

Arguments

id The id of the module, used to identify the UI elements.

Note

This function should not be called directly, but in the context of the app that is created using the
write_shiny_app function.

weighted_element_consistency 71

weighted_element_consistency

Weighted Element-Centric Consistency

Description

Calculate the weighted element-centric consistency of a set of clusterings. The weights are used to
give more importance to some clusterings over others.

Usage

weighted_element_consistency(
clustering_list,
weights = NULL,
calculate_sim_matrix = FALSE

)

Arguments

clustering_list

The list of clustering results, each of which is either:

• A numeric/character/factor vector of cluster labels for each element.
• A samples x clusters matrix/Matrix::Matrix of nonzero membership values.
• An hclust object.

weights A numeric vector of weights for each clustering in clustering_list. If NULL,
then all weights will be equal to 1. Defaults to NULL.

calculate_sim_matrix

A logical value that indicates whether to calculate the similarity matrix or not
along with the consistency score. Defaults to FALSE.

Value

A vector containing the weighted element-wise consistency. If calculate_sim_matrix is set to
TRUE, the element similarity matrix will be returned as well.

Note

The weighted ECC will be calculated as

∑
i

∑
j wiwjECS(i, j)∑

i wi

Examples

cluster across 20 random seeds
clustering_list <- lapply(1:20, function(x) kmeans(mtcars, centers = 3)$cluster)
weights <- sample(1:10, 20, replace = TRUE)
weighted_element_consistency(clustering_list, weights = weights)

72 write_objects

write_objects Write the objects for the ClustAssess ShinyApp

Description

Given the output of the ClustAssess pipeline, the expression matrix and the metadata, this function
creates the files needed for the ClustAssess ShinyApp. The files are written in the project_folder
and are the following:

• metadata.rds: the metadata file
• stability.h5: contains the stability results
• expression.h5: contains the expression matrix and the rank matrix

Usage

write_objects(
clustassess_object,
expression_matrix,
metadata,
project_folder = ".",
compression_level = 6,
chunk_size = 100,
gene_variance_threshold = 0,
summary_function = stats::median,
qualpalr_colorspace = "pretty"

)

Arguments

clustassess_object

The output of the ClustAssess automatic pipeline
expression_matrix

The expression matrix
metadata The metadata
project_folder The folder where the files will be written
compression_level

The compression level for the h5 files (See ‘rhdf5::h5createFile“ for more de-
tails)

chunk_size The chunk size for the rank matrix (See rhdf5::h5createDataset for more
details)

gene_variance_threshold

The threshold for the gene variance; genes with variance below this threshold
will be removed

summary_function

The function used for summarizing the stability values; the default is median
qualpalr_colorspace

The colorspace used for generating the colors; the default is pretty

write_shiny_app 73

Value

NULL (the files are written in the project_folder)

write_shiny_app Create the ClustAssess ShinyApp

Description

Creates the ClustAssess ShinyApp based on the output of the automatic ClustAssess pipeline. In
addition to that, the expression matrix and the metadata dataframe are provided as input to the
ShinyApp. If the clustassess object is not provided, the function will create the light version of the
ClustAssess ShinyApp, that will not contain the assessment results. For this case, the metadata
parameter should contain two aditional columns named ’UMAP_1" and ’UMAP_2’ that will corre-
spond to the 2D embedding of the cells.

Usage

write_shiny_app(
object,
metadata = NULL,
assay_name = NULL,
clustassess_object,
project_folder,
compression_level = 6,
summary_function = stats::median,
shiny_app_title = "",
organism_enrichment = "hsapiens",
height_ratio = 0.6,
qualpalr_colorspace = "pretty",
prompt_feature_choice = TRUE

)

S3 method for class 'Seurat'
write_shiny_app(
object,
metadata = NULL,
assay_name,
clustassess_object = NULL,
project_folder,
compression_level = 6,
summary_function = stats::median,
shiny_app_title = "",
organism_enrichment = "hsapiens",
height_ratio = 0.6,
qualpalr_colorspace = "pretty",
prompt_feature_choice = TRUE

74 write_shiny_app

)

Default S3 method:
write_shiny_app(
object,
metadata = NULL,
assay_name = NULL,
clustassess_object = NULL,
project_folder,
compression_level = 6,
summary_function = stats::median,
shiny_app_title = "",
organism_enrichment = "hsapiens",
height_ratio = 0.6,
qualpalr_colorspace = "pretty",
prompt_feature_choice = TRUE

)

Arguments

object A Seurat object or an expression matrix

metadata The metadata dataframe. This parameter will be ignored if the object is a Seurat
object.

assay_name The name of the assay to be used to extract the expression matrix from the Seurat
object. This parameter will be ignored if the object is not a Seurat object.

clustassess_object

The output of the ClustAssess automatic pipeline. If the ClustAssess object is
not provided (NULL), the function will create the light version of the ShinyApp,
that will not contain the assessment results.

project_folder The folder where the files will be written
compression_level

The compression level for the h5 files (See ‘rhdf5::h5createFile“ for more de-
tails)

summary_function

The function used for summarizing the stability values; the default is median
shiny_app_title

The title of the shiny app
organism_enrichment

The organism used for the enrichment analysis; the default is hsapiens

height_ratio The ratio of the height of the plot to the height of the browser; the default is 0.6
qualpalr_colorspace

The colorspace used for generating the colors; the default is pretty
prompt_feature_choice

Should the user be prompted to choose if he wants to continue with the selection
of features even if it is lower than median sequence depth; the default is TRUE

Index

add_metadata, 3
assess_clustering_stability, 4
assess_feature_stability, 6
assess_nn_stability, 8
automatic_stability_assessment, 10

calculate_markers, 13
calculate_markers_shiny, 16
choose_stable_clusters, 18
consensus_cluster, 19
create_monocle_default, 20
create_monocle_from_clustassess, 21
create_monocle_from_clustassess_app,

23
create_seurat_object_default, 24
create_seurat_object_from_clustassess_app,

25

element_agreement, 26
element_consistency, 27
element_sim, 29
element_sim_elscore, 31
element_sim_matrix, 33

get_clusters_from_clustassess_object,
35

get_colour_vector_from_palette, 36
get_highest_prune_param, 36
get_highest_prune_param_embedding, 37
get_nn_conn_comps, 38
getNNmatrix, 34

marker_overlap, 40
merge_partitions, 41
merge_resolutions, 42

pac_convergence, 43
pac_landscape, 44
plot_clust_hierarchical, 48
plot_clustering_difference_facet, 44
plot_clustering_overall_stability, 45

plot_clustering_per_value_stability,
47

plot_connected_comps_evolution, 50
plot_feature_overall_stability_boxplot,

51
plot_feature_overall_stability_incremental,

52
plot_feature_per_resolution_stability_boxplot,

54
plot_feature_per_resolution_stability_incremental,

55
plot_feature_stability_ecs_facet, 57
plot_feature_stability_mb_facet, 58
plot_k_n_partitions, 59
plot_k_resolution_corresp, 61
plot_n_neigh_ecs, 62
plot_n_neigh_k_correspondence, 63

server_comparisons, 64
server_dimensionality_reduction, 65
server_graph_clustering, 65
server_graph_construction, 66
server_landing_page, 66
server_sandbox, 67

ui_comparisons, 68
ui_dimensionality_reduction, 68
ui_graph_clustering, 69
ui_graph_construction, 69
ui_landing_page, 70
ui_sandbox, 70

weighted_element_consistency, 71
write_objects, 72
write_shiny_app, 73

75

	add_metadata
	assess_clustering_stability
	assess_feature_stability
	assess_nn_stability
	automatic_stability_assessment
	calculate_markers
	calculate_markers_shiny
	choose_stable_clusters
	consensus_cluster
	create_monocle_default
	create_monocle_from_clustassess
	create_monocle_from_clustassess_app
	create_seurat_object_default
	create_seurat_object_from_clustassess_app
	element_agreement
	element_consistency
	element_sim
	element_sim_elscore
	element_sim_matrix
	getNNmatrix
	get_clusters_from_clustassess_object
	get_colour_vector_from_palette
	get_highest_prune_param
	get_highest_prune_param_embedding
	get_nn_conn_comps
	marker_overlap
	merge_partitions
	merge_resolutions
	pac_convergence
	pac_landscape
	plot_clustering_difference_facet
	plot_clustering_overall_stability
	plot_clustering_per_value_stability
	plot_clust_hierarchical
	plot_connected_comps_evolution
	plot_feature_overall_stability_boxplot
	plot_feature_overall_stability_incremental
	plot_feature_per_resolution_stability_boxplot
	plot_feature_per_resolution_stability_incremental
	plot_feature_stability_ecs_facet
	plot_feature_stability_mb_facet
	plot_k_n_partitions
	plot_k_resolution_corresp
	plot_n_neigh_ecs
	plot_n_neigh_k_correspondence
	server_comparisons
	server_dimensionality_reduction
	server_graph_clustering
	server_graph_construction
	server_landing_page
	server_sandbox
	ui_comparisons
	ui_dimensionality_reduction
	ui_graph_clustering
	ui_graph_construction
	ui_landing_page
	ui_sandbox
	weighted_element_consistency
	write_objects
	write_shiny_app
	Index

