Package 'BCClong'

January 20, 2025

Type Package

Title Bayesian Consensus Clustering for Multiple Longitudinal Features

Version 1.0.3

Maintainer Zhiwen Tan <21zt9@queensu.ca>

Description It is very common nowadays for a study to collect multiple features and appropriately integrating multiple longitudinal features simultaneously for defining individual clusters becomes increasingly crucial to understanding population heterogeneity and predicting future outcomes. 'BCClong' implements a Bayesian consensus clustering (BCC) model for multiple longitudinal features via a generalized linear mixed model. Compared to existing packages, several key features make the 'BCClong' package appealing: (a) it allows simultaneous clustering of mixed-type (e.g., continuous, discrete and categorical) longitudinal features, (b) it allows each longitudinal feature to be collected from different sources with measurements taken at distinct sets of time points (known as irregularly sampled longitudinal data), (c) it relaxes the assumption that all features have the same clustering structure by estimating the feature-specific (local) clusterings and consensus (global) clustering.

License MIT + file LICENSE

Depends R (>= 3.5.0)

Imports cluster, coda, ggplot2, graphics, label.switching, LaplacesDemon, lme4, MASS, mclust, MCMCpack, mixAK, mvtnorm, nnet, Rcpp (>= 1.0.9), Rmpfr, stats, truncdist, abind, gridExtra

Suggests cowplot, joineRML, knitr, rmarkdown, survival, survminer, testthat (>= 3.0.0)

LinkingTo Rcpp, RcppArmadillo

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.1

NeedsCompilation yes

Author Zhiwen Tan [aut, cre], Zihang Lu [ctb], Chang Shen [ctb]

Repository CRAN

Date/Publication 2024-06-24 00:00:02 UTC

Contents

BayesT	2
BCC.multi	3
conRes	5
epil	6
epil1	6
epil2	7
epil3	7
example	8
example1	8
	9
	9
plot.BCC	
print.BCC	
summary.BCC	
traceplot	
trajplot	.3
1	5

Index

BayesT

Goodness of fit.

Description

This function assess the model goodness of fit by calculate the discrepancy measure T(bm(y), bm(Theta)) with following steps (a) Generate T.obs based on the MCMC samples (b) Generate T.rep based on the posterior distribution of the parameters (c) Compare T.obs and T.rep, and calculate the P values.

Usage

BayesT(fit)

Arguments

fit

an objective output from BCC.multi() function

BCC.multi

Value

Returns a dataframe with length equals to 2 that contains observed and predict value

Examples

```
#import data
data(example)
fit.BCC <- example
BayesT(fit.BCC)</pre>
```

BCC.multi	Compute a Bayesian Consensus Clustering model for mixed-type lon-
	gitudinal data

Description

This function performs clustering on mixed-type (continuous, discrete and categorical) longitudinal markers using Bayesian consensus clustering method with MCMC sampling

Usage

```
BCC.multi(
  mydat,
  id,
  time,
  center = 1,
  num.cluster,
  formula,
  dist,
  alpha.common = 0,
  initials = NULL,
  sigma.sq.e.common = 1,
 hyper.par = list(delta = 1, a.star = 1, b.star = 1, aa0 = 0.001, bb0 = 0.001, cc0 =
    0.001, ww0 = 0, vv0 = 1000, dd0 = 0.001, rr0 = 4, RR0 = 3),
  c.ga.tunning = NULL,
  c.theta.tunning = NULL,
  adaptive.tunning = 0,
  tunning.freq = 20,
  initial.cluster.membership = "random",
  input.initial.local.cluster.membership = NULL,
  input.initial.global.cluster.membership = NULL,
  seed.initial = 2080,
  burn.in,
  thin,
  per,
  max.iter
)
```

Arguments

8		
mydat	list of R longitudinal features (i.e., with a length of R), where R is the number of features. The data should be prepared in a long-format (each row is one time point per individual).	
id	a list (with a length of R) of vectors of the study id of individuals for each feature. Single value (i.e., a length of 1) is recycled if necessary	
time	a list (with a length of R) of vectors of time (or age) at which the feature measurements are recorded	
center	1: center the time variable before clustering, 0: no centering	
num.cluster	number of clusters K	
formula	a list (with a length of R) of formula for each feature. Each formula is a twosided linear formula object describing both the fixed-effects and random effects part of the model, with the response (i.e., longitudinal feature) on the left of a ~ operator and the terms, separated by + operations, or the right. Random-effects terms are distinguished by vertical bars (l) separating expressions for design matrices from grouping factors. See formula argument from the lme4 package	
dist	a character vector (with a length of R) that determines the distribution for each feature. Possible values are "gaussian" for a continuous feature, "poisson" for a discrete feature (e.g., count data) using a log link and "binomial" for a dichotomous feature (0/1) using a logit link. Single value (i.e., a length of 1) is recycled if necessary	
alpha.common	1 - common alpha, 0 - separate alphas for each outcome	
initials	List of initials for: zz, zz.local ga, sigma.sq.u, sigma.sq.e, Default is NULL	
sigma.sq.e.com	mon	
	1 - estimate common residual variance across all groups, 0 - estimate distinct residual variance, default is 1	
hyper.par	hyper-parameters of the prior distributions for the model parameters. The de- fault hyper-parameters values will result in weakly informative prior distribu- tions.	
c.ga.tunning	tuning parameter for MH algorithm (fixed effect parameters), each parameter corresponds to an outcome/marker, default value equals NULL	
c.theta.tunnin	g	
	tuning parameter for MH algorithm (random effect), each parameter corresponds to an outcome/marker, default value equals NULL	
adaptive.tunning		
	adaptive tuning parameters, 1 - yes, 0 - no, default is 1	
tunning.freq	tuning frequency, default is 20	
initial.cluste	"mixAK" or "random" or "PAM" or "input" - input initial cluster membership for local clustering, default is "random"	
input.initial.	local.cluster.membership	
	if use "input", option input.initial.cluster.membership must not be empty, default is NULL	

conRes

input.initial.global.cluster.membership		
	input initial cluster membership for global clustering default is NULL	
seed.initial	seed for initial clustering (for initial.cluster.membership = "mixAK") default is 2080	
burn.in	the number of samples disgarded. This value must be smaller than max.iter.	
thin	the number of thinning. For example, if thin = 10, then the MCMC chain will keep one sample every 10 iterations	
per	specify how often the MCMC chain will print the iteration number	
max.iter	the number of MCMC iterations.	

Value

Returns a BCC class model contains clustering information

Examples

```
# import dataframe
data(epil)
# example only, larger number of iteration required for accurate result
fit.BCC <- BCC.multi (
    mydat = list(epil$anxiety_scale,epil$depress_scale),
    dist = c("gaussian"),
    id = list(epil$id),
    time = list(epil$time),
    formula =list(y ~ time + (1|id)),
    num.cluster = 2,
    burn.in = 3,
    thin = 1,
    per =1,
    max.iter = 8)
```

conRes

conRes dataset

Description

This data sets contains the result that run from BayesT function using epil1 BCC object. The epil1 object was obtained using BCC.multi function

Usage

```
data(conRes)
```

Format

This is a dataframe with two columns and twenty observations

Examples

data(conRes) conRes

epil

epil dataset

Description

This is epileptic.qol data set from joinrRML

Usage

data(epil)

Format

This is a dataframe with 4 varaibles and 1852 observations

Examples

data(epil) epil

epil1

epil1 model

Description

This model contains the result that run from BCC.multi function using epileptic.qol dataset in joinrRML package. This model has formula of formula =list(y ~ time + (1|id))

Usage

data(epil1)

Format

This is a BCC model with thirty elements

Examples

data(epil1) epil1 epil2

Description

This model contains the result that run from BCC.multi function using epileptic.qol dataset in joinrRML package. This model has formula of formula =list(y ~ time + (1 + time|id))

Usage

data(epil2)

Format

This is a BCC model with thirty elements

Examples

data(epil2) epil2

epil3

epil3 model

Description

This model contains the result that run from BCC.multi function using epileptic.qol dataset in joinrRML package. This model has formula of formula =list(y ~ time + time2 + (1 + time|id))

Usage

data(epil3)

Format

This is a BCC model with thirty elements

Examples

data(epil3) epil3 example

Description

This is an example model which contains the result that run from BCC.multi function using epileptic.qol dataset in joinrRML package. Only used in documented example and tests. Since small number of iterations were used, this model can may not represent the true performance for this method.

Usage

data(example)

Format

This is a BCC model with thirty elements

Examples

data(example)
example

example1

example1 model

Description

This is an example model which contains the result that run from BCC.multi function using epileptic.qol dataset in joinrRML package. Only used the tests. Since small number of iterations were used, this model can may not represent the true performance for this method.

Usage

```
data(example1)
```

Format

This is a BCC model with thirty elements

Examples

data(example1)
example1

model.selection.criteria

Model selection

Description

A function that calculates DIC and WAIC for model selection

Usage

```
model.selection.criteria(fit, fast_version = TRUE)
```

Arguments

fit	an objective output from BCC.multi() function
fast_version	if fast_verion=TRUE (default), then compute the DIC and WAIC using the first 100 MCMC samples (after burn-in and thinning) . If fast_version=FALSE, then compute the DIC and WAIC using all MCMC samples (after burn-in and thinning)

Value

Returns the calculated score

Examples

```
#import data
data(example1)
fit.BCC <- example1
res <- model.selection.criteria(fit.BCC, fast_version=TRUE)
res</pre>
```

PBCseqfit

PBCseqfit model

Description

This model contains the result that run from BCC.multi function using PBC910 dataset in mixAK package

Usage

data(PBCseqfit)

Format

This is a BCC model with thirty elements

Examples

data(PBCseqfit)
PBCseqfit

plot.BCC

Generic plot method for BCC objects

Description

Generic plot method for BCC objects

Usage

S3 method for class 'BCC'
plot(x, ...)

Arguments

х	An object of class BCC.
	further arguments passed to or from other methods.

Value

Void function plot model object, no object return

Examples

```
# get data from the package
data(epil1)
fit.BCC <- epil1
plot(fit.BCC)
```

10

print.BCC

Description

Generic print method for BCC objects

Usage

S3 method for class 'BCC'
print(x, ...)

Arguments

х	An object of class BCC.
	further arguments passed to or from other methods.

Value

Void function prints model information, no object return

Examples

```
# get data from the package
data(epil2)
fit.BCC <- epil2
print(fit.BCC)
```

summary.BCC

Generic summary method for BCC objects

Description

Generic summary method for BCC objects

Usage

S3 method for class 'BCC'
summary(object, ...)

Arguments

object	An object of class BCC.
	further arguments passed to or from other methods.

traceplot

Value

Void function summarize model information, no object return

Examples

```
# get data from the package
data(epil2)
fit.BCC <- epil2
summary(fit.BCC)
```

traceplot

Trace plot function

Description

To visualize the MCMC chain for model parameters

Usage

```
traceplot(
  fit,
  cluster.indx = 1,
  feature.indx = 1,
  parameter = "PPI",
  xlab = NULL,
  ylab = NULL,
  ylim = NULL,
  xlim = NULL,
  title = NULL
)
```

Arguments

fit	an objective output from BCC.multi() function.
cluster.indx	a numeric value. For cluster-specific parameters, specifying cluster.indx will generate the trace plot for the corresponding cluster.
feature.indx	a numeric value. For cluster-specific parameters, specifying feature.indx will generate the trace plot for the corresponding cluster.
parameter	a character value. Specify which parameter for which the trace plot will be generated. The value can be "PPI" for pi, alpha for alpha, "GA" for gamma, "SIGMA.SQ.U" for Sigma and "SIGMA.SQ.E" for sigma.
xlab	Label for x axis
ylab	Label for y axis
ylim	The range for y axis
xlim	The range for x axis
title	Title for the trace plot

12

trajplot

Value

void function with no return value, only show plots

Examples

```
# get data from the package
data(epil1)
fit.BCC <- epil1
traceplot(fit=fit.BCC, parameter="PPI",ylab="pi",xlab="MCMC samples")
```

tra	

Trajplot for fitted model

Description

plot the longitudinal trajectory of features by local and global clusterings

Usage

```
trajplot(
  fit,
  feature.ind = 1,
  which.cluster = "global.cluster",
  title = NULL,
  ylab = NULL,
  color = NULL
)
```

Arguments

fit	an objective output from BCC.multi() function
feature.ind	a numeric value indicating which feature to plot. The number indicates the order of the feature specified in mydat argument of the BCC.multi()() function
which.cluster	a character value: "global" or "local", indicating whether to plot the trajectory by global cluster or local cluster indices
title	Title for the trace plot
ylab	Label for y axis
xlab	Label for x axis
color	Color for the trajplot

Value

A plot object

trajplot

Examples

14

Index

* datasets conRes, 5 epil,<mark>6</mark> epil1,<mark>6</mark> epil2,7 epil3,7 example, 8 example1, 8PBCseqfit, 9 BayesT, 2 BCC.multi, 3 conRes, 5 epil,<mark>6</mark> epil1,6 epil2,7 epil3,7 example, 8 example1,8 model.selection.criteria,9 PBCseqfit, 9 plot.BCC, 10 print.BCC, 11 summary.BCC, 11 traceplot, 12 trajplot, 13