
Package ‘AzureVision’
January 20, 2025

Title Interface to Azure Computer Vision Services

Version 1.0.2

Description An interface to 'Azure Computer Vision' <https://docs.microsoft.com/azure/
cognitive-services/Computer-vision/Home> and 'Azure Custom Vi-
sion' <https://docs.microsoft.com/azure/cognitive-services/
custom-vision-service/home>, building on the low-level functionality pro-
vided by the 'AzureCognitive' package. These services allow users to lever-
age the cloud to carry out visual recognition tasks using advanced image processing mod-
els, without needing powerful hardware of their own. Part of the 'AzureR' family of packages.

URL https://github.com/Azure/AzureVision

https://github.com/Azure/AzureR

BugReports https://github.com/Azure/AzureVision/issues

License MIT + file LICENSE

VignetteBuilder knitr

Depends R (>= 3.3)

Imports AzureRMR, AzureCognitive, httr, utils

Suggests knitr, rmarkdown, AzureAuth, testthat

RoxygenNote 7.1.1

NeedsCompilation no

Author Hong Ooi [aut, cre],
Microsoft [cph]

Maintainer Hong Ooi <hongooi73@gmail.com>

Repository CRAN

Date/Publication 2020-10-17 22:10:03 UTC

Contents
add_images . 2
add_image_regions . 5
add_image_tags . 7

1

https://docs.microsoft.com/azure/cognitive-services/Computer-vision/Home
https://docs.microsoft.com/azure/cognitive-services/Computer-vision/Home
https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/home
https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/home
https://github.com/Azure/AzureVision
https://github.com/Azure/AzureR
https://github.com/Azure/AzureVision/issues

2 add_images

add_tags . 8
analyze . 10
browse_images . 12
classification_service . 13
computervision_endpoint . 14
create_classification_project . 15
do_training_op . 17
predict.customvision_model . 18
publish_model . 19
show_model . 21
train_model . 22

Index 25

add_images Add, list and remove images for a project

Description

Add, list and remove images for a project

Usage

add_images(project, ...)

S3 method for class 'classification_project'
add_images(project, images, tags = NULL, ...)

S3 method for class 'object_detection_project'
add_images(project, images, regions = NULL, ...)

list_images(project, include = c("all", "tagged", "untagged"),
as = c("ids", "dataframe", "list"), iteration = NULL)

remove_images(project, image_ids = list_images(project, "untagged", as =
"ids"), confirm = TRUE)

Arguments

project A Custom Vision project.

... Arguments passed to lower-level functions.

images For add_images, the images to add (upload) to the project.

tags Optional tags to add to the images. Only for classification projects.

regions Optional list of regions in the images that contain objects. Only for object de-
tection projects.

include For list_images, which images to include in the list: untagged, tagged, or both
(the default).

add_images 3

as For list_images, the return value: a vector of image IDs, a data frame of image
metadata, or a list of metadata.

iteration For list_images, the iteration ID (roughly, which model generation to use).
Defaults to the latest iteration.

image_ids For remove_images, the IDs of the images to remove from the project.

confirm For remove_images, whether to ask for confirmation first.

Details

The images to be uploaded can be specified as:

• A vector of local filenames. JPG, PNG and GIF file formats are supported.

• A vector of publicly accessible URLs.

• A raw vector, or a list of raw vectors, holding the binary contents of the image files.

Uploaded images can also have tags added (for a classification project) or regions (for an object
detection project). Classification tags can be specified in the following ways:

• For a regular classification project (one tag per image), as a vector of strings. The tags will be
applied to the images in order. If the length of the vector is 1, it will be recycled to the length
of image_ids.

• For a multilabel classification project (multiple tags per image), as a list of vectors of strings.
Each vector in the list contains the tags to be assigned to the corresponding image. If the
length of the list is 1, it will be recycled to the length of image_ids.

If the length of the vector is 1, it will be recycled to the length of image_ids.

Object detection projects also have tags, but they are specified as part of the regions argument.
The regions to add should be specified as a list of data frames, with one data frame per image. Each
data frame should have one row per region, and the following columns:

• left, top, width, height: the location and dimensions of the region bounding box, nor-
malised to be between 0 and 1.

• tag: the name of the tag to associate with the region.

Any other columns in the data frame will be ignored. If the length of the list is 1, it will be recycled
to the length of image_ids.

Note that once uploaded, images are identified only by their ID; there is no general link back to the
source filename or URL. If you don’t include tags or regions in the add_images call, be sure to save
the returned IDs and then call add_image_tags or add_image_regions as appropriate.

Value

For add_images, the vector of IDs of the uploaded images.

For list_images, based on the value of the as argument. The default is a vector of image
IDs; as="list" returns a (nested) list of image metadata with one component per image; and
as="dataframe" returns the same metadata but reshaped into a data frame.

4 add_images

See Also

add_image_tags and add_image_regions to add tags and regions to images, if not done at upload
time

add_tags, list_tags, remove_tags

customvision_project

Examples

Not run:

endp <- customvision_training_endpoint(url="endpoint_url", key="key")

classification
proj1 <- create_classification_project(endp, "myproject")
list_images(proj1)
imgs <- dir("path/to/images", full.names=TRUE)

recycling: apply one tag to all images
add_images(proj1, imgs, tags="mytag")
list_images(proj1, include="tagged", as="dataframe")

different tags per image
add_images(proj1, c("cat.jpg", "dog.jpg", tags=c("cat", "dog"))

adding online images
host <- "https://mysite.example.com/"
img_urls <- paste0(host, c("img1.jpg", "img2.jpg", "img3.jpg"))
add_images(proj1, img_urls, tags="mytag")

multiple label classification
proj2 <- create_classification_project(endp, "mymultilabelproject", multiple_tags=TRUE)

add_images(proj2, imgs, tags=list(c("tag1", "tag2")))
add_images(proj2, c("catanddog.jpg", "cat.jpg", "dog.jpg"),

tags=list(
c("cat", "dog"),
"cat",
"dog"

)
)

object detection
proj3 <- create_object_detection_project(endp, "myobjdetproj")

regions <- list(
data.frame(

tag=c("cat", "dog"),
left=c(0.1, 0.5),
top=c(0.25, 0.28),
width=c(0.24, 0.21),
height=c(0.7, 0.6)

add_image_regions 5

),
data.frame(

tag="cat", left=0.5, top=0.35, width=0.25, height=0.62
),
data.frame(

tag="dog", left=0.07, top=0.12, width=0.79, height=0.5
)

)
add_images(proj3, c("catanddog.jpg", "cat.jpg", "dog.jpg"), regions=regions)

End(Not run)

add_image_regions Add and remove regions from images

Description

Add and remove regions from images

Usage

add_image_regions(project, image_ids, regions)

remove_image_regions(project, image_ids, region_ids = NULL)

identify_regions(project, image)

Arguments

project A Custom Vision object detection project.

image_ids For add_image_regions and remove_image_regions, the IDs of the images
for which to add or remove regions.

regions For add_image_regions, the regions to add. See ’Details’ below.

region_ids For remove_image_regions, a vector of region IDs. This is an alternative to
image ID for specifying the regions to remove; if this is provided, image_ids is
not used.

image For identify_regions, an image for which to identify possible regions in
which an object exists. This can be the ID of an image that was previously up-
loaded to the project; if not, the image is uploaded. Otherwise, see add_images
for how to specify an image to upload.

6 add_image_regions

Details

add_image_regions and remove_image_regions let you specify the regions in an image that
contain an object. You can use identify_regions to have Custom Vision try to guess the regions
for an image.

The regions to add should be specified as a list of data frames, with one data frame per image. Each
data frame should have one row per region, and the following columns:

• left, top, width, height: the location and dimensions of the region bounding box, nor-
malised to be between 0 and 1.

• tag: the name of the tag to associate with the region. Any other columns in the data frame
will be ignored.

Value

For add_image_regions, a data frame containing the details on the added regions.

For remove_image_regions, the value of image_ids invisibly, if this argument was provided;
NULL otherwise.

For identify_regions, a list with the following components: projectId, the ID of the project;
imageId, the ID of the image; and proposals, a data frame containing the coordinates of each
identified region along with a confidence score.

See Also

add_images, add_tags

add_image_tags for classification projects

Examples

Not run:

img_ids <- add_images(myproj, c("catanddog.jpg", "cat.jpg", "dog.jpg"))

regions <- list(
data.frame(

tag=c("cat", "dog"),
left=c(0.1, 0.5),
top=c(0.25, 0.28),
width=c(0.24, 0.21),
height=c(0.7, 0.6)

),
data.frame(

tag="cat", left=0.5, top=0.35, width=0.25, height=0.62
),
data.frame(

tag="dog", left=0.07, top=0.12, width=0.79, height=0.5
)

)

add_image_regions(myproj, img_ids, regions)

add_image_tags 7

remove_image_regions(myproj, img_ids[3])
add_image_regions(myproj, img_ids[3],

list(data.frame(
tag="dog", left=0.5, top=0.12, width=0.4, height=0.7

))
)

End(Not run)

add_image_tags Tag and untag images uploaded to a project

Description

Tag and untag images uploaded to a project

Usage

add_image_tags(project, image_ids, tags)

S3 method for class 'classification_project'
add_image_tags(project, image_ids = list_images(project, "untagged"), tags)

remove_image_tags(project, image_ids = list_images(project, "tagged", as =
"ids"), tags = list_tags(project, as = "ids"))

Arguments

project a Custom Vision classification project.
image_ids The IDs of the images to tag or untag.
tags For add_image_tags, the tag labels to add to the images. For remove_image_tags,

the tags (either text labels or IDs) to remove from images. The default for un-
tagging is to remove all assigned tags.

Details

add_image_tags is for tagging images that were uploaded previously, while remove_image_tags
untags them. Adding tags does not remove previously assigned ones. Similarly, removing one tag
from an image leaves any other tags intact.

Tags can be specified in the following ways:

• For a regular classification project (one tag per image), as a vector of strings. The tags will be
applied to the images in order. If the length of the vector is 1, it will be recycled to the length
of image_ids.

• For a multilabel classification project (multiple tags per image), as a list of vectors of strings.
Each vector in the list contains the tags to be assigned to the corresponding image. If the
length of the list is 1, it will be recycled to the length of image_ids.

If the length of the vector is 1, it will be recycled to the length of image_ids.

8 add_tags

Value

The vector of IDs for the images affected, invisibly.

See Also

add_images, add_tags

add_image_regions for object detection projects

Examples

Not run:

imgs <- dir("path/to/images", full.names=TRUE)
img_ids <- add_images(myproj, imgs)
add_image_tags(myproj, "mytag")
remove_image_tags(myproj, img_ids[1])
add_image_tags(myproj, img_ids[1], "myothertag")

End(Not run)

add_tags Add, retrieve and remove tags for a project

Description

Add, retrieve and remove tags for a project

Usage

add_tags(project, tags)

add_negative_tag(project, negative_name = "_negative_")

list_tags(project, as = c("names", "ids", "dataframe", "list"),
iteration = NULL)

get_tag(project, name = NULL, id = NULL, iteration = NULL)

remove_tags(project, tags, confirm = TRUE)

Arguments

project A Custom Vision project.

tags For add_tags, a vector of strings to treat as tags.

negative_name For add_negative_tag, the label to provide a negative tag. See ’Negative tags’
below.

add_tags 9

as For list_tags, the format in which to return results: a vector of tag names, a
vector of tag IDs, a data frame of metadata, or a list of metadata.

iteration For list_tags and get_tag, the iteration ID (roughly, which model generation
to use). Defaults to the latest iteration.

name, id For get_tag, the name (text string) for a tag, and its ID. Provide one or the
other, but not both.

confirm For remove_tags, whether to ask for confirmation first.

Details

Tags are the labels attached to images for use in classification projects. An image can have one
or multiple tags associated with it; however, the latter only makes sense if the project is setup for
multi-label classification.

Tags form part of the metadata for a Custom Vision project, and have to be explicitly defined prior
to use. Each tag has a corresponding ID which is used to manage it. In general, you can let
AzureVision handle the details of managing tags and tag IDs.

Value

add_tags and add_negative_tag return a data frame containing the names and IDs of the tags
added.

Negative tags

A negative tag is a special tag that represents the absence of any other tag. For example, if a project
is classifying images into cats and dogs, an image that doesn’t contain either a cat or dog should
be given a negative tag. This can be distinguished from an untagged image, where there is no
information at all on what it contains.

You can add a negative tag to a project with the add_negative_tag method. Once defined, a
negative tag is treated like any other tag. A project can only have one negative tag defined.

See Also

add_image_tags, remove_image_tags

Examples

Not run:

add_tags(myproj, "newtag")
add_negative_tag(myproj)
remove_tags(myproj, "_negative_")
add_negative_tag(myproj, "nothing")

End(Not run)

10 analyze

analyze Interface to Azure Computer Vision API

Description

Interface to Azure Computer Vision API

Usage

analyze(endpoint, image, domain = NULL, feature_types = NULL,
language = "en", ...)

describe(endpoint, image, language = "en", ...)

detect_objects(endpoint, image, ...)

area_of_interest(endpoint, image, ...)

tag(endpoint, image, language = "en", ...)

categorize(endpoint, image, ...)

read_text(endpoint, image, detect_orientation = TRUE, language = "en", ...)

list_computervision_domains(endpoint, ...)

make_thumbnail(endpoint, image, outfile, width = 50, height = 50,
smart_crop = TRUE, ...)

Arguments

endpoint A computer vision endpoint.

image An image to be sent to the endpoint. This can be either a filename, a publicly
accessible URL, or a raw vector holding the file contents.

domain For analyze, an optional domain-specific model to use to analyze the image.
Can be "celebrities" or "landmarks".

feature_types For analyze, an optional character vector of more detailed features to return.
This can be one or more of: "categories", "tags", "description", "faces", "im-
agetype", "color", "adult", "brands" and "objects". If not supplied, defaults to
"categories".

language A 2-character code indicating the language to use for tags, feature labels and
descriptions. The default is en, for English.

... Arguments passed to lower-level functions, and ultimately to call_cognitive_endpoint.
detect_orientation

For read_text, whether to automatically determine the image’s orientation.

analyze 11

outfile For make_thumbnail, the filename for the generated thumbnail. Alternatively,
if this is NULL the thumbnail is returned as a raw vector.

width, height For make_thumbnail, the dimensions for the returned thumbnail.

smart_crop For make_thumbnail, whether to automatically determine the best location to
crop for the thumbnail. Useful when the aspect ratios of the original image and
the thumbnail don’t match.

Details

analyze extracts visual features from the image. To obtain more detailed features, specify the
domain and/or feature_types arguments as appropriate.

describe attempts to provide a text description of the image.

detect_objects detects objects in the image.

area_of_interest attempts to find the "interesting" part of an image, meaning the most likely
location of the image’s subject.

tag returns a set of words that are relevant to the content of the image. Not to be confused with the
add_tags or add_image_tags functions that are part of the Custom Vision API.

categorize attempts to place the image into a list of predefined categories.

read_text performs optical character recognition (OCR) on the image.

list_domains returns the predefined domain-specific models that can be queried by analyze for
deeper analysis. Not to be confused with the domains available for training models with the Custom
Vision API.

make_thumbnail generates a thumbnail of the image, with the specified dimensions.

Value

analyze returns a list containing the results of the analysis. The components will vary depending
on the domain and feature types requested.

describe returns a list with two components: tags, a vector of text labels; and captions, a data
frame of descriptive sentences.

detect_objects returns a dataframe giving the locations and types of the detected objects.

area_of_interest returns a length-4 numeric vector, containing the top-left coordinates of the
area of interest and its width and height.

tag and categorize return a data frame of tag and category information, respectively.

read_text returns the extracted text as a list with one component per region that contains text.
Each component is a vector of character strings.

list_computervision_domains returns a character vector of domain names.

make_thumbnail returns a raw vector holding the contents of the thumbnail, if the outfile argu-
ment is NULL. Otherwise, the thumbnail is saved into outfile.

See Also

computervision_endpoint, AzureCognitive::call_cognitive_endpoint

Computer Vision documentation

https://docs.microsoft.com/en-us/azure/cognitive-services/Computer-vision/Home

12 browse_images

Examples

Not run:

vis <- computervision_endpoint(
url="https://accountname.cognitiveservices.azure.com/",
key="account_key"

)

list_domains(vis)

analyze a local file
analyze(vis, "image.jpg")
picture on the Internet
analyze(vis, "https://example.com/image.jpg")
as a raw vector
analyze(vis, readBin("image.jpg", "raw", file.size("image.jpg")))

analyze has optional extras
analyze(vis, "image.jpg", feature_types=c("faces", "objects"))

describe(vis, "image.jpg")
detect_objects(vis, "image.jpg")
area_of_interest(vis, "image.jpg")
tag(vis, "image.jpg") # more reliable than analyze(*, feature_types="tags")
categorize(vis, "image.jpg")
read_text(vis, "scanned_text.jpg")

End(Not run)

browse_images View images uploaded to a Custom Vision project

Description

View images uploaded to a Custom Vision project

Usage

browse_images(project, img_ids, which = c("resized", "original",
"thumbnail"), max_images = 20, iteration = NULL)

Arguments

project A Custom Vision project.

img_ids The IDs of the images to view. You can use list_images to get the image IDs
for this project.

which Which image to view: the resized version used for training (the default), the
original uploaded image, or the thumbnail.

classification_service 13

max_images The maximum number of images to display.

iteration The iteration ID (roughly, which model generation to use). Defaults to the latest
iteration.

Details

Images in a Custom Vision project are stored in Azure Storage. This function gets the URLs for the
uploaded images and displays them in your browser.

See Also

list_images

classification_service

Connect to a Custom Vision predictive service

Description

Connect to a Custom Vision predictive service

Usage

classification_service(endpoint, project, name)

object_detection_service(endpoint, project, name)

Arguments

endpoint A prediction endpoint object, of class customvision_prediction_endpoint.

project The project underlying this predictive service. Can be either an object of class
customvision_project, or a string giving the ID of the project.

name The published name of the service.

Details

These functions are handles to a predictive service that was previously published from a trained
model. They have predict methods defined for them.

Value

An object of class classification_service or object_detection_service, as appropriate.
These are subclasses of customvision_predictive_service.

14 computervision_endpoint

See Also

customvision_prediction_endpoint, customvision_project

predict.classification_service, predict.object_detection_service, do_prediction_op

train_model, publish_model

Examples

Not run:

endp <- customvision_training_endpoint(url="endpoint_url", key="key")
myproj <- get_project(endp, "myproject")

getting the ID from the project object -- in practice you would store the ID separately
pred_endp <- customvision_prediction_endpoint(url="endpoint_url", key="pred_key")
classification_service(pred_endp, myproj$project$id, "publishedname")

End(Not run)

computervision_endpoint

Endpoint objects for computer vision services

Description

Endpoint objects for computer vision services

Usage

computervision_endpoint(url, key = NULL, aad_token = NULL, ...)

customvision_training_endpoint(url, key = NULL, ...)

customvision_prediction_endpoint(url, key = NULL, ...)

Arguments

url The URL of the endpoint.

key A subscription key. Can be single-service or multi-service.

aad_token For the Computer Vision endpoint, an OAuth token object, of class AzureAuth::AzureToken.
You can supply this as an alternative to a subscription key.

... Other arguments to pass to AzureCognitive::cognitive_endpoint.

create_classification_project 15

Details

These are functions to create service-specific endpoint objects. Computer Vision supports authen-
tication via either a subscription key or Azure Active Directory (AAD) token; Custom Vision only
supports subscription key. Note that there are two kinds of Custom Vision endpoint, one for training
and the other for prediction.

Value

An object inheriting from cognitive_endpoint. The subclass indicates the type of service/endpoint:
Computer Vision, Custom Vision training, or Custom Vision prediction.

See Also

cognitive_endpoint, call_cognitive_endpoint

Examples

computervision_endpoint("https://myaccount.cognitiveservices.azure.com", key="key")

customvision_training_endpoint("https://westus.api.cognitive.microsoft.com", key="key")

customvision_prediction_endpoint("https://westus.api.cognitive.microsoft.com", key="key")

create_classification_project

Create, retrieve, update and delete Azure Custom Vision projects

Description

Create, retrieve, update and delete Azure Custom Vision projects

Usage

create_classification_project(endpoint, name, domain = "general",
export_target = c("none", "standard", "vaidk"), multiple_tags = FALSE,
description = NULL)

create_object_detection_project(endpoint, name, domain = "general",
export_target = c("none", "standard", "vaidk"), description = NULL)

list_projects(endpoint)

get_project(endpoint, name = NULL, id = NULL)

update_project(endpoint, name = NULL, id = NULL, domain = "general",
export_target = c("none", "standard", "vaidk"), multiple_tags = FALSE,

16 create_classification_project

description = NULL)

delete_project(object, ...)

Arguments

endpoint A custom vision endpoint.

name, id The name and ID of the project. At least one of these must be specified for
get_project, update_project and delete_project. The name is required
for create_project (the ID will be assigned automatically).

domain What kinds of images the model is meant to apply to. The default "general"
means the model is suitable for use in a generic setting. Other, more specialised
domains for classification include "food", "landmarks" and "retail"; for object
detection the other possible domain is "logo".

export_target What formats are supported when exporting the model.

multiple_tags For classification models, Whether multiple categories (tags/labels) for an image
are allowed. The default is FALSE, meaning an image represents one and only
one category. Ignored for object detection models.

description An optional text description of the project.

object For delete_customvision_project, either an endpoint, or a project object.

... Further arguments passed to lower-level methods.

Details

A Custom Vision project contains the metadata for a model: its intended purpose (classification
vs object detection), the domain, the set of training images, and so on. Once you have created a
project, you upload images to it, and train models based on those images. A trained model can then
be published as a predictive service, or exported for standalone use.

By default, a Custom Vision project does not support exporting the model; this allows it to be
more complex, and thus potentially more accurate. Setting export_target="standard" enables
exporting to the following formats:

• ONNX 1.2

• CoreML, for iOS 11 devices

• TensorFlow

• TensorFlow Lite, for Android devices

• A Docker image for the Windows, Linux or Raspberry Pi 3 (ARM) platform

Setting export_target="vaidk" allows exporting to Vision AI Development Kit format, in addi-
tion to the above.

Value

delete_project returns NULL invisibly, on a successful deletion. The others return an object of
class customvision_project.

do_training_op 17

See Also

customvision_training_endpoint, add_images, train_model, publish_model, predict.customvision_model,
do_training_op

• CustomVision.ai: An interactive site for building Custom Vision models, provided by Mi-
crosoft

• Training API reference

• Prediction API reference

Examples

Not run:

endp <- customvision_training_endpoint(url="endpoint_url", key="key")

create_classification_project(endp, "myproject")
create_classification_project(endp, "mymultilabelproject", multiple_tags=TRUE)
create_object_detection_project(endp, "myobjdetproj")

create_classification_project(endp, "mystdproject", export_target="standard")

list_projects(endp)

get_project(endp, "myproject")

update_project(endp, "myproject", export_target="vaidk")

End(Not run)

do_training_op Carry out a Custom Vision operation

Description

Carry out a Custom Vision operation

Usage

do_training_op(project, ...)

S3 method for class 'customvision_project'
do_training_op(project, op, ...)

do_prediction_op(service, ...)

S3 method for class 'customvision_predictive_service'
do_prediction_op(service, op, ...)

https://www.customvision.ai/
https://southcentralus.dev.cognitive.microsoft.com/docs/services/Custom_Vision_Training_3.0/operations/5c771cdcbf6a2b18a0c3b7fa
https://southcentralus.dev.cognitive.microsoft.com/docs/services/Custom_Vision_Prediction_3.0/operations/5c82db60bf6a2b11a8247c15

18 predict.customvision_model

Arguments

project For do_training_op, a Custom Vision project.
op, ... Further arguments passed to call_cognitive_endpoint, and ultimately to the

REST API.
service For do_prediction_op, a Custom Vision predictive service.

Details

These functions provide low-level access to the Custom Vision REST API. do_training_op is for
working with the training endpoint, and do_prediction_op with the prediction endpoint. You can
use them if the other tools in this package don’t provide what you need.

See Also

customvision_training_endpoint, customvision_prediction_endpoint, customvision_project,
customvision_predictive_service, call_cognitive_endpoint

predict.customvision_model

Get predictions from a Custom Vision model

Description

Get predictions from a Custom Vision model

Usage

S3 method for class 'customvision_model'
predict(object, images, type = c("class", "prob", "list"), ...)

S3 method for class 'classification_service'
predict(object, images, type = c("class",
"prob", "list"), save_result = FALSE, ...)

S3 method for class 'object_detection_service'
predict(object, images, type = c("class",
"prob", "list"), save_result = FALSE, ...)

Arguments

object A Custom Vision object from which to get predictions. See ’Details’ below.
images The images for which to get predictions.
type The type of prediction: either class membership (the default), the class proba-

bilities, or a list containing all information returned by the prediction endpoint.
... Further arguments passed to lower-level functions; not used.
save_result For the predictive service methods, whether to store the predictions on the server

for future use.

publish_model 19

Details

AzureVision defines prediction methods for both Custom Vision model training objects (of class
customvision_model) and prediction services (classification_service and object_detection_service).
The method for model training objects calls the "quick test" endpoint, and is meant only for testing
purposes.

The prediction endpoints accept a single image per request, so supplying multiple images to these
functions will call the endpoints multiple times, in sequence. The images can be specified as:

• A vector of local filenames. All common image file formats are supported.

• A vector of publicly accessible URLs.

• A raw vector, or a list of raw vectors, holding the binary contents of the image files.

See Also

train_model, publish_model, classification_service, object_detection_service

Examples

Not run:

predicting with the training endpoint
endp <- customvision_training_endpoint(url="endpoint_url", key="key")
myproj <- get_project(endp, "myproject")
mod <- get_model(myproj)

predict(mod, "testimage.jpg")
predict(mod, "https://mysite.example.com/testimage.jpg", type="prob")

imgraw <- readBin("testimage.jpg", "raw", file.size("testimage.jpg"))
predict(mod, imgraw, type="list")

predicting with the prediction endpoint
you'll need either the project object or the ID
proj_id <- myproj$project$id
pred_endp <- customvision_prediction_endpoint(url="endpoint_url", key="pred_key")
pred_svc <- classification_service(pred_endp, proj_id, "iteration1")
predict(pred_svc, "testimage.jpg")

End(Not run)

publish_model Publish, export and unpublish a Custom Vision model iteration

Description

Publish, export and unpublish a Custom Vision model iteration

20 publish_model

Usage

publish_model(model, name, prediction_resource)

unpublish_model(model, confirm = TRUE)

export_model(model, format, destfile = basename(httr::parse_url(dl_link)$path))

list_model_exports(model)

Arguments

model A Custom Vision model iteration object.

name For publish_model, the name to assign to the published model on the prediction
endpoint.

prediction_resource

For publish_model, the Custom Vision prediction resource to publish to. This
can either be a string containing the Azure resource ID, or an AzureRMR re-
source object.

confirm For unpublish_model, whether to ask for confirmation first.

format For export_model, the format to export to. See below for supported formats.

destfile For export_model, the destination file for downloading. Set this to NULL to
skip downloading.

Details

Publishing a model makes it available to clients as a predictive service. Exporting a model serialises
it to a file of the given format in Azure storage, which can then be downloaded. Each iteration of
the model can be published or exported separately.

The format argument to export_model can be one of the following. Note that exporting a model
requires that the project was created with support for it.

• "onnx": ONNX 1.2

• "coreml": CoreML, for iOS 11 devices

• "tensorflow": TensorFlow

• "tensorflow lite": TensorFlow Lite for Android devices

• "linux docker", "windows docker", "arm docker": A Docker image for the given platform
(Raspberry Pi 3 in the case of ARM)

• "vaidk": Vision AI Development Kit

Value

export_model returns the URL of the exported file, invisibly if it was downloaded.

list_model_exports returns a data frame detailing the formats the current model has been ex-
ported to, along with their download URLs.

show_model 21

See Also

train_model, get_model, customvision_predictive_service, predict.classification_service,
predict.object_detection_service

Examples

Not run:

endp <- customvision_training_endpoint(url="endpoint_url", key="key")
myproj <- get_project(endp, "myproject")
mod <- get_model(myproj)

export_model(mod, "tensorflow", download=FALSE)
export_model(mod, "onnx", destfile="onnx.zip")

rg <- AzureRMR::get_azure_login("yourtenant")$
get_subscription("sub_id")$
get_resource_group("rgname")

pred_res <- rg$get_cognitive_service("mycustvis_prediction")
publish_model(mod, "mypublishedmod", pred_res)

unpublish_model(mod)

End(Not run)

show_model Display model iteration details

Description

Display model iteration details

Usage

show_model(model)

show_training_performance(model, threshold = 0.5, overlap = NULL)

S3 method for class 'customvision_model'
summary(object, ...)

Arguments

model, object A Custom Vision model iteration object.

threshold For a classification model, the probability threshold to assign an image to a class.

22 train_model

overlap For an object detection model, the overlap threshold for distinguishing between
overlapping objects.

... Arguments passed to lower-level functions.

Details

show_model displays the metadata for a model iteration: the name (assigned by default), model
training status, publishing details, and so on. show_training_performance displays summary
statistics for the model’s performance on the training data. The summary method for Custom Vision
model objects simply calls show_training_performance.

Value

For show_model, a list containing the metadata for the model iteration. For show_training_performance
and summary.customvision_model, a list of performance diagnostics.

See Also

train_model

Examples

Not run:

endp <- customvision_training_endpoint(url="endpoint_url", key="key")
myproj <- get_project(endp, "myproject")
mod <- get_model(myproj)

show_model(mod)

show_training_performance(mod)
summary(mod)

End(Not run)

train_model Create, retrieve, rename and delete a model iteration

Description

Create, retrieve, rename and delete a model iteration

train_model 23

Usage

train_model(project, training_method = c("quick", "advanced"),
max_time = 1, force = FALSE, email = NULL, wait = (training_method ==
"quick"))

list_models(project, as = c("ids", "list"))

get_model(project, iteration = NULL)

rename_model(model, name, ...)

delete_model(object, ...)

S3 method for class 'customvision_project'
delete_model(object, iteration = NULL, confirm = TRUE, ...)

S3 method for class 'customvision_model'
delete_model(object, confirm = TRUE, ...)

Arguments

project A Custom Vision project.

training_method

The training method to use. The default "quick" is faster but may be less accu-
rate. The "advanced" method is slower but produces better results.

max_time For advanced training, the maximum training time in hours.

force For advanced training, whether to refit the model even if the data has not changed
since the last iteration.

email For advanced training, an email address to notify when the training is complete.

wait whether to wait until training is complete (or the maximum training time has
elapsed) before returning.

as For list_models, the format in which to return results: as a named vector of
model iteration IDs, or a list of model objects.

iteration For get_model and delete_model.customvision_project, either the itera-
tion name or ID.

model A Custom Vision model.

name For rename_model, the new name for the model.

... Arguments passed to lower-level functions.

object For the delete_model method, a Custom Vision project or model, as appropri-
ate.

confirm For the delete_model methods, whether to ask for confirmation first.

24 train_model

Details

Training a Custom Vision model results in a model iteration. Each iteration is based on the current
set of images uploaded to the endpoint. Successive model iterations trained on different image sets
do not overwrite previous ones.

You must have at least 5 images per tag for a classification project, and 15 images per tag for an
object detection project, before you can train a model.

By default, AzureVision will use the latest model iteration for actions such as prediction, showing
performance statistics, and so on. You can list the model iterations with list_models, and retrieve
a specific iteration by passing the iteration ID to get_model.

Value

For train_model, get_model and rename_model, an object of class customvision_model which
is a handle to the iteration.

For list_models, based on the as argument: as="ids" returns a named vector of model iteration
IDs, while as="list" returns a list of model objects.

See Also

show_model, show_training_performance, publish_model

Examples

Not run:

endp <- customvision_training_endpoint(url="endpoint_url", key="key")
myproj <- get_project(endp, "myproject")

train_model(myproj)
train_model(myproj, method="advanced", force=TRUE, email="me@example.com")

list_models(myproj)

mod <- get_model(myproj)
rename(mod, "mymodel")
mod <- get_model(myproj, "mymodel")

delete_model(mod)

End(Not run)

Index

add_image_regions, 3, 4, 5, 8
add_image_tags, 3, 4, 6, 7, 9, 11
add_images, 2, 6, 8, 17
add_negative_tag (add_tags), 8
add_tags, 4, 6, 8, 8, 11
analyze, 10
area_of_interest (analyze), 10
AzureAuth::AzureToken, 14
AzureCognitive::call_cognitive_endpoint,

11
AzureCognitive::cognitive_endpoint, 14

browse_images, 12

call_cognitive_endpoint, 15, 18
categorize (analyze), 10
classification_service, 13, 19
cognitive_endpoint, 15
computervision (analyze), 10
computervision_endpoint, 11, 14
create_classification_project, 15
create_object_detection_project

(create_classification_project),
15

customvision_image_tags
(add_image_tags), 7

customvision_images (add_images), 2
customvision_prediction_endpoint, 14,

18
customvision_prediction_endpoint

(computervision_endpoint), 14
customvision_predictive_service, 18, 21
customvision_predictive_service

(classification_service), 13
customvision_project, 4, 14, 18
customvision_project

(create_classification_project),
15

customvision_regions
(add_image_regions), 5

customvision_tags (add_tags), 8
customvision_training_endpoint, 17, 18
customvision_training_endpoint

(computervision_endpoint), 14

delete_model (train_model), 22
delete_project

(create_classification_project),
15

describe (analyze), 10
detect_objects (analyze), 10
do_prediction_op, 14
do_prediction_op (do_training_op), 17
do_training_op, 17, 17

export_model (publish_model), 19

get_model, 21
get_model (train_model), 22
get_project

(create_classification_project),
15

get_tag (add_tags), 8

identify_regions (add_image_regions), 5

list_computervision_domains (analyze),
10

list_images, 12, 13
list_images (add_images), 2
list_model_exports (publish_model), 19
list_models (train_model), 22
list_projects

(create_classification_project),
15

list_tags, 4
list_tags (add_tags), 8

make_thumbnail (analyze), 10

object_detection_service, 19

25

26 INDEX

object_detection_service
(classification_service), 13

predict (predict.customvision_model), 18
predict.classification_service, 14, 21
predict.customvision_model, 17, 18
predict.object_detection_service, 14,

21
publish_model, 14, 17, 19, 19, 24

read_text (analyze), 10
remove_image_regions

(add_image_regions), 5
remove_image_tags, 9
remove_image_tags (add_image_tags), 7
remove_images (add_images), 2
remove_tags, 4
remove_tags (add_tags), 8
rename_model (train_model), 22

show_model, 21, 24
show_training_performance, 24
show_training_performance (show_model),

21
summary.customvision_model

(show_model), 21

tag (analyze), 10
train_model, 14, 17, 19, 21, 22, 22

unpublish_model (publish_model), 19
update_project

(create_classification_project),
15

	add_images
	add_image_regions
	add_image_tags
	add_tags
	analyze
	browse_images
	classification_service
	computervision_endpoint
	create_classification_project
	do_training_op
	predict.customvision_model
	publish_model
	show_model
	train_model
	Index

